
IMPROVING PERFORMANCE OF BACKGROUND JOBS
IN DIGITAL LIBRARIES USING GRID COMPUTING

Marco Fernandes, Pedro Almeida, Joaquim A. Martins and Joaquim S. Pinto
Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal

Keywords: Grid computing, Digital Libraries.

Abstract: Digital libraries are responsible for maintaining very large amounts of data, which must typically be
processed for storage and dissemination purposes. Since these background tasks are usually very demanding
regarding CPU and memory usage, especially when dealing with multimedia files, centralized architectures
may suffer from performance issues, affecting the responsiveness to users. In this paper, we propose a grid
service layer for the execution of background jobs in digital libraries. A case study is also presented, where
we evaluate the performance of a grid application.

1 INTRODUCTION

The amount of information available to the public
has increased steeply in the last years, with the
internet serving as a vehicle for its production and
dissemination. Information systems such as digital
libraries are responsible for not only storing very
large amounts of data but also processing that
information for storage and dissemination purposes.

During the process of content submission to a
digital library, as with many other systems, it may be
required to execute some complex and/or CPU-
intensive jobs in the background, such as format
conversion and information extraction, whose
complexity usually increases when dealing the
multimedia resources. Also, many applications
require some maintenance tasks to be periodically
performed. These jobs – initiated either by an
operator of the system or by other jobs –, while
important for the proper functioning of the system,
should not degrade the overall performance and
responsiveness to other, more frequent and
interactive, requests.

If the document submission rate to the digital
library is high or the maintenance executed at an
improper schedule, these background jobs may
severely limit the performance of the application,
especially if this is centralized in one server. One
promising solution is the usage of Grid computing
(Buyya, 2007)(CSSE, 2006) to minimize the load
placed on the server that deals with these tasks.
Grids are generally subdivided into computational

grids, data grids, and service grids (Taylor, 2005). In
this paper we focused on Computational Grids: a
distributed set of resources dedicated to aggregate
computational capacity.

With this work, we aim to build a reusable set of
complex and/or CPU-intensive services identified as
necessary for digital libraries. Due to the high
requirements set by these services, they should be
run using an available Grid middleware. By
distributing the work by several, possibly idle,
machines, the server will have more available
resources, thus becoming more effective on
responding requests to regular users.

This paper is outlined as follows. In section 2 the
objectives of the work are briefly discussed. In
section 3 we present the Grid framework used. In
section 4 we discuss related work. In section 5 a
generic architecture for the deployment of the
service layer is presented. In section 6 a case study is
presented and an evaluation of the Grid performance
shown. In section 7 conclusions and future work are
presented.

2 OBJECTIVES

The aim of this work is to build a service layer on
top of an existing Grid framework. This layer should
encapsulate a set of services required for the
execution of CPUintensive and time consuming jobs
in digital libraries. Also, services should be made
available through Web Services interfaces.

221
Fernandes M., Almeida P., A. Martins J. and S. Pinto J. (2008).
IMPROVING PERFORMANCE OF BACKGROUND JOBS IN DIGITAL LIBRARIES USING GRID COMPUTING.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - SAIC, pages 221-225
DOI: 10.5220/0001680402210225
Copyright c© SciTePress

3 ALCHEMI

To implement the Grid network, the Alchemi
(Luther, 2005) framework was chosen. Since
Alchemi was developed with the .NET platform, it
allows the creation of Grid infrastructures which can
be used in Windows-class machines. However, by
providing a Web Service interface, Alchemi also
supports interaction with other custom middleware.

To run an Alchemi Grid application, the User
node connects to a Manager node and starts the
application. The Manager will then create the
threads to send to the Executor nodes which
registered in the Manager. Results are then collected
at the Manager and delivered to the User. Alchemi
supports two operation modes:

- Thread Model: the Thread Model (which we
will be using) is operated by using the Alchemi
API to create the Grid application. The
developer must create the “local code” – to be
executed in the Manager, responsible for
creating Grid threads and collecting the results
– and the “remote code” – the application core
operations to be executed in each Executor.

- Job Model: jobs and tasks are described by
specifying commands and I/O files in XML
conforming to Alchemi schemas. This model is
present to Grid-enable existing applications
and support interoperability with other Grid
middleware.

4 RELATED WORK

The use of Grid technology in digital libraries is
recommended and being subject of research from
work groups such as those from the DELOS
Network of Excellence on Digital Libraries (Agosti,
2006).

Although with different application scopes, Grid
computing is being applied by other digital library
projects such as BRICKS (Risse, 2005) and Diligent
(Candela, 2005), with the later being a project which
aims to integrate Grid and digital library
technologies.

In the context of document processing, Grid
technology has been applied Tier Technologies to
process high volumes of data. Ilkaev and Pearson
(Ilkaev, 2005) have created and evaluated a small
Alchemi Grid application developed to distribute the
OCR of scanned images, which is one of the slowest
document processing tasks.

5 ARCHITECTURE

Figure 1 shows a simplified architecture for the Grid
applications to be deployed on the service layer. At
the top, applications are developed in two classes:
Manager code and Executor code. The Executor
code is a standard serializable .NET class which
receives a number of arguments, executes a custom
code, and returns the produced output. The Manager
code is responsible for the Grid threads creation
(Initialization block) and any processing required
prior to dispatch or after the output is received. The
Manager code has two custom blocks encapsulated:
Requirements and Decision.

Figure 1: Alchemi Grid application architecture.

5.1 Requirements Block

Some tasks are self-contained, such as mathematical
functions which require only some embedded
libraries. Others, however, require the interaction
with external libraries, applications (such as Office,
Acrobat), platforms (.NET, JRE) or services.

These dependencies can be defined in a service
deployed in the framework so that upon execution
the Requirements block will retrieve the list of
available Executors which satisfy the criteria. This
operation can itself be implemented by using a small
Grid application which will run a number of tests
and store the results in a cache at the Manager.
Whenever a new dependency is created, a new test
must be added to the application.

A second group of requirements is hardware
related: even the smallest possible work unit of a
grid application may require an amount of free
memory or disk space which might not be available
in the Executor. Since these parameters vary with

ICEIS 2008 - International Conference on Enterprise Information Systems

222

time, the Manager must periodically retrieve
information from its Executors.

5.2 Decisions Block

Most standalone jobs cannot be directly migrated to
a Grid environment, since they were not designed
for parallel execution. Changing a job from
standalone execution to its Grid equivalent may
introduce large overheads and delays:

- it is usually required to pre-process and prepare
input data before distributing it;

- large amounts of data may have to be
transferred to and from Executors, making
bandwidth an important variable;

- output data from different Executors may have
to be processed in order to achieve the desired
output.

With this in consideration, we find it is important to
have a rule-based decision block on our service
middleware which functions on top of the Grid
framework.

For each service to be deployed, a set of rules
and conditions can be supplied to the Decisions
block. For instance, if it is expected to have a
performance gain only if the number of Executors is
larger than X, the decision block can dispatch the
task to only one machine if there are not X
Executors available. On the other hand, a service
may present a performance gain which decreases as
we add more Executors. For instance, some services
may present a poor performance gain when
increasing the number of Executors by one (for a
specific value). Since there is a trade-off of using
more resources, therefore decreasing availability for
other simultaneous requests, a gain threshold should
be defined.

Services can then be characterized by defining
minimum and maximum threshold values. These
thresholds are mainly affected by two variables:

- the computation to communication ratio –
due to the high latency of an internet
environment usually only applications with
a high ratio are suitable for Grid
deployment;

- the overhead involved in the creation of a
distributed application – modifying a
standalone application may require
additional processing of input and output
data.

6 CASE STUDY

In order to test the proposed architecture in a real
word scenario, we developed a Grid application for
an integrated digital library and archive (Almeida,
2006).

6.1 The Problem

The digital library in question has several distinct
collections, with documents ranging from books and
theses, posters and photographs, videos and music.
One of the most computationally demanding tasks
performed in the system is the submission of a new
digital manuscript (book, thesis or dissertation) in
the PDF format. Unlike many digital libraries, such
as DSpace (Tansley, 2003) this digital library
converts such documents into image and text files
upon submission. This approach has some
advantages:

- the viewer displays one image (page) at a time,
making it possible to define granular access
rules, constrain page views, and making it
harder for malicious agents to crawl and
retrieve entire collections of documents;

- users do not have to download the entire
documents, which may reach hundreds of
megabytes, in order to see them;

- it is easier to perform full-text searches on the
document with per-page results;

The disadvantage of this approach is the
increased complexity at the submission time. This
task alone involves a number of jobs which must be
executed sequentially:

- generation of a unique identifier (common to
all document submissions)

- conversion of the PDF into a high quality
image format;

- resizing of the images into lower resolution
files to display on the web

- text extraction from the PDF, either “directly”
or by using an OCR process (this can be
eventually executed in parallel with the second
job);

This task is specially suited for Grid computing,

not only because of its complexity but especially
because format and image conversions are very CPU
intensive. Also, this digital library in case is
currently using a single-threaded PDF conversion
library, which limits simultaneous PDF submissions
to one per CPU.

IMPROVING PERFORMANCE OF BACKGROUND JOBS IN DIGITAL LIBRARIES USING GRID COMPUTING

223

6.2 The Application

The migration of a standalone job to a Grid
environment can be rather complex. For instance,
the PDF to images conversion cannot be directly
transposed into a Grid application. In order for it to
work with more than one Executor, the PDF must
first be split into at least N smaller PDF files, where
N is the number of Executors and is larger than the
number of pages. This introduces an overhead which
did not exist in the single Executor scenario.

From the subtasks of the above submission
process, only one can be almost directly migrated to
our service layer: the image resizing/conversion.
This is the task we will evaluate with our grid
application. What the application will do is simply
divide the number of images to convert by the
number of Executors and dispatch them (a more
intelligent method could make an uneven
distribution according to the Executors processing
power, but for simplification purposes this was not
implemented).

The Executor code of the application is
extremely simple. Each agent receives the images as
byte arrays and the library needed for the
conversion. Then, the process performs the in-
memory conversion of the images and returns them
also as byte arrays. The Manager code performs the
dispatch of groups of images to the Executors and,
upon completion of each, saves the output files in a
local directory.

6.3 Evaluation

The application was tested using the images from
three different PDF files against a number of
Executors varying from one to eight. The application
was set to convert PNG images to the JPEG format.
Since we did not have eight similar desktop
computers, the test was conducted starting by adding
the best computers first and the worse later. Since
the test was ran with machines connected to the
University’s intranet, the network latency is small.

Table 1 shows the performance of the
application when run from standalone mode to eight
Executors. As can be seen, the smaller document
presents the least predictable behavior. This is an
expected result, since with so few images sent the
application is more vulnerable to network
fluctuations and variations of available memory and
processing power. As we move to the largest
document the performance gain becomes more
predictable.

Table 1: Time spent in the document conversion with
different number of Executors.

Executors
document 1
24 pages, 1.4

MB

document 2
50 pages, 3.2

MB

document 3
482 pages,
37.2 MB

1 28.73 s 64.81 s 402.65 s
2 14.99 s 34.94 s 210.55 s
3 11.99 s 26.76 s 152.66 s
4 9.74 s 21.45 s 146.83 s
5 11.07 s 18.71 s 122.35 s
6 8.20 s 17.91 s 104.08 s
7 9.21 s 13.27 s 91.71 s
8 5.93 s 14.32 s 81.30 s

Figure 2 shows perhaps the most interesting
result we can extract from the evaluation. If we
normalize the time spent in each stage as a fraction
of the time spent in the standalone scenario, we
realize the behavior is almost identical with all
documents.

Figure 2: Average task duration with different number of
Executors as a fraction of the single machine completion
time.

6.4 Analysis

This is one of the simplest application scenarios we
could have chosen for our first grid service, since
there is almost no processing needed at the manager.
There are also no requirements we need to set on the
Requirements block: the only library needed for the
image conversion is transferred to the Executors at
runtime, there is no need for hard disk space, and
memory usage will not exceed a few megabytes.

Regarding the Decision block configuration, we
must determine if, depending on the document to be
converted, there is an optimal number of executors
we should aim at. The average time required for the
conversion of N images using our grid application
with E Executors is the sum of the time spent
uploading the files, converting them at the slowest
Executor and downloading the output to the
Manager:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

tim
e

sp
en

t

executors

document 1
document 2
document 3

ICEIS 2008 - International Conference on Enterprise Information Systems

224

TN,E = Tup + Tconv + Tdown =
N[(SPNG + SJPG)/B + Omax/E + KOHE] (1)

where Sx is the average size of an image with the
format X (for the dimensions used in the
conversion), B is the available bandwidth, Omax is
the maximum time spent by the slowest Executor to
convert one image, and KOH is an overhead factor
needed to create and consume the threads. This is
merely a simplification of the expected behavior,
and numerous variables fluctuate over time, mostly
due to the network latency.

If we consider the thread overhead to be
negligible for small values of E and N, the equation
becomes of the form:

TN,E = k1,N/E + k2,N (2)

which indicates that the optimal performance point
is reached when E is maximum, E=N. However, the
gain in performance becomes less apparent as we
add more Executors (in the case of document 3,
there is 48% gain when increasing E up to 2 and
only 11% for E=8).

From the above Decision block discussion, we
should define a minimum gain for this conversion
service. Since it is difficult to perform this
calculation with so many variables which fluctuate
in an unpredictable manner, we used our set of
results. Hence, for a minimum 15% performance
gain, we defined a maximum threshold (number of
executors) of 6 and no minimum.

7 CONCLUSIONS

We have presented a generic Grid based layer which
we will develop in order to offer generic and
stateless services to be executed in a parallel
manner. We also have shown a simple case study
and how the performance of a basic service has been
greatly improved has we fully used the Grid
capabilities, executing up to five times faster.

Analysis has been conducted for a very simple
application scenario. Some work is yet to be done to
create robust and intelligent blocks for the Manager.
As a future work we plan to define a minimum set of
simple application agnostic services required for
digital libraries. We will analyze their requirements
and define the rules for their Decision blocks. We all
these settings well established, we shall implement
the applications and create Web Services which will
serve as the interface to execute the services.

ACKNOWLEDGEMENTS

This work was funded in part by FCT – Portuguese
Foundation for Science and Technology – grant
number SFRH/BD/23976/2005.

REFERENCES

Agosti, M. et al, 2006. D1.1.1: Evaluation and comparison
of the service architecture, P2P, and Grid approaches
for DLs. Technical Report, DELOS – A Network of
Excellence on Digital Libraries.

Almeida, P. et al, 2006. SInBAD - A Digital Library to
Aggregate Multimedia Documents. In ICIW'06:
International Conference on Internet and Web
Applications and Services. Guadeloupe, France.

Buyya, R., 2007. Grid Computing Info Centre (GRID
Infoware). http://www.gridcomputing.com.

Candela, L., Castelli, D., Pagano, P., 2005. Moving Digital
Library Service Systems to the Grid. In Türker, C.,
Agosti, M., and Schek, H. (Ed.), Peer-to-Peer, Grid,
and Service-Orientation in Digital Library
Architectures (pp. 236-259). Springer, Berlin.

CSSE - Department of Computer Science and Software
Engineering of University of Melbourne, Australia,
2006. The GRIDS Lab and the Gridbus Project.
http://www.gridbus.org.

Ilkaev, D., Pearson, S., 2005. Analysis of Grid Computing
as it Applies to High Volume Document Processing
and OCR. Technical Report, Tier Technologies, USA.

Luther, A., Buyya, R., Ranjan, R., Venugopal, S., 2005.
High Performances Computing: Paradigm and
Infrastructure. Wiley Press. New Jersey, USA.

Risse, T. et al., 2005. The BRICKS infrastructure – an
overview. In Proc. of 75th Conference on Electronic
Imaging, the Visual Arts & Beyond (EVA 2005).

Taylor, I.J., 2005. From P2P to Web Services and Grids –
Peers in a Client/Server World. Springer-Verlag.
London.

Tansley, R. et al., 2003. The DSpace institutional digital
repository system: current functionality. In
Proceedings of the 2003 Joint Conference on Digital
Libraries (JCDL’03), IEEE Computer Society, 87-97.

IMPROVING PERFORMANCE OF BACKGROUND JOBS IN DIGITAL LIBRARIES USING GRID COMPUTING

225

