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Abstract. By improving Internet traffic forecasting, more efficient TCP/IP traf-

fic control and anomaly detection tools can be developed, leading to economic
gains due to better resource management. In this paper, Neural Networks (NNs)
are used to predict TCP/IP traffic for 39 links of the UK education and research
network, under univariate and multivariate strategies. The former uses only past
values of the forecasted link, while the latter also uses the traffic from neigh-
bor links of the network topology. Several experiments were held by considering
hourly real-world data. The Holt-Winters method was also tested in the com-
parison. Overall, the univariate NN approach produces the best forecasts for the
backbone links, while a Dijkstra based NN multivariate strategy is the best option
for the core to subnetwork links.

1 Introduction

Internet traffic prediction is a key issue for understanding communication networks and
optimizing resources (e.g. adaptive congestion control and proactive network manage-
ment), allowing a better quality of service [1-3]. Moreover, traffic forecasting can help
to detect anomalies (e.g. security attacks, viruses or an irregular amount of SPAM) by
comparing the real traffic with the forecasts [4, 5].

TCP/IP traffic prediction is often done intuitively by network administrators, with
the help of marketing information (e.g. future number of costumers) [1]. Yet, this may
not be suited for serious day-to-day network administration and the alternative is to
use Operational Research and Computer Science methods. In particular, the field of
Time Series Forecasting (TSF), deals with the prediction of a chronologically ordered
variable, where the goal is to model a complex system as a black-box, predicting its
behavior based in historical data [6]. The TSF approaches can be divided into univariate
and multivariate, depending if one or more variables are used. Multivariate methods are
likely to produce better results, provided that the variables are correlated [7].
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Several TSF methods have been proposed, such as the Ha&#8\i6] and Neural
Networks (NN) [8, 3]. Holt-Winters was developed for senéth trended and seasonal
factors and more recently a double seasonal version haspoepased [9]. In contrast
with the conventional TSF methods (e.g. Holt-Winters), Ndda predict nonlinear se-
ries. Inthe past, several studies have proved the predittath network traffic by using
similar methods. For instance, the Holt-Winters was usdd,ih0] and NNs have also
been proposed [11, 5, 3]. However, these studies only ceresidunivariate (or single
link) data, thus not making use of the topology network. Bygslata from more than
one link, there is a potential for better predictions.

This study will use recent hourly data from the United Kingd&ducation and
Research Network (UKERNA) network. The network includesakibone made up of
8 core routers that transport data through 21 regional gulomks. In this paper, we
will explore NNs and two multivariate approaches for datiec®n: using all direct
neighbor links and selecting the most probable neighbdrishexpected to influence
the predicted link. The latter strategy is based in a novatikic that uses the Open
Shortest Path First (OSPF) [12] protocol and Dijkstra athar. These approaches will
be compared with the NN univariate case and also the classisVMnters method.
Furthermore, we will predict all UKERNA core to core and ctwesubnetwork links,
in a total of 39 connections.

2 Internet Traffic Data

This work will analyze traffic data (in Mbit/s) from the UK agiamic network backbone
(UKERNA)?, which includes eight core routers and 21 subregional nédsvé-igure 1
plots the respective direct graph, whéxél, sid andcdd denote the links within the
backbone core routers, core sabnetwork and subnetwork tmre, respectivelyd is

a digit number). The data collection was based in the Simm@evhrk Management
Protocol (SNMP), which quantifies the traffic passing thitoegery network interface
with reasonable accuracy [13]. SNMP is widely deployed bgreunternet Service
Provider/network and the collection of this data does ndtige any extra traffic on the
network. In this work, we will adopt an hourly scale, dengtashort-term forecasting
that is often used to for optimal control or detection of atonal situations [14]. The
data was recorded from 12 AM of 14th June 2006 to 12 AM of 23 2006. In total,
there are 936 hourly observations for each link.

The OSPF is the the most commonly used intra-domain routioigppol [12]. Under
this protocol, every link contains a weight that is assiglgthe network administrator.
The Dijkstra algorithm is used to find the shortest paths betwany two nodes of
the network and these paths are then used by the routersettt thiaffic. Most of the
UKERNA OSPF weights are set to 10 and the few exceptionssteslin Figure 1. For
instance, the OSPF weight between the core routers of Glaagd Edinburgh is 100
(links b09 and b18); and the shortest path between Warningto Edinburgh includes
the links b07 and b18.

4 http://www.ja.net
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Fig. 1. The schematic of the UK academic Internet network.

As an example, the traffic of two neighbor links, Warringt@lasgow (b07) and
Glasgow-Clydenet (s05), is plotted in Figure 2. In both ¢naphere are influences of
two seasonal components due to the the intraday and intkaoyetes.
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Fig. 2. The IP traffic for bO7 (Warrington-Glasgow, left) and s03g&low-Clydenet, right) links.
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3 Forecasting Methods

A Time Series Forecasting (TSF) model assumes that pagrpaiwvill occur in the
future. Lety, = (y1t, - - -, yxe) denote a multivariate series, wheye is thejth chrono-
logical observation on variableandk is the number of distinct time variables & 1
when a univariate setting is used). Then [7]:

@\pt = F(yltfla e Ylt—my ey Ykt—15 - - -, yktfn) (1)
Ept = Ypt — Ypt

wherey,; denotes the estimated value for th variable and time; £ the underlying
function of the forecasting model; amg\ is the error (or residual).

The overall performance of a model is evaluated by a globalir@cy measure,
namely the Root Mean Squared Error (RMSE) and Relative RMGEMSE), given in
the form [15]:

RMSE), = \ ZP+P1Y+1 pz/N
RRMSE, = RMSEP/RMSEg x 100 (%)

whereP is the presenttimeY is the number of forecasts; afth/ SEy  istheRM SE
given by the simple mean prediction. The last metR&(M S E) will be adopted in this
work, since it has the advantage of being scale independdiete 100% denotes an
error similar to the mean predictay,f).

Due to the temporal nature of this domain, a sequential huldidl be adopted for
the forecasting evaluation. Hence, the fifs8 = 2/3 of the series will be used to fit
(train) the forecasting models and the remaining 1a8tto evaluate (test) the forecast-
ing accuracies. Also, an internal holdout procedure willused for model selection,
where the training data will be further divided into traigif2 /3 of T'R) and validation
sets (1/3 ofl'R). The former will be used to fit the candidate models, whike lttter
will be used to select the models with the lowest er®i{SE). After this selection
phase, the final model is readjusted using all training data.

)

3.1 Neural Networks

Neural Networks (NNs) are innate candidates for forecgstire to their nonlinear and
noise tolerance capabilities. Indeed, the use of NNs for B&Fan in the late eighties
with encouraging results and the field has been growing $8dat, 11, 3].

The multilayer perceptron is the most popular NN used withaforecasting do-
main [8, 11]. When adopting this architecture, TSF is aakidyy using a sliding time
window?. A sliding window is defined by the set of time lags used todailforecast.
For instance, given the univariate time series 1,2,3,46¢bsliding window{1, 2,4},
the following training examples can be built;3,4 — 5 and2,4,5 — 6. In a multi-
variate settingk sliding windows are used:L11,..., Liw, }, -, {Lk1,-- -, Lew,
whereL;; denotes a time lag for thigh variable.

In this work, a fully connected multilayer network with onédten layer of H
hidden nodes and bias connections will be adopted (Figuréh logistic activation

® This combination is also named Time Lagged Feedforward bigt@LFN) in the literature.
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Fig. 3. The multilayer perceptron architecture for multivariated series forecasting.

function is applied on the hidden nodes and the output noele aiinear function [16].
In past work [3], this architecture outperformed convemtilunivariate methods such
as Holt-Winters and ARMA models. The overall model is giverthie form:

~ I+H k Wy
Ypt = Wo,0 + Zi;rIJrl f(Zs:l Zr:lySt—waiJ) (3)

wherew, , is the weight from node to d; (if d = 0 then it is a bias connectionj; e
{1,..., I} is aninput nodey is the output node; anfl the logistic function {—).

Before training, all variables are scaled with a zero meahare standard devia-
tion. Then, the initial NN weights are randomly set witli#n0.7, +0.7] [17]. Next, the
training algorithm is applied and stopped when the errguestapproaches zero or after
a maximum ofE epochs. Since the NN cost function is nonconvex (with midtipin-
ima), N R runs are applied to each neural setup, being selected theitiiNhe lowest
mean error [16]. After training, the NN outputs are rescatethe original domain.

Under this setting, the NN performance will depend on the bemnof hidden nodes
(H), the selection of th& variables used in the multivariate model and the time window
used for each variable. All these parameters can have aatgifgct in the forecasting
performance. Feeding a NN with uncorrelated variablesroe tiags may affect the
learning process due to the increase of noise. A NN with Odrndaeurons can only
learn linear relationships and it is equivalent to the éta&sto-Regressive (AR) model.
By increasing the number of hidden neurons, more complelimear functions can be
learned but also it increases the probability of overfittmthe data and thus loosing the
generalization capability. Since the search space foethasameters is high, heuristic
procedures will be used during the model selection step.

Three strategies are proposed for the variable selection:

— Single-Link NN (SLNN), the simple univariate model where the predictions are
based on the past values of the current lipk (

— All Direct Neighbor Link NN (ADNN) , based orp plus the previous traffic ob-
served in all direct neighbor links that influengeand

— Dijkstra-Assisted NN (DANN), based orp plus the neighbor that is expected to
influence more the predicted link under the OSPF protocrdt,Rhe Dijkstra algo-
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rithm is used to compute the shortest OSPF paths betweeodsbrof the network.
Then, the subset with all paths that inclydas an internal or end link is selected.
Finally, the heuristic selects the most comrhdirect preceeding neighbor pfin
the subset.

Regarding the multivariate methods, DANN selects dndy 2 variables, while ADNN
uses a higher number of links (from 3 to 7). For instance, wheetasting the Reading-
TVN (p=s18) traffic, the ADNN variable set {18,b05,b0}’ (Figure 1). There are 16
OSPF paths ending at TVN that include b05 and only 11 pathsginéhrough bO1.
Hence, DANN will select the former (i.§s18, b03).

Based on previous univariate IP traffic forecasting work§¥mall range of hidden
nodes will be tested, witlif € {0, 2,4, 6}. Also, three sliding windows, based on the
daily (K, = 24) and weekly K> = 168) cycles, will be consideredy; = {1, 24,25},
wq = {1,168,169} andws = {1, 24, 25,168, 169}. In [3], this sliding window setup
obtained high quality results. When a multivariate modekied, then the same window
is applied to all links.

3.2 Holt-Winters Methods

The Holt-Winters (HW) [6] is a popular univariate forecastitechnique from the fam-
ily of Exponential Smoothing methods. The predictive madédased on some under-
lying patterns such as a trend or a seasonal cy€lg,(which are distinguished from
random noise by averaging the historical values. Its pajiylgs due to advantages
such as the simplicity of use, the reduced computationakaehnand the accuracy of
the forecasts, specially with seasonal series.
The general model is defined by:

Level Sy = OéthitKl I (]. = a)(St—l + thl)

Trend T, = B(S: —Si—1) + (1 = B)T—1

SeasonalityD; = yg—i +(1—v)Di—k,

Upt = (St—1 +T4—1) X Di_g,

4

whereS;, T; and D; stand for the level, trend and seasonal estimdtgsior the sea-
sonal period, andy, § and~ for the model parameters. When there is no seasonal
component, they is discarded and th®;_x, factor in the last equation is replaced
by the unity. More recently, this method has been extendedtompass two seasonal
cycles (K; and K5) [9]. In this work, four HW variants will be tested in the mdde
selection phaset — non seasonal{(; = 1); d — daily seasonalK; = 24); w — weekly
seasonal; = 168); andD — double seasonaK(; = 24 and K, = 168).

4 Experiments and Results

The experiments were conducted off-line (i.e. after the deds collected) using the
RMiner [18], an open source library for thestatistical environment[19]. In particular,

® In case of a draw (which rarely occurs), the heuristic singelects one of the contenders.
" The link c18 is not considered, since its origin (TVN) matshiee link destination.
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theRMiner uses theanet package [17] to implement the NNs. The NNs were trained
with £ = 100 epochs of the BFGS algorithm [20], from the family of quasviNon
methods and the number of runs was se¥tB = 10. The HW initial values (e.g. level
estimate) were set by averaging the early observations@}lze internal parameters
(e.g.«) were optimized using a 0.05 grid search for the best trgipimor RM SE).

Since the intention is to compared univariate and multatarapproaches, only the
links with preceding neighbors will be predicted, i.e.,sall andbdd, in a total of 39
connections. The selected forecasting models for eachauette shown in Table 1.
For the HW, the weekly cycle is the most common model énd the double seasonal
variant is never used. The weekly effeab] is also the most common case for strategy
ADNN. In contrast, the majority of the SLNN and DANN methodseuthe double
seasonal model(;). Regarding the NN architectures, in general only lineadei®
are selected. The 15 nonlinear exceptialis} 0) are listed in the table. These results
confirm the notion that short term IP traffic can be modeledrbglsnetworks.

The forecasts with the selected models were performed otethesets (with 312
elements) for all links shown in Table 1. Thirty runs were lgggpfor the NNs and the
results are shown as the meB®k M S E with the respective 95% t-student confidence
intervals. The range of the beBtRM S E values is high, showing that some links are
much harder to predict than others (e.g. 14.1% for b10 ve88159 for s02). Overall,
the HW is the worst strategy, since it is the best method for 2dinks (b05 and b14).
Regarding the backbone links, the univariate approach (§Lislthe best NN choice
in 10 cases, followed by the ADNN (best in 7 links), while th&NIN outperforms the
other methods for only one link (b17). This scenario chamgen considering the core
to subnetwork linksgdd), where the DANN is the best method (with 12 wins), while
both SLNN and ADNN achieve statistically significant lowestors in 4 cases.

For demonstrative purposes, the left of Figure 4 preseptatkrage DANN traffic
forecasts for the first 60 hours of the s03 series. In this, easigh quality fit is achieved,
since the two curves are close. The observed (x-axis) véhgupredicted values for
a given run (y-axis) is also shown. In the figure, the forexggbints) are near the
diagonal line, which denotes the perfect forecast. Anathlevant issue is related with
the computational complexity. The proposed solution is/\fast and can be used in
real-time. For the example, with a Pentium Dual Core 3GHz@ssor, the DANN
model selection phase took 12 seconds, while the 30 runsedirtal NN training and
testing required only 2.2 seconds.

5 Conclusions

This work analyses the efficiency of several Neural NetwdtkY approaches when
applied to predict hourly TCP/IP traffic, collected from trited Kingdom Education
and Research Network (UKERNA). In particular, three stygte were tested: SLNN —
univariate approach based on past patterns from the cum&nADNN — which also
includes the past values from all direct neighbors; and DAN&novel approach that
includes only one link neighbor, whose selection is basetthemijkstra algorithm and
OSPF protocol. Also, a comparison was made with the Holttgvan(HW) method,
which is popular for seasonal series.
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Table 1. The forecasting RM S E errors and selected models (in brackets).

Link SLNN ADNN DANN HW

b01 24.8:0.0 (ws) 23.9+0.0 (w2) 25.0+0.0 ws) 25.2 W)
b02 63.2+0.0 (w1) 89.5+0.0 (w2) 63.4+0.0 (w1) 68.7 (n)
b03 22.1+0.0 (ws) 22.1+0.0 (w2) 22.2+0.0 (ws) 27.8 @)
b04 21.3+0.0 (ws3) 21.5+0.0 (w2) 22.2+0.0 (w2) 25.2 W)
b05 34.1+0.0 (ws3) 34.7+0.0 (w2) 35.7+0.0 (w2) 34.0(w)
b06 86.6:2.7 (w1, H=4) 58.14+0.0 (w1) 58.4+0.0 (ws) 69.0 W)
b07 19.7+0.0 (ws3) 30.6+0.0 (ws) 20.3+0.0 (ws) 25.1 w)
b08 40.70.0 (w2) 40.7+0.0 (w2) 41.24+-0.0 (w2) 44.3 W)
b09 56.5+0.0 (w2) 57.2+0.0 (w2) 57.5+0.0 (w2) 67.5 W)
b10 14.1+0.0 (ws3) 17.7+0.0 (w2) 15.4+0.0 (ws) 15.0 )
b1l 54.1+0.0 (ws) 57.3+0.9 (w3, H=2) 54.3+0.0 (w2) 58.0 (2)
b12 62.75.9 (w2, H=2) 36.14+0.0 (w1) 74.6+0.0 (ws) 45.4 W)
b13 30.5+0.0 (ws3) 31.2+0.0 (w2) 30.6+0.0 (ws) 31.7 w)
b14 19.5:0.0 (ws) 19.4+0.0 (ws) 19.5+0.0 (ws) 19.0(w)
b15 79.9:0.0 (ws) 78.7+0.0 (w2) 80.4+0.0 (ws) 87.0 (n)
b16 48.0:1.0 (w2, H=4) 37.5+0.0 (w-2) 38.7+0.0 (ws) 39.4 W)
b17 31.5:0.8 (ws, H=2) 57.5+-3.1 (w1) 28.3+0.0 (ws3) 30.1 w)
b18 57.3+0.0 (ws) 59.2+0.0 (w2, H=6) 58.4+0.0 (w3) 80.8 w)
s01 42.3-0.4 (w2, H=2) 47.5+2.7 (w2, H=2) 41.8+0.0 (w2) 45.1 W)
s02 82.8-0.0 (ws) 85.2+0.0 (w2) 82.5+0.0 (ws) 91.9 W)
s03 33.6:-0.0 (ws) 34.6+0.0 (ws) 32.4+0.0 (ws) 37.3 @)
s04 41.3-0.1 (w2, H=2) 41.4+0.0 (w2) 41.8+0.0 (w2) 48.0 W)
s05 41.44+0.0 (ws) 41.6+0.0 (wn1) 42.0+0.0 (w3) 47.5 W)
s06 39.6-0.0 (ws) 38.3+0.0 (w2) 38.2+0.0 (ws) 44.1 W)
s07 45.30.0 (w2) 42.8+0.0 (w2) 42.94-0.0 (w2) 51.7 W)
s08 27.5+0.0 (ws) 28.9+0.0 (w2) 28.3+0.0 (ws) 34.9 W)
s09 28.6-0.0 (ws) 27.3+0.0 (w2) 28.3+0.0 (ws) 36.5 W)
s10 35.9-0.5 (w2, H=6) 32.8+0.0 (w3) 38.6+0.0 (ws) 33.2 W)
s11 68.44+0.0 (ws) 69.6+0.0 (w1) 71.2+1.2 (w2, H=2) 74.5 (@)
s12 71.8-8.3 (ws, H=4) 69.0+0.0 (w2) 56.7+0.0 (ws) 65.4 W)
s13 48.10.0 (w2) 44.7+0.0 (w2) 44.7+0.0 (w2) 47.7 w)
s14 36.8-0.0 (ws) 43.8+0.0 (wn1) 34.0+0.0 (w2) 37.9 w)
s15 26.5-0.0 (ws) 24.9+0.0 (w2) 23.6+0.0 (ws) 27.2 w)
s16 33.4:-0.0 (ws) 33.8£0.0 (w2) 32.3+0.0 (ws) 36.0 @)
s17 28.3-0.5 (w2, H=2) 26.7+0.0 (w3) 25.5+0.0 (ws3) 32.2 ()
s18 54.2:0.0 (w2) 53.2+0.0 (ws) 51.9+0.0 (ws) 54.7 (n)
s19 39.8+0.0 (w2) 41.14-0.0 (w3) 40.14-0.0 (w2) 39.9 W)
s20 64.2-0.2 (ws, H=2) 65.4+0.0 (w2) 61.3+0.0 (ws3) 70.7 @)
s21 34.2-0.3 (ws, H=2) 40.6+0.0 (w3) 32.6+0.0 (ws) 32.9 w)

bold — statistical significance under a pairwise comparison wfitier NN methods.
underline— best model.

A large number of experiments was conducted, with a totaldfoBecasted links.
Overall, the NN results are quite competitive, outperfargiihe HW model in all ex-
cept two cases. Regarding the univariate versus multteadamparison, the results
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Fig. 4. Example of the forecasts (left) and observed versus peatliclues scatter plot (right).

differ according to the link characteristics. Within theckbone links, the SLNN is the
best option in 10 of the 18 series, while DANN only excels o8teategies for one con-
nection (b17 of Figure 1). However, for the core to subnekwimks, the multivariate

DANN strategy provides the best forecasts in 12 of 21 cask#eBLNN achieves the
best performance in only 4 links. These results may be aexgdeby the nature of the
network topology. The core to subnetwork links are periphmnels, thus they are
more likely to be influenced by one single neighbor. In casifrthe core routers are
large carriers, i.e., they direct traffic from/to a largemher of nodes.

Since small networks were selected, the NNs are very fastamte applied in real-
time. Thus, the proposed approach opens room for produeitigriiraffic engineering
tools and methods to detect anomalies in the traffic patt&his can be achieved with-
out producing any extra traffic in the network and with minimae of computation
resources, since this work was designed assuming a passivieoning system.

In future work, the comparison will be extended to other éaisting techniques
(e.g. ARMA models [21]). Moreover, the proposed approadhlvé applied to traffic
demands of specific Internet applications, such as Voice loternet Protocol (VoIP).
Another promising direction is to explore incomplete imf@tion scenarios. For in-
stance, to see if it is possible to forecast the backbonetaffic using only the subnet-
work to core connections, i.e., without knowing the pastiealof the predicted links.
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