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Abstract: The usage of recurrent fuzzy neural network has been increased recently. These networks can approximate 
the behaviour of the dynamical systems because of their feedback structure. The Backpropagation of error 
has usually been used for training this network. In this paper, a novel approach for learning the parameters 
of RFNN is proposed using combination of the backpropagation and breeding particle swarm optimization. 
A comparison of this approach with previous methods is also made to demonstrate the effectiveness of this 
algorithm. Particle swarm is a derivative free, globally optimizing approach that makes the training of the 
network easier. These can solve the problems of gradient based method, which are instability, local minima 
and complexity of differentiating.  

1 INTRODUCTION 

Fuzzy neural network (FNN) was introduced to fuse 
fuzzy systems and neural networks into an integrated 
system to reap the benefits of both (Ku, 1995). The 
major drawback of the FNN is its limited application 
domain to static problems, due to the feedforward 
network structure, thus it is inefficient in dealing 
with temporal applications.  

Recurrent neural network systems learn and 
memorize information implicitly with weights 
embedded in them. A recurrent fuzzy neural network 
(RFNN) was proposed based on supervised learning, 
which is a dynamic mapping network and it is more 
suitable for describing dynamic systems than the 
FNN (Lee, 2000). Of particular interest is that it can 
deal with time-varying input or output through its 
own natural temporal operation (Williams, 1989). 
Ability of temporarily storing information simplifies 
the network structure and fewer nodes are required 
for system identification. Because of the complexity 
in back propagation (BP) learning approach, only 
diagonal fuzzy rules have been implemented (Ku, 
1995). This limiting feature restricts users to employ 
a more completed fuzzy rule base. 

In this paper a novel approach is proposed as a 
solution to this problem. We combined original BP 
used in previous works (Lee, 2000) with a breeding 
particle swarm optimization (BPSO) to train the 
network more easily and without the complexity of 
differentiating. The BPSO approach is an derivative-
free, global optimizing algorithm that is a 
combination of genetic algorithm (GA) (Surmann, 
2001) and particle swarm optimization (PSO) 
(Engelbrecht, 2002, Angeline 1994, and Kennedy, 1995) 
which was first used for training RNN (Settles, 2005). 

This paper is organized as follows. In section 2, 
the RFNN structure is introduced and a comparison 
between the FNN and the RFNN is described. 
Section 3 briefly introduces BPSO. The training 
architecture of the network is presented in section 4 
and simulation results are discussed in section 5. 
Finally, in section 6 we summarize the result of this 
approach. 

2 NETWORK STRUCTURE 

The key aspects of the RFNN are dynamic mapping 
capability, temporal information storage, universal 
approximation, and the fuzzy inference system. The 
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RFNN possesses the same advantages as recurrent 
neural networks and extend the application domain 
of the FNN to temporal problems. A schematic 
diagram of the proposed RFNN structure is shown in 
Fig. 1 which indicates the signal propagation and the 
operation functions of the nodes in each layer. In the 
following description, k

iu denotes i-th input of a 
node in the k-th layer; k

io denotes the i-th node 
output in the k-th layer. For the sake of brevity, a 
brief description of the RFNN is introduced. 
Interested readers are referred to reference (Lee, 
2005). 

 
Figure 1: structure of RFNN. 

Layer 1: Input Layer: 

 11
ii uo =  (1) 

Layer 2: Membership Layer: The Gaussian function 
is adopted here as a membership function: 
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where ijm and ijσ  are the center (or mean) and the 
width (or standard deviation—STD) of the Gaussian 
membership function. The subscript ij indicates the 
j-th term of the i-th input. In addition, the inputs of 
this layer for discrete time k can be denoted by 
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where ijij
f

ij koko θ×−= )1()( 2  and ijθ  denotes the link 
weight of the feedback unit. It is clear that the input 
of this layer contains the memory terms )1(2 −koij , 
which store the past information of the network. 
Each node in this layer has three adjustable 
parameters: ijm , ijσ  , and ijθ . 
Layer 3: Rule Layer: 
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Layer 4: Output Layer: 
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where 34
jj ou =  and 4

jiw  (the link weight) is the output 
action strength of the i-th output associated with the 
j-th rule. 4

jiw  are the tuning factors of this layer. 
Finally, the overall representation of input x and the 
p-th output is 
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Where  
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Obviously, using the RFNN, the same inputs at 
different times yield different outputs. The proposed 
RFNN can be shown to be a universal uniform 
approximator for continuous functions over compact 
sets if it satisfies a certain condition (Lee, 2000). 

3 BPSO 

With correct combination of GA and PSO, the 
hybrid can outperform, or perform as well as, both 
the standard PSO and GA models (Settles, 2005). The 
hybrid algorithm combines the standard velocity and 
position update rules of PSOs with the ideas of 
selection, crossover and mutation from GAs. An 
additional parameter, the breeding ratio (Ψ), 
determines the proportion of the population which 
undergoes breeding (selection, crossover and 
mutation) in the current generation. Values for the 
breeding ratio parameter range from (0.0:1.0). 

In each generation, after the fitness values of all 
the individuals in the same population are 
calculated, the bottom (N · Ψ) are discarded and 
removed from the population where N is the 
population size. The remaining individual’s velocity 
vectors are updated, acquiring new information from 
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the population. The next generation is then created 
by updating the position vectors of these individuals 
to fill (N · (1 − Ψ)) individuals in the next 
generation. The (N · Ψ) individuals needed to fill the 
population are selected from the individuals whose 
velocity is updated to undergo VPAC crossover and 
mutation and the process is repeated. For clarity, the 
flow of these operations is illustrated in Figure 1 
where k = (N · (1 − Ψ)). 

 
Figure 2: BPSO. 

Here, we developed crossover operator to utilize 
information available in the Breeding Swarm 
algorithm, but not available in the standard GA 
implementation. The new crossover operator, 
velocity propelled averaged crossover (VPAC), 
incorporates the PSO velocity vector. The goal is 
creating two new child particles whose position is 
between the parent’s positions, but accelerated away 
from the parent’s current direction (negative 
velocity) in order to increase diversity in the 
population. Equations (8) show how the new child 
position vectors are calculated using VPAC. 
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In these equations, )(1 ixc and )(2 ixc  are the 
positions of child 1 and 2 in dimension i, 
respectively. )(1 ixp  and )(2 ixp  are the positions of 
parents 1 and 2 in dimension i, respectively. )(1 ivp  
and )(2 ivp  are the velocities of parents 1 and 2 in 
dimension i, respectively. ϕ  is a uniform random 
variable in the range [0.0:1.0]. Towards the end of a 
typical PSO run, the population tends to be highly 
concentrated in a small portion of the search space, 
effectively reducing the search space. With the 
addition of the VPAC crossover operator, a portion 
of the population is always pushed away from the 
group, increasing the diversity of the population and 
the effective search space.  

The child particles retain their parents’s velocity 
vector ),()( 11 vpvc = )()( 22 vpvc = . The previous 
best vector is set to the new position vector, 
restarting the child’s memory by replacing new 

)()(),()( 2211 xppcxppc == . The velocity and 
position update rules remain unchanged from the 
standard inertial implementation of the PSO. The 
social parameters are set to 2.0 while inertia is 
linearly decreased from 0.7 to 0.4 and a maximum 
velocity (Vmax) of ±1 was allowed. The breeding 
ratio was set to an arbitrary 0.3. Tournament 
selection, with a tournament size of 2, is used to 
select individuals as parents for crossover. The used 
mutation operator is Gaussian mutation, with mean 
0.0 and variance reduced linearly in each generation 
from 1.0 to 0.0. Each weight in the chromosome has 
probability of mutation 0.1. 

4 NETWORK TRAINING 

BP approach, as mentioned, has been mostly used 
for training RFNN in previous works. This approach 
is not easy to implement, when faced with the case 
of a complete or a non-diagonal fuzzy rule base. As 
we can see in Fig. 1, each rule of layer 3 is made by 
only a diagonal variables, i.e. the i-th rule are made 
by multiplication of the i-th outputs of layer 2. 
However, if we want to use complete or non-
diagonal fuzzy rule base, it will make learning of 
parameters in layer 2 totally complicated. In this 
paper we propose Breeding Particle Swarm 
Optimization for tuning parameters of layer 2 
( ijm , ijσ , ijθ ) and original BP for tuning jpw . These 
two approaches are used simultaneously. Pseudo 
code of the algorithm used in this study for training 
RFNN parameters is shown in Fig. 3. The proposed 
combination has various benefits for training RFNN. 
First of all, there is no need to differentiate those 
complex derivations for training the parameters of 
the 2nd layer. The proposed algorithm utilizes BPSO 
as a derivative-free approach for training these 
parameters. The method is also a global optimization 
approach that prevents training parameters from 
converging to local minima. Because of simplicity 
and high speed convergence, the parameters of 4th 
layer is learned by BP. Note that using a complete 
fuzzy rule base doesn’t affect the tuning of jpw  by 
BP and will not increase its complexity. 
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Figure 3: Pseudo code of the proposed tuning algorithm. 

5 SIMULATION RESULTS 

Suppose the following nonlinear dynamical system: 
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In this system the output value depended on the 
previous values of the output and the previous 
values of the input. We use RFNN to identify this 
system. Because of dynamical characteristics of 
RFNN, it is not necessary to use all complete 
samples of the previous inputs and outputs. So just 
y(k) and  u(k) are used for estimating y(k+1). The 
parameters of the 2nd layer of the RFNN is tuned by 
BPSO and the output weights, jpw  is tuned with BP 
simultaneous. The same input signal that was used in 
(Lee, 2000) is used here for testing. Fig. 4 illustrates 
that learning of the network is successfully done. 
This method leads to better identification than the 
previous ones. The MSE parameter was 0.00013 in 
original method while our proposed method 
converges to 0.00005. 

 
a) 

 
b) 

Figure 4: training RFNN parameters with cooperation of 
the BPSO and BP. a) Identification. b) MSE. 

6 CONCLUSIONS 

In this study a novel approach for training RFNN 
was proposed. BP algorithm suffers from complexity 
of differentiating and converging to local minima. 
Our proposed method utilizes BPSO with 
combination of BP. As the simulation results show, 
applying this algorithm improves the performance of 
training RFNN. This improvement is gained by 
globally optimizing the feature of PSO that prevents 
training to be entrapped in local minima. The 
complexity of differentiating for gradient based 
methods is more serious when a complete or a non-
diagonal fuzzy rule base is used. This algorithm 
solves this problem too and one can use it more 
frequently. 
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