
USING ONTOLOGIES TO IMPROVE PERFORMANCE IN A WEB
SYSTEM

A Web Caching System Case of Study

Carlos Guerrero, Carlos Juiz and Ramon Puigjaner
Departament de Matematiques i Informatica, Universitat de les Illes Balears

Crta. Valldemossa km 7.5, Palma de Mallorca, Spain

Keywords: Web performance, ontologies, semantic web, web cache.

Abstract: This paper gives the details of a web system architecture which uses ontologies to improve the behavior of the
system from a performance point of view. The architecture presented is implemented in a cache level. As web
system performance depends on states and parameters fixed in runtime period, the configuration of our system
will be changed during that period. We need to monitor the system and store those gathered information. A
knowledge base is used to store those information and measures. We propose the use of reasoners that use
that gather information in the K.B. to change the configuration and setup of the system during runtime period.
That configuration also is modelled by a knowledge base which use ontological languages.

1 INTRODUCTION

In Web pages on-the-fly building process a higher
number of activities or process take part than in the
static web sites. Therefore, the dynamic workload and
the computational cost are higher than the workload
generated by a static web server. This is the reason
why research topics to improve the performance of
web systems are getting more importance (Menasce
and Almeida, 2001; Menasce and Virgilio, 2000; Kil-
lelea, 2002).

In web dynamic environments the process to de-
liver contents to users incurs: 1) user requests are
dispatched to appropriate software modules that ser-
vice these requests, thereby producing network over-
head; 2) these software modules determine which data
to fetch and present, thereby producing process over-
head; 3) the disk I/O management querying the back-
end database produces data overhead, and finally; 4)
the assembled data needs to be formatted and deliv-
ered to the browser, thereby producing cache over-
head.

The aim of the research work presented is to cre-
ate a tool that changes the web system setup and con-
figuration using the user and server performance and
behavior information. Recent research works present
studies about the way ambient environment respond
dynamically using the information about the state of
the system or environment (Lera et al., 2006; Lera

et al., 2007).
In those research works, ontological languages are

used. Data about the state of the environment and
the performance of the system is stored by instances
of an ontology. The same idea is applied in the re-
search work presented in this paper. The presented
framework is a system where ontologies are used to
managed the information about the state of the sys-
tem (Web System Elements Knowledge Base) and the
behavior of the user and the servers tiers (Behavior
Knowledge Base). A reasoner analyzes the informa-
tion provided by the Behavior K.B. and applies op-
erations to the instances of the different Web System
Elements K.B.

At the beginning of this paper we present the pro-
posal of the system architecture. An example of the
use of the Behavior and Performance K.B. applied to
web caching tier is explained. Last section is a sum-
mary of the model domain of the ontology used at the
Behavior and Performance Knownledge Base is pre-
sented.

2 GLOBAL ARCHITECTURE

In this paper is presented the partial work of a global
system. The proposed global system is designed to
store and analyze the information and data about the
behavior and performance of the different elements in

117
Guerrero C., Juiz C. and Puigjaner R. (2008).
USING ONTOLOGIES TO IMPROVE PERFORMANCE IN A WEB SYSTEM - A Web Caching System Case of Study.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 117-122
DOI: 10.5220/0001518801170122
Copyright c© SciTePress



the web systems using ontologies and semantic web.
In Figures 1 and 2 we present a first approximation

to the proposed architecture:

• Behavior Knowledge Base: This is the centralized
module that uses an ontology to store informa-
tion about all the elements in the system: users,
requests, proxies, caches nodes, gateways, web
servers, database systems, etc. In (Guerrero et al.,
2008) is explained the design of the ontology to
model performance and behaviour in a web sys-
tem. In Section 4 a summary is also presented.

• Web system elements Knowledge Base: Chances
over the configuration of the system are needed.
Therefore the way the system works and its setup
has to be modelled. To model that situation, each
part or element of the system will have associated
a knowledge base with that information. We need
a specific ontological language for each part of the
system because each part has its own characteris-
tic and specific model domain. Once the differ-
ent elements in the system are modelled with the
correspondent ontology, those elements will use
those models to change the way they work.

• Reasoner: It uses the information about the be-
havior of the clients, server tiers and server re-
sources to determine the best tuning of the web
system. It uses heuristics applying rules and oper-
ations to try changes in the setup of the different
elements in the system. The operations the rea-
soners apply are chosen analyzing the parameters
in the Behavior K.B. The operations are different
for each element of the web system. For exam-
ple in (Guerrero et al., 2007) are defined the op-
erations for a cache system where the documents
are fragmented to improve the performance. If we
actuate over others elements of the web system,
those operations are not valid and a new set of op-
erations will be defined.

In the first approximation presented in this pa-
per only monitoring functions are implemented. The
main objective to reach as future work is to have a
complete monitoring and actuating architecture. We
can add reasoners to the architecture that use the in-
formation in the Behavior K.B. to change the organi-
zation or the way the system works.

We propose that the behavior of each module or
element in the system will be modelled by an ontol-
ogy in a knowledge base. Each of those ontologies
has the information how the system works, for exam-
ple: load balancing information, caches policies, task
priorities, etc. Therefore the reasoners use the infor-
mation in the Behavior K.B. and changes the different
elements K.B. applying rules and operations (Fig.2).

Figure 1: Behavior Knowledge Base Architecture.

Figure 2: Reasoners and Actuators Architecture.

3 WEB CACHING SYSTEM

The first step to achieve the complete system pre-
sented is to create a concept probe tool. As we
have experience in the past working with cache sys-
tems (Guerrero et al., 2007), this is the tier chosen to
create the tool. So we propose an scenario to improve
the web caching techniques. That scenario need in-
formation about the behavior and the performance of
the different elements in the system. With that in-
formation the system would cache the web pages in
different ways, trying to get a better performance in
the whole system. The ontology presented in the Sec-
tion 4 has been used to model the behavior and the
performance.

Typically web-based applications are based in
tiered architecture. Usually in these applications the
user interface, functional process logic (”business
rules”), data storage and data access are developed
and maintained as independent as is possible, most
often on separate platforms.

Dynamic web sites commonly are developed us-
ing different tiers to reduce the cost of maintenance
and the idealistic layered application is three-tier web-
sites:

WEBIST 2008 - International Conference on Web Information Systems and Technologies

118



• A front end Web server serving static content

• A middle dynamic content processing and gener-
ation level Application server.

• A back end Database, comprising both data sets
and the Database management system or DBMS
software that manages and provides access to the
data.

As the number of tiers and interfaces between tiers
increase, the generation process is also bigger and
computationally more expensive. To minimized the
workload generated by each user request response, a
cache tier could be placed between clients and server
layers. Web caching also contributes to reduce band-
width usage, server load, and user perceived lag. The
caching tier stores generated content to avoid the load
over the server tiers at next request of the same page.

Traditional Web Cache Tier performs the tasks
of listen users requests, analyze if those requests are
store locally in the cache, in which case, the local
copy is returned or, if the copy is not present, send
the request to the server and updated the local version
with the server response (Wills and Mikhailov, 1999).

There are a lot of techniques to improve the web
caching efficiency, but the Web Cache Tier needs to
gather information about the behavior of the web sys-
tem and the users. It’s important to know the user pro-
files: pages most requested, navigation paths, think-
ing times, etc. From the server side is important to
know the response time and the size of each request,
the changing ratio of the web pages contents and, fi-
nally, the sharing ratio between web pages contents.
Those parameters are the most interesting to achieve
the fragment design with the best performance.

In a first step we have implement a Web Cache
Tier which gather information about the system and
store it in an Knowledge Base which use the ontology
defined at Section 4. As a future work we will de-
velop the reasoner and actuator that use that gathered
information to change the way fragments are cached.

3.1 System Description

The architecture of the system is an usual tiered web
system architecture: (a) server side; (b) cache tier; (c)
client side. The server side its a three layer application
(Figure 3). We decided install a generic web system.
We installed WordPress (Automatic, 2007), thus web
logs are wide extended over Internet, and it is once of
the type of system with a higher update ratios.

WordPress is structured in three layers: (a)
MySQL as the database system; (b) PHP is the script-
ing language; (c) use of templates for the presentation
and design of the HTML document.

Our main objective is to study the cache system.
We need to introduce some monitors to gather infor-
mation in that layer of the system. In one hand we
need an open source tool. In the other hand the most
extended ontological tools are programmed with Java.
Therefore we need a open source Java application, to
avoid the implementation of the whole tier. We have
chosen Smart Cache (Kolar, 2007). Smart Cache is
HTTP 1.1 and HTTPS proxy cache written in pure
Java 1.1.

The cache tier (Smart Cache tool) has been mod-
ified to gather information about the requests that
serves to the clients, requests to the origin servers,
measures of the performance, etc. All that gathered
information is use to create the model in the Onto-
logical Language presented at Section 4. We use Jas-
tor (Ben Szekely, 2007) to integrate the Ontological
Language and Java. Jastor is an automatic generator
of Java interfaces, implementations, factories and lis-
teners based on the properties and classes hierarchies
in the Ontological Language.

Finally, we use Apache JMeter to emulate the
users (Apache, 2007). JMeter is a Java desktop appli-
cation designed to load test functional behavior and
measure performance. It may be used to test perfor-
mance both on static and dynamic resources. It can
be used to simulate a heavy load on a server, network
or object to test its strength or to analyze overall per-
formance under different load types. It can be used
to make a graphical analysis of performance or to test
your server/script/object behavior under heavy con-
current load.

Figure 3: Concept Prove System Description.

3.2 Validation

The concept tool presented is created only to prove
the availability of the use of ontological languages to
gather and store information about the behaviour of a
web system. So the probes to validate this fact will
be consist on execute a synthetic load on the web sys-
tem and compare the logs of the different web ele-
ments monitored with the information stored in the

USING ONTOLOGIES TO IMPROVE PERFORMANCE IN A WEB SYSTEM - A Web Caching System Case of Study

119



Behaviour Knowledge Base.
We run the system with a synthetic user load to

evaluate all the system. The synthetic load corre-
spond to one hundred concurrently users requesting
random pages to the server. The system has one thou-
sand pages generated randomly. After runtime period
of one million requests, we need to validate the be-
havior and performance information of the different
elements in the system with the values observed and
gathered by the cache system and the behavior knowl-
edge base.

In that first experiment we only gather information
about the individual user requests: number or request,
response times and response sizes. Both in the user
side and in the origin server side we have logs about
the activity in the system. Apache provides modules
to create web logs in a standardized text file format.
Common Logfile Format (CLF) is the most usual for-
mat. CLF, for each request received by the server, add
a new line in the text file with the next format:

host ident authuser date request status bytes
10.0.0.1 - mathew [12/Jul/2004:14:50:13 -0700]

"GET /index.php HTTP/1.0" 200 3465

We can extract the number of requests and the size
of that requests. In the other side, with JMeter we can
extract a huge number of measures and statistics, in
particular, response sizes, response times and requests
number.

Once we have analyzed the Apache log and the
JMeter log we can compare those measures with the
measures gathered by the cache level in the known-
ledge base. We observed that the mean value of the
number of requests over each web page is one thou-
sand. This values are the same in the cache log and in
the Behaviour K.B.

For the response time analysis we could not use
the Apache log because all the pages stored in the
cache tier are not requested to the server, so these re-
quest are not registered in the Apache log. As the
cache tier log is not implemented to measure the re-
sponse time of the served requests only JMeter could
be used to gather that information. Once we have
compared the resquest time registered by JMeter and
stored in the Behaviour K.B. we observed that the
means time are practically the same, with a small
overhead over the JMeter measures. The reason of
that difference is the communication time between the
cache tier and the JMeter.

After the analysis of the measures we can con-
clude the Ontology defined in Section 4 can be used to
model the behavior and performance of web systems.
Our next future work is to implement some reasoning
rules to analysis that data and take decisions over the
configuration of the system.

4 WEB PERFORMANCE AND
BEHAVIOR ONTOLOGY

In this section is presented a summary of the Web Per-
formance and Behavior Ontology described in (Guer-
rero et al., 2008). Ontologies development is needed
of the use of some methodology. In our case, we use
the ontology building life-cycle explained in (Davies
et al., 2002; Uschold, 1995) and used in other research
works as (Lera et al., 2006; Lera et al., 2007).

The elements which take importance at our sce-
nario are: user sessions, user requests, HTTP re-
quests, HTTP responses and performance metrics.
Web applications and systems are built over HTTP
protocol (Internet based application protocol). There-
fore the definition of our Ontology, which is used to
represent the performance information, has to be de-
termined by the definition of HTTP (Fielding et al.,
1999).

For users, architecture of the server tiers are
completely clear and they make requests to an
URI (Berners-Lee et al., 2005). Users do not worry
about if that URI corresponse to an isolated server,
a proxy server, a cache server, load balancing server.
When the HTTP request arrive to the server identified
in the URI, the server processes that request. This
process could be divided in two different types of pro-
cess: local tasks and remote tasks.

The local tasks, that a server makes to give re-
sponse to user requests, generate a local workload on
that tier of the web-system. We could identified dif-
ferent kind of local workload in the different elements
or components of the server: disks, processors, DB
systems, memory, scripting interpreters modules, web
server modules. Some of that elements or compo-
nents could need tasks associated to other tiers in the
web-system. In those cases, new HTTP requests are
generated between the different system tiers. These
new requests generate network workload and local
workload in the target layer (remote tasks). Transmis-
sion times, latency and node process are the elements
corresponding to the network workload (Baldi et al.,
2003). In Figure 4 we present the model domain of
concepts corresponding to workload.

When local task in a tier is done, a HTTP response
is generated. If that HTTP response arrives to another
tier, once all the responses will arrive and all the lo-
cal tasks will be done, another HTTP response will
be generated. That path is repeated right to the tier
that received the user request. The HTTP response
generated by that last tier goes directly to the user.
HTTP responses generate network workload, in the
same way HTTP requests do. Figure 5 shows a sim-
ple model domain which corresponses to the HTTP

WEBIST 2008 - International Conference on Web Information Systems and Technologies

120



Figure 4: The abbreviate Workload model domain.

Figure 5: The abbreviate HTTP model domain.

protocol concepts.
The main measures to represent performance eval-

uation in a web system are not the same for the dif-
ferent elements in the system. In the model domain,
each of those measures corresponse to a subclass of
the class representing the performance evaluation. In
Figure 6 we see those subclasses. For each of those
classes a different measure system is used. In that
point, we took advantage of one of the most useful
features of OWL, knowledge sharing, and we have
imported other important ontologies and their well-
defined semantic knowledge to our model domain.

Figure 6: The abbreviate Performance Evaluation model
domain.

The relationships between the classes of the model
are represented in Figure 7. Ontological models rep-
resent relationships as object properties.

Users usually interact with the system (User ses-
sion), generating a continuous flow of requests as re-
sult of the response information from the system (Fig-
ure 8). Each time a user generate a request a HTTP
request is associated to demand the server a service or
data. The server answer with a HTTP response. Each
HTTP message (response or request) generates work-
load over the network and over the different tiers in
the web system.

Figure 7: Object properties between classes.

Figure 8: The abbreviate Web Session model domain.

5 CONCLUSIONS

An architecture to improve web performance has been
proposed. That architecture is based on the idea of
improve web performance changing the configuration
and setup of the system during runtime period. Those
chances are made at runtime period because the pa-
rameters that condition the performance and behavior
of the system are not known in the development phase
and could change along time.

An ontological system is proposed to analysis the
behavior of the system and make changes to the frag-
ments trying to improve performance. The model do-
main of an ontology to reach that aim has been pre-
sented. A knowledge base to store information about
the behavior and performance of the system has been
create using that ontology.

USING ONTOLOGIES TO IMPROVE PERFORMANCE IN A WEB SYSTEM - A Web Caching System Case of Study

121



A case of study based on testing and monitoring
the information in the web cache tier has been pre-
sented. Smartcache has been used as cache system,
and has been modified to gather performance infor-
mation. Jastor has been used to integrate the onto-
logical language in the cache system. Therefore, the
cache tier has been available to gather information
from the system and store those information in the
K.B.

In a validation phase the information stored in the
K.B. and the information store in the traditional logs
of the different tools of the web system have been
compared. That comparison results in a positive way
and validates the process of gathering information and
the use of the ontological language. The next step is to
add reasoning process to the system to take decision
about chances in the setup of the web cache system.

Future work is open to two different branches.
One branch opens research work to create the specific
ontological language to model the different elements
in the web system and the integration of that ontolo-
gies in the different elements that would use the store
information in the correspondent K.B.

A second branch concerns to the definition of the
operations and rules that changes the models of each
element in the web system using the information in
the performance and behavior knowledge base.

ACKNOWLEDGEMENTS

This work is partially financed by the Spanish Min-
istry of Education and Science through TIN2007-
29683-E project.

REFERENCES

Apache (2007). Apache jmeter.
http://jakarta.apache.org/jmeter/.

Automatic (2007). Wordpress 2.0. http://wordpress.com/.

Baldi, P., Frasconi, P., and Smyth, P. (2003).Modeling the
Internet and the Web: Probabilistic Methods and Al-
gorithms. Wiley.

Ben Szekely, Rob Gonzalez, J. B. (2007). Jastor.
http://jastor.sourceforge.net/.

Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uni-
form resource identifier (uri): Generic syntax. RFC
3986, Internet Engineering Task Force.

Davies, J., van Harmelen, F., and Fensel, D., editors (2002).
Towards the Semantic Web: Ontology-driven Knowl-
edge Management. John Wiley & Sons, Inc., New
York, NY, USA.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. (1999). Hypertext
transfer protocol – http/1.1. RFC 2616, Internet Engi-
neering Task Force.

Guerrero, C., Juiz, C., and Puigjaner, R. (2007). The ap-
plicability of balanced esi for web caching. InPro-
ceedings of the 3rd International Conference on Web
Information Systems and Technologies.

Guerrero, C., Juiz, C., and Puigjaner, R. (2008). Web per-
formance and behavior ontology. InProceedings of
the Second International Conference on Complex, In-
telligent and Software Intensive Systems.

Killelea, P. (2002).Web Performance Tuning. O’Reilly &
Associates, Inc., Sebastopol, CA, USA.

Kolar, R. (2007). Smart cache 0.93.
http://scache.sourceforge.net/.

Lera, I., Juiz, C., and Puigjaner, R. (2006). Performance-
related ontologies and semantic web applications for
on-line performance assessment intelligent systems.
Sci. Comput. Program., 61(1):27–37.

Lera, I., Sancho, P. P., Juiz, C., Puigjaner, R., Zottl, J., and
Haring, G. (2007). Performance assessment of in-
telligent distributed systems through software perfor-
mance ontology engineering (spoe).Software Quality
Control, 15(1):53–67.

Menasce, D. A. and Almeida, V. (2001).Capacity Plan-
ning for Web Services: metrics, models, and methods.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Menasce, D. A. and Virgilio, A. F. A. (2000).Scaling for
E Business: Technologies, Models, Performance, and
Capacity Planning. Prentice Hall PTR, Upper Saddle
River, NJ, USA.

Uschold, M. (1995). Towards a methodology for building
ontologies.

Wills, C. E. and Mikhailov, M. (1999). Examining the
cacheability of user-requested Web resources. InPro-
ceedings of the 4th International Web Caching Work-
shop.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

122


