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Abstract: Homology search is the seed for both genomics and proteomics research. However, the increase of the 
amount of DNA sequences requires efficient computational algorithms for performing sequence comparison 
and analysis. This is due to the fact that standard compression algorithms are not able to compress DNA 
sequences because they do not consider special characteristics of DNA sequences (i.e. DNA sequences 
contain several approximate repeats and complimentary palindromes are frequent in DNA). Recently, new 
algorithms have been proposed to compress DNA sequences, often using detection of long approximate 
repeats. The current work proposes a Lossless Compression Algorithm (LCA), providing a new encoding 
method. LCA achieves a better compression ratio than that of existing DNA-oriented compression 
algorithms, when compared to GenCompress and DNACompress, using nine different datasets. 

1 INTRODUCTION 

Molecular sequence databases (e.g., EMBL 
(http://www.ebi.ac.uk/embl/), GenBank 
(http://www.ncbi.nlm.nih.gov/Genbank/), Enterz 
(http://www.ncbi.nlm.nih.gov/Entrez/), etc.) 
currently collect terabytes of sequences of 
nucleotides and amino-acids from biological 
laboratories all over the world and are under 
continuous expansion (Apostolico and Lonardi, 
2000). These sequences play a vital role in 
performing homology search to find motifs of 
particular importance and to predict biomarkers. 
DNA sequences contain only four bases {A, C, T, 
G}. Thus, each base can be represented by two bits. 

Some characteristics of DNA sequences show 
that they are not random sequences (Behzadi and 
Fessant, 2004). Two characteristic structures of 
DNA sequences are known as approximate repeat 
and complementary palindrome (Matsumuto, 
Sadakane and Imai, 2000). Approximate repeat are 
repeat with mutations i.e. a change in the DNA bases 
"letters". Mutations are represented by edit 
operations; Insert (I), Delete (D), Replace (R) and 
the match or Copy represented by C (Tubingen and  

Huson, 2005). Figure 1 shows the edit operations, 
given two sequences: s1: “gaccgtcatt” and s2: 
“gaccttcatt”. 

(a)      C C C C R C C C C C  
  g   a  c  c g  t  c  a   t  t 
  g   a  c  c t   t  c  a   t  t 
 

Or             C  C C C D C I C C  C C 
(b)  g   a  c  c g  t      c  a   t  t 
  g   a  c  c     t   t  c  a   t  t 

Figure 1: Examples of Séquence Mutations by Edit 
Operations. 

Complementary palindrome is a reversed repeat, 
where A and C are respectively replaced by T and G 
(Chen, Kwong and Li, 1999; Allison, Edgoose and 
Dix, 1998). For example, consider the sequence 
ACGCCT; its palindrome will be TCCGCA and its 
complementary palindrome will be AGGCGT. The 
effective handling of these features is the key to 
successful DNA compression.  

DNA sequences compression has recently 
become a challenging computational problem.   
Main advantages of compressing DNA sequences 
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arise from the available large and rapidly increasing 
amount of DNA sequences. Moreover, data 
compression now has an even more important role in 
reducing the costs of data transmission, since the 
DNA files are typically shared and distributed over 
the Internet in heterogeneous databases. Space-
efficient representation of the data reduces the load 
on FTP service providers such as GenBank. 
Consequently, file transmissions are done faster, 
saving costs for clients who access those files 
(Korodi and Tabus, 2005). Furthermore, modeling 
and analyzing DNA sequences may lead into 
significant results, leading into finding a good 
relatedness measurement between sequences may 
lead into effective alignment and phylogenetic tree 
construction.  In addition, the statistical significance 
of DNA sequences show how sensitive the genome 
is to random changes, such as crossover and 
mutation, what the average composition of a 
sequence is, and where the important composition 
changes occur (Korodi and Tabus, 2005). 
Additionally, DNA compression has been used to 
distinguish between coding and non-coding regions 
of a DNA sequence, to evaluate the “distance” 
between DNA sequences and to quantify how much 
two organisms are “close” in the evolutionary tree, 
and in other biological applications.  On the other 
hand, the standard text compression tools, such as 
compress, gzip and bzip2, cannot compress these 
DNA sequences since the size of the files encoded 
with these tools is larger than two bits per symbol.   

Data compression is a process that reduces the 
data size. One of the most crucial issues of 
classification is the possibility that the compression 
algorithm removes some parts of data which cannot 
be recovered during the decompression. The 
algorithms removing permanently some parts of data 
are called lossy, while others are called lossless 
(Deorowicz, 2003).  

 In this paper, we propose a Lossless 
Compression Algorithm (LCA) which consists of 
three phases will be discussed in detail in section 4. 
We use PatternHunter as a part of the first phase to 
find approximate repeats and complementary 
palindromes. LCA proposes a new encoding 
methodology for DNA Compression. The rest of this 
paper is organized as follows: in section 2, we 
survey different algorithms for DNA sequence 
compression. In section 3, the difference between 
BLAST and PatternHunter is explained, illustrating 
why PatternHunter is used to detect approximate 
repeats and complementary palindromes in the 
proposed algorithm. In section 4, our proposed 
algorithm is explained. Section 5 shows the 

comparison of our results on a standard set of DNA 
sequences with results published for the most recent 
DNA compression algorithms. Finally, section 6 
presents the conclusion and future work. 

2 RELATED WORK 

Several compression algorithms have been 
developed, such as Biocompress (Grumbach and 
Tahi, 1993), Biocompress-2 (Grumbach and Tahi, 
1994), C-fact (Rivals, Delahaye, Dauchet and 
Delgrange, 1996), GenCompress (Chen, Kwong and  
Li, 1999; Chen, Kwong and  Li, 2001), CTW+LZ 
(Matsumuto, Sadakane, and Imai, 2000), 
DNASequitur (Cherniavski and Lander, 2004), 
DNAPack (Behzadi and Fessant,, 2004), and 
LUT+LZ (Bao, Chen and Jing, 2005).  The first two 
developed algorithm for compressing DNA 
sequences are Biocompress, and its second version 
Biocompress-2.  They are similar to the Lempel-Ziv 
data compression method in the way they search the 
previously processed part of the sequence for 
repeats. Biocompress-2 performs compression by 
the following steps: 1) Detecting exact repeats and 
complementary palindromes located in the already 
encoded sequence and 2) Encoding them by the 
repeat length and the position of a previous repeat 
occurrence. In case of no significant repetition is 
found, Biocompress-2 utilizes order-2 arithmetic 
coding. Another algorithm is the Cfact algorithm, 
which searches for the longest exact matching repeat 
using a suffix tree on the entire sequence. By 
performing two passes, repetitions are encoded when 
the gain is guaranteed; otherwise the two-bits-per 
base (2-Bits) encoding is used.  The GenCompress 
algorithm is a one-pass algorithm based on 
approximate matching, where two variants exist: 
GenCompress-1 and GenCompress-2.  
GenCompress-1 uses the Hamming distance (only 
Replace) for the repeats while GenCompress-2 uses 
the edition distance (deletion, insertion and Replace) 
for the encoding of the repeats.   CTW+LZ 
algorithm is based on the context tree weighting 
method. It combines a LZ-77 type method like 
GenCompress and the CTW algorithm. Long 
exact/approximate repeats are encoded by LZ77-
type algorithm, while short repeats are encoded by 
CTW. Although good compression ratios are 
obtained, execution time is too high to be used for 
long sequences. DNASequitur is a grammar-based 
compression algorithm for DNA sequences which 
infers a context-free grammar to represent the input 
data but fails to achieve better compression than 
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other DNA Compressors.  DNAPack uses Hamming 
distance for computing the approximate repeats and 
complementary palindromes, and either CTW or 
order-2 arithmetic coding compression for the non-
repeat regions. Unlike the above algorithms, 
DNAPack does not choose the repeats by a greedy 
algorithm, but uses a dynamic programming 
approach instead. LUT+LZ algorithm combines a 
Lookup Table (LUT)-based pre-coding routine and 
LZ77 compression routine. LUT maps the 
combination of ATGC into 64 ASCII characters. 

In addition, several DNA compression tools 
exist, such as DNACompress (Chen, Li, Ma and 
Tromp, 2002) and DNAC (Chang , 2004). 
DNACompress is a DNA compression tool, which 
employs the Lempel-Ziv compression scheme as 
Biocompress-2 and GenCompress. It consists of two 
phases: 1) Finding all approximate repeats including 
complementary palindromes, using specific 
software, PatternHunter, and 2) Encoding the 
approximate repeats and the non-repeat regions. In 
practice, the execution time of DNACompress is 
much less than GenCompress.  DNAC is another 
DNA compression tool, working in four phases: 1) 
Building a suffix tree to locate exact repeats, 2) 
Extending approximate repeats, 3) Extracting the 
optimal non-overlapping repeats from the 
overlapping ones, and 4) Encoding all the repeats.   
In the next section, a brief comparison between 
PatternHunter and BLAST is performed. 

3 PATTERNHUNTER V.S. BLAST 

PatternHunter is a tool, which performs homology 
search algorithm, using a novel seed model for 
increased sensitivity and new hit-processing 
techniques for significantly increased speed (Ma, 
Tromp and Li, 2002). 

PatternHunter finds all “approximate repeats” 
and “complementary palindromes” in one DNA 
sequence or between a pair of DNA sequences and 
outputs all repeats ranked by score. Blast looks for 
matches of k consecutive letters as seeds. Instead 
PatternHunter uses non-consecutive k letters as 
seeds. When comparing PatternHunter with BLAST 
in terms of speed and memory usage, PatternHunter 
performs better than BLAST, where PatternHunter 
runs up to 20 times faster than BLAST. Yet, at the 
same time, PatternHunter is more sensitive i.e. fewer 
high-quality matches are missed by PatternHunter 
than by BLAST (Ma, Tromp and Li, 2002). 

For example, PatternHunter can search for 
homologies between Arabidopsis Chromosome 2 
(20 Mb) and Chromosome 4 (18 Mb) in under 15 
minutes on a 700 MHz Pentium III with 1 GB of 
main memory. BLAST cannot complete this task on 
the same computer due to its high memory 
requirements. PatternHunter was used by the Mouse 
Genome Sequencing Consortium to compare human 
and mouse genomes. The task was completed in 20 
CPU-days; it was estimated that the same task would 
take 20 CPU-years with BLAST 
(http://www.bioinformaticssolutions.com/products/p
h/index.php). 

4 LCA PHASES AND ANALYSIS 

The proposed Lossless Compression Algorithm 
(LCA) considers the special characteristics of DNA 
sequences so it uses a new encoding method.  LCA 
consists of three main phases, as shown in Figure 2. 
1) Finding approximate repeats and complementary 
palindrome, 2) Removing overlapping between 
repeats by choosing ones with high scores and 
encoding repeats and palindromes after removing 
overlapping, and 3) Encoding the non-repeat 
regions.  

4.1 Finding Approximate Repeats and 
Complementary Palindromes 

Because of sensitivity and efficiency of 
PatternHunter, we use it to detect approximate 
repeats and complementary palindromes in the input 
DNA sequence in the first phase. Our algorithm uses 
the standard parameters for PatternHunter. These 
parameters were set and optimized based on the 
number of bits needed to encode a mismatching base 
as well as to encode a match. The output file of 
PatternHunter contains information about each 
repeat such as its score, start and end position, a set 
of edit operations, and whether it is an approximate 
repeat or a palindrome. 
 
Figure 3 shows a sample of an output file of 
PatternHunter using HUMVIR sequence as an input. 
In the output file, the 'Sbjct' is the repeat segment 
which will be encoded with respect to 'Query'. 
‘Query’ and ‘sbjct’ are followed by their start 
positions, sequence of bases, and end positions. 
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Figure 2: Phases of proposed DNA compression Algorithm.

 
Figure 3: A sample of an output file of PatternHunter. 

The '|' means there is a Copy or Match operation. 
The '-' when exists in query, it means there is 
insertion operation but when exists in sbjct; it means 
there is deletion operation. When an end position of 
a query is less than its start position, it means that its 
subject is a complementary palindrome. Otherwise, 
it is an approximate repeat. 

4.2 Encoding Repeat Regions 

The second phase develops the new encoding 
scheme which is the main contribution of this paper. 
In this phase, we first remove overlapping between 
repeats by choosing one with higher score. Then, we 
encode each repeat, using the following encoding 
scheme: 

 The algorithm uses two bits to determine 
whether the following block of bits is 
approximate repeat, complementary 
palindrome, edit operation, or non-repeat 
segment. 
o 01: an approximate repeat, followed 

by start position of query and the 
length. 

o 10: a complementary palindrome, 
followed by start position of 
query and the length. 

o 11: edit operations, followed by 
number of edit operations, the 
code of each operation. 

o 00: non-repeat segment. 
 When encoding numbers in case of position or 

length, the algorithm searches for the 
maximum position to get the fixed number of 
bits to represent each position. Then, the 
algorithm converts the number to its binary 
representation. 

 The algorithm uses two bits to encode each edit 
operation: 
o Replace (R): 00 followed by its 

relative position and the code of 
base to be replaced. 

o Insertion (I): 01 followed by its 
relative position and the code of 
base to be inserted. 

o Deletion (D): 10 followed by its 
relative position. 

4.3 Encoding Non-Repeat Regions 

In the third phase, we extract non-repeat segments 
from the DNA sequence and encode them using 2-
bit encoding method which replaces each base with 
two bits as the following A (00), C (01), G (10), and 
T (11). Figure 4 summarizes different steps of the 
proposed algorithm. 
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5 EXPERIMENTAL RESULTS 
AND DISCUSSION 

We compare the results of our algorithm to the most 
recent DNA compression algorithms. These 
experiments are performed on a computer whose 
CPU is Pentium IV 3GHz, memory is 512 MB and 
OS is Windows XP SP2. Table 1 shows the 
compression ratios (the number of bits per base) of 
these algorithms on standard benchmark sequences. 
These sequences are downloaded from NCBI 
database in FASTA format. Table 2 shows a short 
description about these sequences. Table 3 compares 
running time of these algorithms. LCA seems to be 
similar to DNACompress. However, LCA relies on 
different encoding methods for repeat and non-
repeat regions. Our program achieves better 
compression ratios than other programs except in 
three cases, as shown in Table 1. Although we failed 
to compress HUMDYSTROP efficiently because its 
approximate repeats are infrequent, the execution 
time of LCA is 1.33 seconds. HEHCMVCG and 
VACCG contain approximate repeats with many 
edit operations so we can not achieve the optimal 
compression ratio for them.  

The complexity of LCA is O( s (p + n) ) where s 
is the number of approximate repeats and 
complementary palindrome segments in the input 
DNA sequence, p is the number of edit operations in 
each segment, and n is the length of the input DNA 
sequence. 

6 CONCLUSIONS AND FUTURE 
WORK 

DNA compression computation is getting a lot of 
attention. However, existing algorithms do not prove 
good compression ratios because of the 
characteristics of DNA sequences.  In this work, we 
proposed LCA for compressing DNA sequences, 
relying on encoding methods, where its other phases 
are similar to existing algorithms.  LCA proved to 
have better compression algorithms, when compared 
to other two algorithms: GenCompress and 
DNACompress.  Nine different datasets have been 
used: HUMGHCSA, HUMHPRTB, 
HUMDYSTROP, HUMHDABCD, HEHCMVCG, 
CHMPXX, CHNTXX, MPOMTCG, and VACCG.  
LCA proves to have better compression ratios than 
the other algorithms using all datasets, except for 
HUMDYSTROP, HEHCMVCG and VACCG 
sequences. In future work, we will use our 

compression algorithm to predict coding and non-
coding regions in DNA sequences. 

 
Figure 4: The pseudocode of the proposed algorithm. 
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Table 1: Comparison of compression ratios for different algorithms (bits/base). 

Table 2: Description about the datasets. 

Table 3: Comparison of running times in seconds. 

DNA Sequence GenCompress DNACompress LCA 
HUMDYSTROP 6 2 1.33 

HEHCMVCG 51 3.4 3 
HUMHDABCD 11 2.5 2 

 
 

 
 
 
 
 
 
 
 

Sequence Length  (bases) GenCompress DNACompress LCA 
HUMGHCSA 66495 1.0969 1.0272 1.0216 
HUMHPRTB 56737 1.8466 1.8165 1.7911 
HUMDYSTROP 38770 1.9231 1.9116 2.0113 
HUMHDABCD 58864 1.8192 1.7951 1.7569 
HEHCMVCG 229354 1.847 1.8492 1.9617 
CHMPXX 121024 1.673 1.6716 1.613 
CHNTXX 155844 1.6146 1.6127 1.6018 
MPOMTCG 186609 1.9058 1.892 1.8849 
VACCG 191737 1.7614 1.7580 1.7601 

Description DNA Sequence 
Human growth hormone and chorionic somatomammotropin genes HUMGHCSA 
Human hypoxanthine phosphoribosyltransferase (HPRT) gene HUMHPRTB 
Human dystrophin gene HUMDYSTROP 
Human DNA sequence of contig comprising 3 cosmids (HDAB, HDAD, HDAC) HUMHDABCD 
Human cytomegalovirus , a betaherpesvirus, represents the major infectious cause of birth defects HEHCMVCG 
the complete chromosome III from yeast CHMPXX 
Nectary tissues from flowers at Stage 6 of development from mature greenhouse grown Nicotiana 
langsdorffii X Nicotiana sanderae (LxS8) plants 

CHNTXX 

Marchantia polymorpha mitochondrion MPOMTCG 
Vaccinia virus Copenhagen VACCG 
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