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Abstract: This paper present sufficient conditions to construct an exponential state estimator for a class of infinite dimen-
sional non-linear systems driven in a real Hilbert state description. The theory is applied to a nonisothermal
plug flow tubular reactor, governed by hyperbolic first order partial differential equations. For this application
performance issues of the exponential state estimator design are illustrated in a simulation study.

1 INTRODUCTION systems described by the following equation
X(t) = AX(t) + N(x(t)), x(0) € D(A) N D

State estimators for dynamical systems have been { y(t) =Cx(t)

the focus of an intensive work in the last decades. Here, A is the infinitesimal generator of &g-

The classical theory of the Luenberger observers hassemigroup on a real Hilbert spakewith inner prod-

been successfully extended from finite dimensional uct< .,. > and norm|| . ||, D(A) is the domain of,

linear systems to a large class of infinite dimensional N is a nonlinear operator from a closed sutidetf

linear systems by many authors, since the pioneer-H into H, y(t) € Y is the known output function as-

ing paper by (Gressang and Lamont, 1975). Later, sociated to the unknown initial conditiof{0), Y is

the theory has been generalized to a class of sin-another real Hilbert space a@is a bounded linear

gle input distributed bilinear systems in (Gauthier operator fromH into the Hilbert spac&’. Under the

et al., 1995). The paper of (Bounit and Hammouri, assumption thal is locally Lipschitz continuous, it

1997) consider a class of distributed bilinear systems is shown in ((Pazy, 1983), pp. 185-186) that equa-

witch are observable for "small inputs” and gives a tion (1) has a unique mild solution on some interval

strong exponential observer. Recently, for nonlinear [0,tmay), tmax € (0, +%] given by

models of non-isothermal tubular reactors considered t

in (Laabissi et al., 2001), the paper of (Orlov and { X(t) = S{t)x(0) + fo St —s)N(X(s))ds )

Dochain, 2002) presented a reduced-order observer 0=t <tmax

pf the concen?ration, assuming that the temperaturehere(S(t) )i~o denotes th€y—semigroup generated

is the only available measurement. by A. To ensure that the problem is well posed,

The primary objective of this paper is to address the \ye shall assume throughout the paper as in (Laabissi

problem of the design of exponential Luenberger-like gt g, 2001) that we haveax = +. An observer

observers for a class of infinite dimensional nonlinear design is presented for which a result about the expo-
nential convergence of the estimation error is stated

1)
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by (1). Trajectory analysis of such a model of chem- for all e € H, and C' is the adjoint of the linear op-
ical plug flow reactors has been done extensively in erator C, is bounded positive definite (see (Curtain
(Achhab et al., 1999) and (Laabissi et al., 2001). For and Zwart, 1995), p.160), and thus has an algebraic
this application, we also introduce a second observerbounded inverse with domain equal to range L

in the case when only one of the two states, namely oo gjger now the following candidate observer

the temperature, is measured and show the exponen-

tial convergence of both estimation errors. Athird ob- | X(t) = AX(t) + N(X(t)) — GC*(CX(t) — y(t)) 3)
server is then introduced to improve the convergence | X(0) € D(A)ND

rate of the previous one. Simulations results are thenWhereG is a linear bounded operator awyd) is

presented in order to highlight the performance ISSUeS o “known output function of the system (1). One

$fhthe propqsed obs_er\ijers. foll | tion 2 can show that system (3) admits a unique solution
€ paper s organized as Tollows. In SECUOn 2, We ¢4y \yhich is well defined for any initial condition

consider a general observer design for system (1).)2(()) € D(A)ND and for allt € [0, tma), With tmax as-

Then, we state sufficient conditions under which the =~ % ©F equatco » My "o

related estimation error converges exponentially to Settinge(t) :X(t)i)ﬁ(('t) the reconstruction errft)

zero. The approach developed in the general settingObeys the following eq;Jation'

is applied to a chemical plug flow reactor model in ;

section 3. In section 4, simulation results are givenin  &(t) = Ae(t) + N(x(t)) —N(X(t)) — GC'Cet) (4)

order to illustrate some performance issues of this aP- . hd one obtains the following theorem:

plication. Finally, the paper closes with some remarks . ' o

and conclusions in section 5. The background of the Theorem 2.1. Letassumptions A.1-A.4 be satisfied. If

approach is to be found in (Curtain and Zwart, 1995) there exists a bounded linear operator G and a posi-

and (Cazenave and Haraux, 1998). gVe real number g such thatgky andforec H, e#

<GC'Cee>><g| L |l|S()|*C'Cee>

then, systenB) is an exponential observer for system

We state in thi . Hicient diti d (). More precisely, the reconstruction error satisfies
e State In IS seclion sufficient conaitions unaer || e(t) ||2§|| e(o) ||2 e—r]t Wherer] — 2(9_ kN)

which we will be able to show that the estimation
error of the Luenberger-like observer converges Proof 2.1. The computation of the derivative of the
exponentially to zero. functional
Let us assume that the following.

2 OBSERVER DESIGN

1
Ve(t) = 5 Il e(t) I?
A.1. The linear operatoh satisfies for alk € D(A), along the trajectories o{4) yields,
> <0. . .
andt >0, < Ax(t),x(t) ><0 Volt) =< &(t),e(t) >

A.2. The nonlinear operatdt is aky-Lipschitz oper- =< Aéeg*)ée(tt) > ?r
ator on its domaiD, whereky is a positive constant; - < et),et)
i.e. forallx,yeD, [|N(X)—N(y) [|<kn[[x=y]. and in addition,

% -1 2 *
A.3. The pair(A,C) is approximately observable <GCCee> =g L91 II'SC) [*<C*Cee>
linear system (i.e. Ve € H, {CSt)e =0, vt > 29| Lc” lI<lcee>
0, impliese = 0}), exponentially stable. zg<ee>

<N(X(t)) = N(X(t)), e(t) >
>

_ o indeed, the operatord.is self-adjoint and nonnega-
A.4. The semigrouf%(.) satisfies for alk € H: tive (i.e,< Lce,e>> Ofor all e € H), then ¢ has a

1 11
<S()c'cY.)ee><| S(.) |[2<C*Cee>, unique square root & self-adjoint, so that ELZe =
_ o Lce forallec H (see (Curtain and Zwart, 1995),
Comment 2.1. The hypothesis A.3 implies that the p.606), the operator* is also self-adjoint and non-

linear system negative, par consequent has a unique square root
1
X(t) = AX(t), x(0) € D(A) (Lgl)% = (L&) ! (see (Curtain and Zwart, 1995), pp.
y(t) = Cx(t) 603-610).

is approximately observable dfi,+«) and that the and in addition, for all e< H,

observability gramian ¢ := C*C, where Ce=CS.)e <Llclee> <|Lt|<ee>
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thus, In the equations above, the following parameters
L1 v, AH, p, Cp, ko, E, R, h, d, T¢ hold for the super-
Lt < Leee> =|Lct|<LiLiee> ficial fluid velocity, the heat of reaction, the density,
| = < L2e L%e> the specific heat, the kinetic constant, the activation
c iip=<p= energy, the ideal gas constant, the wall heat transfer
>< Lgnge, Lie> coefficient, the reactor diameter, the coolant temper-
>< (Lc%)fch%e’(Lc%)fch%e> ature. Tin andCi, are respectively the inlet temper-
—<ee> ature and the inlet reactant concentration which will
be assumed to be two positive constants, andL
Hence, denote the time and space independent variables, and
- - the length of the reactor, respectively. Finaltyand
Ve(t) - <[ N(x(t)) — N(X(tz) Il e(t) | —gllet) |1 Co denote the initial temperature and reactant concen-
< (kv —9g) [l e(t) [[*= —nVe(t) tration profiles.
Now, using Gronwall's Lemma (see (Curtain and The dynamics will be described by means of an
Zwart, 1995), p. 639), we get infinite-dimensional system derived from an equiva-
lent nonlinear PDE dimensionless model. Such an
Ve(t) < Ve(0)e™ approach is standard in tubular reactor analysis (see
Conseauently. one mav deduce (Laabissi et al., 2001)) and is briefly developed here.
quently, y Let here afteH = L2[0,L] x L?[0,L], endowed by the
| et) < e(0) e inner pegtict

This shows the exponential convergence of the esti-< (X1,%2), (Y1,¥2) >=< X1, Y1 >12 + <X2,¥2 >(2

mation error and the proof of Theorem (2.1) is thus ahd the inflliced norm

complete. ) ,
| (%) (1= (1 xa [z + [ %2 (1)
2.1 Application to a Nonisothermal for all (x1,%2) and(yy,y2) in H. We will denote here
Plug-Flow Reactor after<,>2 by <, >.
The theory developed in the general setting is applied Consider the following dimensionless state variables:
to a chemical non-isothermal tubular reactor with the T T.—Tin
following chemical reaction: N=——y Xk=—%—)
Tin Tin
in — g
A—B Xo = Cn—C r(x) = el

I 4 . Cin
The kinetics of the above reaction is characterized by ) " ) ) )
first-order kinetics with respect to the reactant con- Let us consider also dimensionless titrend space

centratiorC(mol/I) and by an Arrhenius-type depen- Variables:

dence with respect to the temperatiirfgk ), and the ™ Z
dynamics of the process are described by the follow- t= T zZ= L
ing two energy and mass balance PDEs (see (Laabissi .
s s ssu i S
et al., 2001)): We shall assume in t_he rest of the paper that the
coolant temperaturé; is equal to the inlet temper-
or aT 4 AH —E atureTi, (i.e X. = 0), sincex; will be eliminated in
o Yao scpd (T~ Te) = 3o, keCerT, (5) the equation of the reconstruction error between the
ac acC e plan state and the observer state.
a - Ve koCerT (6) Then we obtain the following equivalent representa-
tion of the model (5)-(8):
where the boundary conditions are given, for 0, ax ax
by: om_ oA _
y P 3 Bx1+ ad(1—x2)r(x1) 9
T OvT =T ) C OaT =G (7) 0X 0X
(00 =T, GO0 =G a_t2 = 76_2 +a(l—Xg)r(xa) (10)
and the initial conditions are assumed to be given, for z
0< <L, by: with the boundary conditions:
T(¢,0) =To(2), C(Z,0) =Co(Q) 8 x1(z=0,t) =0, x(z=0,t)=0 (11)
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and initial conditions (Sz(t)xz)(z):{ Xo(z—t) if z>t,

0 0 ifz<t,
X1(z,0) =1, %2(z0)= Xg (12)
Moreover, (see (Winkin et al., 2000))
and the parameters, 3, o andp are related to the

original parameters as follows: | S(t) [|[<1forallt >0
E koL The nonlinear operatad\ is defined on
M=o, o= —exp—H) P
RTin ] T
_anL _ OHGn D:={x= 2 €H:-1<x(2) and
PCpdu PCp Tin 0 < x2(2) < 1, for almostallze [0,1]} by,

From a physical point of view it is expected that for all T T
ze [0,1], and for allt > 0 (see (Aksikas et al., 2007)), g(x) = (N2(x),N2(x))" where for allx= (x1,X2)" €

0<T(zt) < Tmaxand 0<C(zt) <Ciy No(x) = ad(1— %o)r(x0)

or equivalently Na(X) = 0(1—%)r(x1)

—1<x(zt) < Tmax—Tin 2 0< %(zt) <1, It is proved in (Aksikas et al., 2007) that the function
in m(s) := exp(%k) wherek = £, is a Lipschitz contin-

whereTmax could possibly be equal tg . uous function orf0, Tmay With a Lipschitz constarit

This is also true for the model, as shown by (Laabissi given by

etal., 2001). R )

The equivalent state space description of the model dge if E < 2RTmax

(9)-(12) is given by the following nonlinear ab- S = E o )

stract differential equation on the Hilbert spage- RSP~ Rim) 1T E > 2RTnax

2 2 .
L7102 < L0, : It follows that the constark; := e"Tinls is a Lipschitz
X(t) = constant for the function(s) := exp(£=).
X(t) = Ax(t) + N(x(1)) 13) (s) = exp(£5y)
x(0)=x e D(A)ND We prove that for all
where, A is the linear operator defined on its domain x:= (x1,%)7 and y:= (y1,y2)T € D,
T

D(A) :={x= 2 € H : x absolutely IN2(X) =No(y) || < aexp() || X2 =z |
ok || x1 —
continuous ¥ € H andx (0) =0,i = 1,2} ok flx =yl
Observe thatN; = O0Np, thus we takeky =
by, a(expM) +k)(1+ | 6|) as a Lipschitz constant d¥,
AL O X1 the hypothesis A. 2 is thus satisfied.
AX:= ( 0 A > ( Xo > It is proved in (Laabissi et al., 2001) that the system
4 Eg. 13 has a unique mild solutiott,x(t = 0)) on

y *g—'z -B. X1 [0, +oo], for all X € D and that the state remainsin

7 0 b Hereafter we consider measurements at the reactor
output. In this case, the output functiph) is defined

as follows: we consider a (very small) finite interval
at the reactor outpyl — w, 1] such that:

The linear operatoh satisfies,

< Axx>< —%xz(l), for all x € D(A)

1
which satisfies the hypothesis A.1. y(t) = (Cx)(t) := /O X1-w1 (@) I2x2x(a,t)da, ¥t € RF
A is the generator of &p-semigroup exponentially
stable . where
S(t) 0 > 1, if ac[l-w1
t) = _ ) )
SO ( 0 (1 X1-wy) (@) = { 0, elsewhere
|s_|at|sfy|ng (see (Winkin et al., 2000)), for &y, xz) € and I is either the 2« 2 identity matrix operator
' when both componentg andx, are measured, or a
B e*thl(z—t) if z>t, unit row vector if only one of them is measured. In
(Sit)x)(2) = 0 if z<t, the first case (i.e. two measurements), it is proved
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in (Winkin et al., 2000), that the paiiC,A) is ap-
proximately observable if botly andx, are mea-

which satisfies the hypothesis A.4.
Denotee(t) the reconstruction error between the plant

sured at the reactor output, thus hypothesis A.3 is state and the observer state. A direct application of

satisfied and so the observability gramian.= C*C,
whereCx:= CS.)x for all x € H is positive definite
and has an algebraic inverkg! with domain equal
to range L¢, satisfying forxg(zt) = I4(zt), where
la(z,t) = 1forall (zt) € [0,1] x R":

=< CY)xd,CH()xg >
>wre || x(2) |2

< LeXd, Xd >

on have
| Le [[2> wPe 2P | Le ||

and
< Lex, Lex >>wPe B < Lex, x >
Observe thatLc is self-adjoint and for ally €
range Lc,
<Lclyy> =<Lglylelcly>
< Lelgly Lelcty >

N

> 228
< 26';L 2]
= e B

this implies,

1
-1

L™ (1< e B
Denotewg = w2e 2P

A candidate Luenberger-observer for system (9)-(12)
when the state variables are measured is

0%y X . N,

F —E—Bxl+a6(l—x2)r(x1)+
wCiCier (14)

6)22 _ 6)22 s o g ~x

%= o +a(l-%)r(%) + 5 CCoe (15)

with the boundary conditions:

%1(z=0,t) =0, %(z=0,t)=0 (16)
and initial conditions
fzt=0 =%, %(zt=0=59 (17)

withC= ( C1 C; ) ande(zt) =x(zt) —Xi(zt)

fori=1,2,forall(zt) € [0,1] x R".

The observer state remains in theBethe main steps

of the proof go along the line of the one given in

(Laabissi et al., 2001).

Observe that the model (14)-(17) is in the form of the

nonlinear abstract differential equation (3), with the

linear operatofs chosen as followss = W%I wherel

is the identity operator anglis a positive real number.
For the bounded operato€ given above,

the Co—semigroup (S(t))i>0 satisfies for alle =

(e1,€2)" € H:

<s(.)c'CY.)ee> <[ 9.)||°’<CCee>

24

Theorem 2.1 yields the following result.

Corollaire2.1. Take g such that g ky holds. Then,
systen{14)-(17)is an exponential observer for system
(9)-(12). More precisely, the reconstruction errofte
has the property that e(t) ||2<|| e(0) ||> e, where
n=2(g—kn).

It is also interesting to examine the case where only
the temperatureq(zt) is measured at the output
of the reactor. So, the observation operafbe
(CL Cz)isgivenby

(Cren)(1)
C

Recall that the linear operatéris diagonal. The op-
eratorsA; andA; satisfy;

= Jo X wy(@)er(at)da, vt e RY
=0

< AX, X >< ,%)(12(1), forall x, € D(A) andi=1,2

on their common domain:
D(Ai12) = {x€L?[0,1]: xabsolutely continuous
& € 1L2[0,1] andx(0) = 0}.
In the same manner as in (see (Winkin et al., 2000)),
we prove thafCi,Aq) is approximately observable.

In this case, a full-order observer for the dimension-
less model (9)-(12) can be constructed as follows:

% — —% —BRL+ aésug(zeDz(l —X)r (%) +
W%Cfclel (18)
% = %+a(l—>‘<2)sug(le,31r(xl) (19)
with the boundary conditions:
%1(z=0,t) =0, %(z=0,t)=0 (20)
and initial conditions
f1(zt=0) =%, %(zt=0) =53 (21)

Note that in this observer, the nonlinear term is not
exactly taken as in the "true system”, for technical
reasons in the convergence proof.

It can be shown as in (Laabissi et al., 2001) that the
observer states remains in the Bet

We state the following result:

Theorem 2.2. Take g such that g k.ad holds. Then,
system(18)-(21) is an exponential observer for the
non-isothermal plug flow reactor mod€b)-(12).
More precisely the reconstruction errors have the
properties that| ey (t) ||2<| e1(0) ||? eV and

lea(t) [[2<]| e2(0) % e 2,

wherevy := 2(g— adk,) andv, = 20exp(Y).
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The proof is similar to that given in Theorem 2.1.

The concentration error converges to zero with con-
vergence rat®, depending only on the internal dy-
namics of the process. It will be interesting to look
for a "closed loop” observer design that will make

Comment 2.2. In (Aksikas et al., 2007), a result of
asymptotic stability of the system Eq. 13 requires the
following condition:

kN<[3

as large as desired. In this case however the full stateln order to test the performance of the proposed ob-

will need to be observed. The following is given to

servers, numerical simulations will be given when the

improve the convergence rate of the concentration er- above condition does not holds.

ror.

To have an a priori given convergence rate of the
concentration error; > v, one can use the following
full order observer:

a)A(l a)A(l o %

= =5 — BR1+adSuR,cp, (1 —X2)r (%) +
WCiCier (22)

oR 0X o

. TP

I CyCoen

with the boundary conditions:

X1(z=0,t) =0, %(z=0,t)=0 (24)
and initial conditions
fa(zt=0)=%, R(zt=0)=5% (25)

where, fori = 1,2
1
Ge)t) = [ xp wy(@a(atida eR"

o L
wheremy is a positive real numbemy, = “25"2. then
we have the following result:

Theorem 2.3. Consider the full-order observe?2)
(25) for the uncontrolled systeii®)-(12) where m >
adk;. Then the temperature error;@) satisfies
I ea(t) I2<] ex(0) |7 e V', where vy = 2(my ~
odk), and the concentration error &) satisfies
| ex(t) |I2<|| e2(0) ||? e V2, with convergence rate
V5 := 2(aexp(p) +mp), larger than that of the full-
order observef18)(21).

In this section, we have thus described three different

2.2 Simulation Results

Our objective is to illustrate the theoretical results
related to the different exponential observers for the
plug flow reactor model.

The process model has been initialized with two con-
stant profilesq (0,z) = —1, andxz(0,z) = 0. The ob-
servers have been initialized with (0,z) = 0, and
%2(0,z) = 1. The equations have been integrated by
using a backward finite difference approximation for
the first-order space derivatiggoz

6_x X(tazi)ix(tvzi—ﬂ

0z Az
with Az=1/100.
In order to be close as possible to possibly unstable
nonisothermal plug-flow reactor, we have selected the
model (9)-(12) withg = 0.2. The adopted numerical
values for the process parameters are taken from
(Smets et al., 2002).

Table 1: Process parameters using for numerical simula-
tions.

Process parametersNumerical value

L 1m
v 0.1m/s
E 11250 cal/mol
ko 10°s71

pé—gd 0.02s71

Cin 0.02 mol/L
R 1.986 cal/(mol.K)
Tin 340K

o -4250 K.L/mol

P

exponential observers for the plug flow reactor model. Figure 1 shows the time evolution of the concen-
The first one (eq. (14)-(17)) is derived directly from tration errore, related to the exponential observer
our main result (Theorem 2.1). The second one (eq. (14)-(17). Similar results are obtained for the two
(18)-(21)) shows that an exponential observer can beother observers.

constructed even if the concentration is not measuredin order to cover all the assumptions, the design
and with only partial knowledge of the nonlinear part parameterg related respectively to the exponential
of the model. The third one (eq. (22)-(25)) improves observer (14)-(17) and the exponential observer (18)-
the convergence rate of the concentration reconstruc-(21) has been taken respectively @s- 2« ky and
tion error by reintroducing a measurement of the con- g = 2« adk;, and the design parametars and np
centration. related to the exponential observer, (22)-(25) have
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0.4r

Figure 1: Evolution in time and space of the concentration *

error. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t

been taken aBy = 2 adk, and mp = 10x* my, with (a) concentration error at z=0.9*L.
w=3xL/4.
0.4r

Figure 2 shows respectively the time evolution
of the concentration erra at the positions @ x L,
0.5« L and Q9L, for the case where only the tempera- of
ture is measured on the length interf& L /4,L] (the ]
dashed line) i.e the exponential observer (18)-(21), « K
and for the case where both the temperature and the  -os} b’
concentration are measured on the same length inter-
val with the exponential observer (14)-(17) (the solid )
line) and with the exponential observer (22)-(25) (the -0}
star line).
It is seen as expected that the concentration error re- 0 o1 o0z o3 o4 05 06 07 08
lated to the exponential observer (22)-(25) is faster '
than the one related to the exponential observer (18)- (b) concentration error at z=0.5*L.
(21), however it remains slower than that related to the
observer (14)-(17), which represents the ideal case, i
since in that case, the nonlinear part is assumed to be
exactly known.

0.2r

3 CONCLUSIONS E y

This paper presents sufficient conditions to construct o6l %
an exponential observer for a nonlinear infinite di-
mensional system driven in a real Hilbert state de-
scription. The theory is applied to a non—isothermal i
plug flow tubular reactor governed by hyperbolic first

order partial differential equations. Several observer
structures are proposed, depending on the part of the
states that are available for measurement and on theFigure 2: Convergence of the concentration error for the
knowledge of the nonlinear part of the model. Per- three proposed observers.

formance issues of the different observer designs are
illustrated by simulation results. The best perfor-

L L L L L L L ,
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

(c) concentration error at z=0.1*L.

server dynamics. Finally, an improved convergence

mance is obviouslv obtained when the nonlinear term rate for the estimation error on the concentration can
y be obtained when re-introducing a measurement of

is perfectly known and both states (temperature andthe concentration at the end of the reactor. These ob-

concentration) are measured at the end of the r€aC-servers include design parameters that can be tuned
tor. However, we also show that good results can be

achieved when only the temperature is measured anoby the user to satisfy specific needs in terms of con-
) . vergence rate.
when bounds on the nonlinear term are used in the ob-
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