
A PROCESS-DRIVEN METHODOLOGY FOR CONTINUOUS 
INFORMATION SYSTEMS MODELING 

Alfredo Cuzzocrea1,2, Andrea Gualtieri2 and Domenico Saccà1,2 
1ICAR Institute and 2DEIS Department, University of Calabria, Italy 

Keywords: Information Systems Methodologies; Information Systems Specification; Process-Driven Methodologies for 
Designing Information Systems; Information Systems Engineering. 

Abstract: In this paper, we present a process-driven methodology for continuous information systems modeling. Our 
approach supports the whole information system life-cycle, from planning to implementation, and from 
usage to re-engineering. The methodology includes two different phases. First, we produce a scenario 
analysis adopting a Process-to-Function approach in order to capture interactions among components of 
organization, information and processes. Then, we produce a requirement analysis adopting a Function-for-
Process and package-oriented approach. Finally, we deduce an ex-post scenario analysis by applying 
process mining techniques on repositories of process execution traces. The whole methodology is supported 
by UML diagrams organized in a Business Model, a Conceptual Model, and an Implementation Model. 

1 INTRODUCTION 

As information systems become complex, the need 
for a highly-structured and flexible methodology 
becomes mandatory, since traditional approaches 
(Center for Technology in Government, University 
at Albany, 2003) result to be ineffective when 
applied to non-conventional cases such as the 
modeling of advanced inter-organizational scenarios. 
Several information systems modeling techniques 
have been proposed during the last decades in order 
to cope with complex information systems. A 
complete survey can be found in (Giaglis, 2001). 
Among the most interesting classes of solutions, 
methodologies oriented to processes, which play a 
critical role in any organization, introduce several 
features that perfectly marry the complexity and the 
difficulty of next-generation information systems. 

Inspired by these considerations, in this paper we 
propose an innovative process-driven methodology 
for continuous information systems modeling, which 
encompasses a number of aspects of the information 
system life-cycle, from planning to implementation, 
and from usage to re-engineering. 

Our methodology basically founds on software 
planning and development methodologies, and it can 
be considered as a reasonable alternative to 
traditional proposals based on the Waterfall Model 
(Royce, 1970). Similarly to lightweight and agile 

software development patterns (Cockburn, 2002), 
this methodology adopts iterative procedures, and it 
is characterized by short recurrent steps that are 
target-oriented and suitable to support an adaptive 
evolution of the whole information system modeling 
phase. In more detail, in our methodology software 
planning and development are modeled via 
specifying two macro-phases, directly connected to 
the concepts of process and function. In the first 
phase, we produce a scenario analysis adopting a 
Process-to-Function (P2F) approach, where we 
capture interactions among components of 
organization, information and processes. In the 
second phase, we produce a requirement analysis 
adopting a Function-for-Process (F4P) approach, 
where the development of the information system is 
modeled, planned and dynamically reported 
according to a package-oriented organization. These 
phases are implemented by UML diagrams (Booch 
et al., 2005) organized in a Business Model, a 
Conceptual Model, and an Implementation Model. 
After the implementation and enactment of the 
information system, logs of executions are stored 
and analyzed by process mining techniques (e.g., 
(Greco et al., 2005)), which aim at extracting useful 
knowledge from traces generated by processes of at-
work information systems. This way, we can 
produce an ex-post analysis of scenarios, thus 
highlighting similarities and differences due to 

82
Cuzzocrea A., Gualtieri A. and Saccà D. (2008).
A PROCESS-DRIVEN METHODOLOGY FOR CONTINUOUS INFORMATION SYSTEMS MODELING.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 82-88
DOI: 10.5220/0001677100820088
Copyright c© SciTePress



 

diverse execution scenarios of the target information 
system. 

2 RELATED WORK 

The strict relationship among business processes and 
information systems has been firstly recognized in 
(Davenport & Short, 1990) at early 90’s. Business 
processes heavily influence final structure and 
functionalities of information systems. 
Symmetrically, the development of the information 
system influences the design of specific business 
processes of the target organization. 

According to this evidence, several information 
systems modeling methodologies that, like ours, are 
focused on processes have appeared in literature 
recently. Also, some interesting applications of this 
novel class of methodologies have been proposed. 
Among such applications, we recall: (i) integration 
of process-oriented techniques and Data Warehouses 
(zur Muehlen, 2001), (ii) simulation of business 
processes to precisely capture information systems 
requirements (Serrano, 2003), (iii) process-driven 
modeling in the context of e-learning systems (Kim 
et al., 2005). 

From the straightforward convergence of the 
mentioned research efforts and practical 
applications, it is reasonable to claim that achieving 
a total synergy between the design of business 
processes and the development of information 
systems should be the goal of any organization, as 
stated in (Grover et al. 1994; van Meel et al., 1994; 
Tuefel & Tuefel, 1995). Nevertheless, in real-life 
organizations business analysts and information 
systems engineers very often have distinct roles 
within the organization, and, in addition to this, very 
often they use different tools, techniques and 
terminologies (Earl, 1994). This contributes to make 
the achievement of the above-introduced synergy 
more difficult, and poses severe drawbacks with 
respect to a complete integration between 
organizations and information systems. 

(Giaglis, 2001) proposes an accurate taxonomy 
of business processes and information systems 
modeling techniques, also putting in evidence 
similarities and differences among the available 
alternatives. In (Giaglis, 2001), according to (Curtis 
et al., 1992), the following perspectives of an 
information systems modeling technique are 
systematized: (i) functional perspectives, (ii) 
behavioral perspectives, (iii) organizational 
perspectives, and (iv) informational perspectives. As 
we demonstrate throughout the paper, our proposed 

methodology strictly follows this paradigm, and 
meaningfully includes all the introduced 
perspectives, plus innovative amenities. 

Implementation-wise, the methodology we 
propose is based on three levels of modeling and 
analysis, enriched with a final ex-post analysis of 
business process traces. Each level founds on 
classical UML diagrams enriched with stereotypes 
aiming at carefully modeling even-complex business 
processes by means of the so-called UML Profiles. 
The above-described constitutes a consolidate 
methodology for information systems modeling 
techniques. For instance, in (Vasconcelos et al., 
2001) a UML-based framework for modeling 
strategies, business processes and information 
systems of a given organization is proposed. 
Similarly to ours, this framework adopts a multi-
level approach during the modeling phase. Other 
proposals based on the usage of specialized UML 
profiles for capturing several aspects of modeling 
information systems are (Castela et al., 2001; Neves 
et al., 2001; Sinogas et al., 2001). 

Ex-post analysis of business process traces can 
be instead regarded as an innovative aspect of the 
methodology we propose. This resembles the work 
of Mendes et al. (2003), where scenario evolution is 
modeled in terms of a specific process that captures 
organizational changes. Contrary to this, in our 
methodology scenario evolution is not captured on 
the basis of a fixed, a-priori pattern, but instead it is 
deduced from the analysis of process traces 
originated by the interaction between users and the 
system. 

Another distinctive feature of our methodology is 
represented by the idea of separately modeling the 
static knowledge (i.e., the knowledge modeled by 
means of Use Case and Class Diagrams) and the 
dynamic knowledge (i.e., the knowledge modeled by 
means of Activity Diagrams). This amenity if finally 
combined with the ex-post analysis illustrated above, 
thus allowing us to achieve a powerful tool for 
mining and reasoning on processes, and, 
consequentially, significantly improving the 
modeling capabilities of the methodology we 
propose. 

3 SCENARIO ANALYSIS 
AND THE BUSINESS MODEL 

Selection and definition of business processes that 
characterize the scenario in which the information 
system will operate are milestones of the planning 

A PROCESS-DRIVEN METHODOLOGY FOR CONTINUOUS INFORMATION SYSTEMS MODELING

83



 

phase. These components are realized within the 
Business Model, which is thus an essential input to 
the subsequent selection and definition of functions 
able to manage information useful for the specific 
context in which the information system will 
operate. 

Scenario analysis is obtained as a combined 
result of the study of the target organization, 
interviews to members of the organization, reading 
of documents, selection of relevant procedures etc. 
All these elements are referred and represented in 
the Business Model, which is defined as a 
formalization of organization processes, actors of 
the organization, and information. To efficiently 
support this formalization, Business Model is 
organized in several components: (i) Process 
Schema, which models processes of the information 
system; (ii) Actor Schema, which models actors of 
the information system; (iii) Archive Schema, which 
models archives of the information system. All these 
schemas are modeled as UML Use Case Diagrams. 

Actors and archives are formalizations of active 
and passive entities that interact with processes. We 
represent them via adopting stereotypes built on the 
native UML actor element. We consider as actors all 
the operators (human or automatic) that activate or 
enact a process of the organization. An archive is 
instead every information source useful for the 
execution of a process. In Actor and Archive 
Schemas, we model and represent taxonomies and 
ontologies (Fensel, 2001) of entities, also in a 
hierarchical fashion, in order to permit a meaningful 
contextualization of organization and information 
elements. 

In the Process Schema, processes are modeled by 
means of a top-down approach. Specifically, we first 
analyze and model processes, and then select sub-
processes that characterize each of them. 
Implementation-wise, hierarchies of processes are 
obtained by means of packages. 

Distinguishing between processes and sub-
processes is a non-trivial engagement, which also 
strongly depends on the particular application 
context. In our methodology, in order to cope with 
this conceptual dichotomy we assert what follows. A 
process P is a set of procedures that are finalized to 
obtain a goal, starting from the input. A process 
involves a number of actors, and requires 
information modeled in terms of archives. Finally, a 
process is composed by sub-processes. A sub-
process Pi is an element of a process P, more 
restricted than P, but having the same formalization. 
A sub-process models components required for the 
release of a sub-service (or sub-product) of the 

information system. These components are referred 
as the path of execution of the sub-process. Finally, a 
sub-process can be structured, i.e. composed itself 
by other sub-processes in a hierarchical fashion, or 
atomic, i.e. without any sub-sub-process (in this 
case, the sub-process is named as activity). 

An activity is an atomic element that represents a 
specific portion of work, and constitutes a logic step 
within a process. To model evolution of activities 
within a same process P, we make use of an Activity 
Diagram (see Figure 1) that establishes the temporal 
order of the activities during the enactment of P. 

Top-down analysis focuses on high-level 
processes characterizing the information system 
scenario. In the visual representation implementing 
such analysis, we introduce a package for every 
macro-process. Given a macro-process P, the 
package contains a Use Case Diagram in which the 
use-case element corresponding to P is connected 
with use-case elements corresponding to every sub-
process Pi of P. To model these connections, we use 
the UML constructs include, extend and specialize. 
In more detail, for these constructs we assume the 
following semantics. 

 
Figure 1: From a Use Case Diagram to the related Activity 
Diagram. 

A process P “includes” a sub-process Pi if, in 
every instance of P, an instance of Pi is required to 
be executed. A sub-process Pi “extends” a process P 
if, in every instance of P, an instance of Pi is 
executed only if a given condition is verified (this 
condition is expressed by the so-called extension 
point element). A sub-process Pi “specializes” a 
process P if Pi involves all the sub-processes 
involved by P, plus other specific activities. 

UML associations are used to connect a use-case 
representing a process P or a sub-process Pi to an 
actor A or an archive S. Therefore, we are able to 
express that an actor A executes/interacts-with a 
process P (or a sub-process Pi), and that a process P 

ICEIS 2008 - International Conference on Enterprise Information Systems

84



 

(or a sub-process Pi) requires or modifies 
information contained in an archive S during its 
execution. 

For each process P, we then model the path of 
execution of its sub-processes, via associating an 
Activity Diagram to P (see Figure 1). As a 
consequence, we finally obtain that in the Use Case 
Diagram of P we represent a first analysis about the 
composition of P, and in the Activity Diagram we 
formalize the sequence of execution of activities of 
P and express pre-conditions and post-conditions 
among activities via conventional UML constructs 
join, fork and merge. 

This decomposition is replicated for every sub-
process that is itself a structured (sub-)process. To 
this end, we select the sub-sub-processes of this sub-
process and connect them to it by means of 
constructs include, extend or specialize. Then, we 
model the dynamic of the evolution of the sub-
process via linking it to a specific Activity Diagram. 

In total, for each process P, we introduce an 
Activity Diagram containing sub-processes Pi 
directly connected to P. Furthermore, if a sub-
process Pi itself involves sub-sub-processes Pi,j, their 
sequences of execution should be represented by 
another Activity Diagram connected to Pi. 

Finally, in our methodology the hierarchical 
nature of modeling processes is handled as follows. 
If a sub-process Pi of a process P is too much 
articulated to be represented in the main Use Case 
Diagram (of P), we introduce a sub-package Bi that 
contains another Use Case Diagram (of Pi). This 
allows us to obtain a modular and incremental 
process organization that gives us benefits at both 
the modeling and visualization tasks. In the main 
Use Case Diagram, we represent the sub-package Bi 
and its related sub-process Pi, and we connect Bi to 
P. As said, the result is a hierarchical and modular 
representation of processes (see Figure 2) that can be 
easily modified in a specific portion without 
conditioning the whole structure of the model. 

4 ANALYSIS OF FUNCTIONS 
AND THE CONCEPTUAL 
MODEL 

Scenario analysis describes the context in which the 
information system will operate. The next step is to 
analyze and model functions supported by the 
system in order to facilitate the execution of 
processes within the organization. Conceptual 
Model is the output of this phase. In the Conceptual 

Model, we provide: (i) a formal schema of functions 
and users, (ii) a formal schema of data, (iii) a formal 
schema of interactions between functions and data. 
Furthermore, Conceptual Model also represents 
functional blocks and views on data (i.e., schemas of 
information sources). Functional blocks are modeled 
by use-case packages and taxonomies of actors, 
according to an approach similar to the one used to 
model processes in the Business Model (see Section 
2). Data views are instead represented by means of 
Class Diagrams. Therefore, we can state that 
Conceptual Model is characterized by two aspects 
that capture the overall knowledge of the 
information system: (i) static analysis given by the 
Data Schema, which describes schemas of 
information sources, and View Schema, which 
describes views on the latter schemas; (ii) dynamic 
analysis given by the User Schema, which models 
users, and Function Schema, which models 
functions. Both static and dynamic analysis concur 
to capture even complex aspects of the information 
system, thus adding novel and useful amenities to 
traditional information systems design 
methodologies. 

 
Figure 2: Modular representation of processes. 

Data Schema contains a Class Diagram that 
represents a conceptual model of the database 
underlying the information system. We use 
database-engineering-oriented UML stereotypes 
such as <<Table>> and <<Key>> in order to adapt 
UML classes and attributes to the goal of 
representing database entities, thus modeling a data 
schema. Foreign keys and cardinality constraints are 
instead represented via UML associations among 
classes. At this level, we make use of composition 
and aggregation associations, and taxonomies (e.g., 
generalization) to represent logical relations among 
database entities. Therefore, Data Schema is a high-

A PROCESS-DRIVEN METHODOLOGY FOR CONTINUOUS INFORMATION SYSTEMS MODELING

85



 

level description of the database underlying the 
target information system. 

View Schema contains a Class Diagram named 
as View Catalogue. A view is a portion of database 
useful in a specific functional context. Each view is 
represented by a package containing a Class 
Diagram in which the involved-by-the-view entities 
of the database are shown, along with their relations. 
In each package, a view is represented by means of 
the UML stereotype <<View>>, and can be exported 
in the Function Schema to model in more detail the 
interaction among functions and data they require or 
modify. Also, we associate a documentation to each 
view V (see Figure 3), such that this documentation 
contains additional information on V like: (i) the 
logical name of V; (ii) for each entity, the list of 
specific attributes – obtained as a selection of the 
whole set of attributes – that are useful in the 
specific functional context; (iii) the way used in the 
specific context to navigate associations among 
entities etc. 

 
Figure 3: A View and its documentation. 

User Schema has the same syntax of the one 
relative to the Actor Schema in the Business Model 
(see Section 2). While actors are entities (human or 
automatic) that activate or enact processes of the 
organization (including processes that are not 
codified as functionalities of the information 
system), users are instead entities (human or 
automatic) that properly interact with the 
information system in the real-life realization. 

Similarly to users, functions in the Function 
Schema are modeled by adopting syntax analogous 
to the one employed in the Business Model to 
represent processes, with the difference that rather 
than archives (i.e., generic information sources of 
the organization) here we model views involved by 

functionalities of the information system, being such 
views coming from the View Schema. 

5 DEVELOPMENT OF THE 
INFORMATION SYSTEM 
AND THE IMPLEMENTATION 
MODEL 

Once requirement analysis is completed and 
Conceptual Model is defined, a physical planning of 
the information system is necessary. Conceptual 
schemas defined in the Conceptual Model are 
mapped on the software architecture of the system. 
On the basis of the specific information system, 
different architectural solutions can be chosen, but 
every choice should include at least three tiers: (i) a 
Database Level to model information/data sources 
of the system; (ii) a Control Level to models 
(software) classes implementing the application 
logic of system procedures; (iii) an Interface Level 
to model forms handling the interaction between 
users (human or automatic) and the system. 

In order to efficiently support these 
requirements, the Implementation Model is 
constituted by several components: (i) Architecture, 
which contains a representation of physical elements 
of the information system (i.e., the software 
architecture of the system); (ii) Database, which 
implements the Database Level; (iii) Control, which 
implements the Control Level; (iv) Interface, which 
implements the Interface Level. 

 
Figure 4: A Control Schema. 

Similarly to other models of our methodology, 
each component is implemented by a package, 
according to the following organization. 
Architecture component contains a Deployment 

ICEIS 2008 - International Conference on Enterprise Information Systems

86



 

Diagram where nodes and components of the system 
implementation are defined. Furthermore, just like 
other constructs of our methodology, it is possible to 
define sub-packages in order to obtain a modular 
representation. Database component contains a Class 
Diagram enriched by stereotypes, named as DB 
Schema, which allows us to represent the schema of 
data stored in the information/data sources of the 
system (i.e., the database underlying the system). 
With respect to the Data Schema of the Conceptual 
Model, in the DB Schema of the Implementation 
Model we model in detail all components of data 
tables (e.g., attributes with data type, attribute 
domains and checks etc), in a similar way to what 
happens in conventional CAD tools for E/R 
diagrams, thus obtaining a linear description of the 
database underlying the system. Control component 
contains a Class Diagram, named as Control Schema 
(see Figure 4), in which a catalogue of control 
classes is represented. Each control class is 
implemented as a UML class with stereotype 
<<Control>>, and contains methods used by the 
Interface Level to manage data from the Database 
Level. Also, each control class refers to one or more 
views inherited from the DB Schema on the basis of 
their relevance and scope with respect to the specific 
functional context. Methods of each control class are 
described within the UML class in forms of software 
interfaces (e.g., Java-based) and documentation in 
free text. 

 
Figure 5: An Interface Schema. 

Following the organization of the 
Implementation Model, Control Level is invoked by 
the Interface Level containing a Class Diagram, 
named as Interface Schema (see Figure 5), which 
models the interaction between users and the system. 
Recall that paths of executions are modeled by 
Activity Diagrams of the Conceptual Model. Based 
on these paths, in the Implementation Model we 

model a sequence of forms, which are UML classes 
enriched by specific stereotypes. Specifically, a form 
is characterized by three elements that determine the 
final representation of such form: (i) entry unit, 
which is an area of the form where users submit 
input elements to the system via traditional GUI 
controls such as text fields, combo boxes, check 
boxes etc; (ii) data unit, which is an area of the form 
where information derived from the underlying 
database (i.e., sets of tuples) is shown; (iii) display 
unit, which is an area of the form where static 
components are shown (e.g., help textual 
information describing how to use form controls). 

In our methodology, a form can be a plain form, 
a list form, or a recursive form. Plain forms are basic 
realizations of the construct form. List forms, 
modeled by the UML stereotype <<FormL>>, are 
used to represent forms in which sets of tuples are 
shown. Recursive forms, modeled by the UML 
stereotype <<Form*>>, are used to represent forms 
that are shown many times, one for each tuple 
corresponding to a specific parameter. 

When forms transmitting parameters to other 
forms are considered (e.g., during user transactions), 
we support this facet of the information system via 
appending specific attributes to UML association 
constructs. These attributes are described by the 
UML stereotype <<LinkP>>. To ensure data 
consistency, we simply impose that the type of 
transmitted parameters is the same of (appended) 
attributes in the related UML class. Finally, 
conventional structural links, i.e. links without 
embedded parameters, are modeled by the UML 
stereotype <<Link>>. It should be noted that this so-
large availability of different UML constructs 
provided by our methodology allows us to model 
even complex front-ends for process- and data-
intensive information systems. 

6 CONCLUDING REMARKS 
AND FUTURE WORK 

A complete methodology for continuous information 
systems modeling has been presented in this paper. 
This methodology makes use of several UML-based 
diagrams, models and constructs that found on 
processes and other entities such as actors, archives, 
and functions. These components are able to capture 
even complex features of advanced information 
systems. The proposed methodology is actually 
experimented in Exeura (Exeura, 2008), a spin-off 
company of the University of Calabria that operates 

A PROCESS-DRIVEN METHODOLOGY FOR CONTINUOUS INFORMATION SYSTEMS MODELING

87



 

in the Information Technology (IT) and Knowledge 
Management (KM) areas. This experience confirms 
us that the proposed methodology results to be 
particularly suitable to application scenarios whose 
information systems modeling requires high 
flexibility and high scalability. 

Future work is oriented towards encapsulating 
within the proposed methodology innovative aspects 
such as the automatic generation of wrappers classes 
for distributed and heterogeneous information 
sources, and the automatic generation of source code 
starting from signatures of control classes. 

REFERENCES 

Booch, G., Rumbaugh, J., and Jacobson I., 2005. The 
Unified Modeling Language User Guide, 2nd ed., 
Addison-Wesley, Reading, MS, USA. 

Castela, N., Tribolet, J.M., Silva, A., and Guerra, A., 
2001. Business Process Modeling with UML. In Proc. 
of the 3rd ICEIS Int. Conf., Vol. 2, pp. 679-685. 

Center for Technology in Government, University at 
Albany, 2003. A Survey of System Development 
Process Models, TR CTG.MFA – 003, available at 
http://demo.ctg.albany.edu/publications/reports/survey
_of_sysdev/survey_of_sysdev.pdf 

Cockburn, A., 2002. Agile Software Development, 
Addison-Wesley, Reading, MS, USA. 

Curtis, W., Kellner, M.I., and Over, J., 1992. Process 
Modeling. In Communications of the ACM, Vol. 35, 
No. 9, pp. 75-90. 

Davenport, T.H., and Short, J.E., 1990. The New 
Industrial Engineering: Information Technology and 
Business Process Redesign. In Sloan Management 
Review, Vol. 31, No. 4, pp. 11-27. 

Earl, M.J., 1994. The New and the Old of Business 
Process Redesign. In Journal of Strategic Information 
Systems, Vol. 3, No. 1, pp. 5-22. 

Exeura – Knowledge Management Solutions, 
http://www.exeura.it 

Fensel, D., 2001. Ontologies: A Silver Bullet for 
Knowledge Management and Electronic Commerce, 
Springer Verlag, Berlin, GE. 

Giaglis, G.M., 2001. A Taxonomy of Business Process 
Modeling and Information Systems Modeling 
Techniques. In International Journal of Flexible 
Manufacturing Systems, Vol. 13, No. 2, pp. 209-228. 

Greco, G., Guzzo, A., Manco, G., and Saccà, D., 2005. 
Mining and Reasoning on Workflows. In IEEE 
Transactions on Knowledge and Data Engineering, 
Vol. 17, No. 4, pp. 519-534. 

Grover, V., Fielder, K.D., and Teng, J.T.C., 1994. 
Exploring the Success of Information Technology 
Enabled Business Process Reengineering. In IEEE 
Transactions on Engineering Management, Vol. 41, 
No. 3, pp. 276-284. 

Kim, K-H, Yoo, H.-J., and Kim, H.-S., 2005. A Process-
Driven E-Learning Content Organization Model. In 
Proc. of 4th IEEE ACIS Int. Conf., pp. 328-333. 

van Meel, J.W., Bots, P.W.G., and Sol, H.G., 1994. 
Towards a Research Framework for Business 
Engineering. In IFIP Transactions A: Computer 
Science and Technology, Vol. 54, pp. 581-592. 

Mendes, R., Mateus, J., Silva, E., and Tribolet, J.M., 2003. 
Applying Business Process Modeling to 
Organizational Change. In Proc. of the 2003 AMCIS 
Int. Conf. 

zur Muehlen, M., 2001. Process-Driven Management 
Information Systems - Combining Data Warehouses 
and Workflow Technology. In Proc. of the 4th ICECR-
4 Int. Conf., pp. 550-566. 

Neves, J., Vasconcelos, A., Caetano, A., Sinogas, P., 
Mendes, R., and Tribolet, J.M., 2001. Unified 
Resource Modelling: Integrating Knowledge into 
Business Processes. In Proc. of the 3rd ICEIS Int. 
Conf., Vol. 2, pp. 898-904. 

Royce, W.W., 1970. Managing the Development of Large 
Software Systems. In Proc. of the 1970 IEEE 
WESCON Int. Conf., pp. 1-9. 

Serrano, A. 2003. Capturing Information System’s 
Requirement Using Business Process Simulation. In 
Proc. of the 15th ESS Int. Conf. 

Sinogas, P., Vasconcelos, A., Caetano, A., Neves, J., 
Mendes, R., and Tribolet, J.M., 2001. Business 
Processes Extensions to UML Profile for Business 
Modeling. In Proc. of the 3rd ICEIS Int. Conf., Vol. 2, 
pp. 673-678. 

Teufel, S., and Teufel, B., 1995. Bridging Information 
Technology and Business: Some Modeling Aspects. In 
SIGOIS Bulletin, Vol. 16, No. 1, pp. 13-17. 

Vasconcelos, A., Caetano, A., Neves, J., Sinogas, P., 
Mendes, R., and Tribolet, J.M., 2001. A Framework 
for Modeling Strategy, Business Processes and 
Information Systems. In Proc. of the 5th IEEE EDOC 
Int. Conf., pp. 69-80. 

ICEIS 2008 - International Conference on Enterprise Information Systems

88


