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Abstract: The performance of three Entropy/complexity measures in detecting EEG seizures in the neonate were 
investigated in this study. A dataset containing EEG recordings from 11 neonates, with documented 
electrographic seizures, was employed in this study. Based on patient independent tests Shannon Entropy 
was found to provide the best in discrimination between seizure and non-seizure EEG in the neonate. 
Lempel-Ziv complexity and Multi-scale Entropy were second and third respectively, while Sample Entropy 
did not prove a useful feature for discriminating seizure patterns from non-seizure patterns. 

1 INTRODUCTION 

Seizures are one of the few neurological conditions 
in the neonate that require immediate medical 
attention and represent the most distinctive sign of 
central nervous system dysfunction (Volpe, 2001). 
Neonatal seizures occur in 6% of low birth-weight 
infants and in approximately 2% of all newborns 
admitted to a neonatal ICU. An automatic neonatal 
seizure detector would be a significant aid in 
newborn monitoring given that expert EEG 
interpretation is not available on a 24-hour basis. 
The current state of the art in neonatal seizure 
detection does not offer the reliability or robustness 
necessary for use in a neonatal ICU. A multi-signal 
approach has been proposed (Greene et al., 2007), 
based on the extraction of pertinent features from 

EEG and ECG signals. Choice of which features to 
extract is an area of active research in neonatal 
seizure detection. 

The aim of this study was to compare the 
applicability of four measures of signal entropy and 
complexity, which measure the degree of regularity 
or complexity in a single channel EEG, as possible 
features for use in a neonatal seizure detection 
system.  

2 AUTOMATIC NEONATAL 
SEIZURE DETECTION 

The block diagram in Fig.1 describes the detection 
method employed in this study to compare 
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complexity and entropy measures. Initially, the EEG 
channel was processed, extracting features or 
parameters to facilitate subsequent discrimination in 
a pattern classifier between seizure and non-seizure 
EEG. 

 
EEG Signal ClassifierFeature 

Extraction
Seizure/Non-Seizure

Figure 1: Detection method block diagram. 

The focus of this study was on the feature 
extraction phase, with entropy and complexity being 
the feature extracted. 

3 DATA SET 

The dataset for this study comprised multi-channel 
EEG recordings from 11 babies from two different 
test centers. Recordings from Kings College 
Hospital, London (8 babies) were made on 
Telefactor Beehive Video EEG machine and 
sampled at 200Hz. Recordings from the Unified 
Maternity Hospitals, Cork (3 babies) were on a 
Viasys NicOne Video EEG machine and sampled at 
256Hz.  

Table 1: Data set. 

Patient 
Num of 
seizure 

segments 

Num of 
non-

seizure 
segments 

Total recording 
time in minutes 

1 30 43 73 
2 44 21 65 
3 51 24 75 
4 55 44 99 
5 7 15 22 
6 10 22 32 
7 31 33 64 
8 26 39 65 
9 22 26 48 
10 16 13 29 
11 21 15 36 

 
Electrographic seizures in each multi-channel 

recording were labeled such by an expert in neonatal 
EEG (author GBB).  

Recordings for each patient were then split into 
1-min single channel segments either containing 
seizure or non-seizure EEG. Only EEG channels that 
were determined (by the electroencephalographer) to 

contain definite seizure activity were included in the 
analysis.  

The data set employed was 608 min i.e. 10.13 
hours, containing 5.22 hours of seizure EEG and 
4.92 hours of non-seizure EEG. Table 1 summarizes 
the dataset for this study. 

4 ENTROPY MEASURES 

Four entropy/complexity measures were compared, 
namely Multiscale Entropy, Sample Entropy, 
Shannon Entropy and Lempel-Ziv complexity. 
Entropy and complexity are dependent on signal 
properties and each method quantifies randomness 
or complexity of a signal from a different 
perspective. 

4.1 Sample Entropy 

Sample Entropy (SampEn) is the negative natural 
logarithm of an estimate of the conditional 
probability that sub-series (epochs) of length m that 
match point-wise within a tolerance r also match at 
the next point (Richman and Moorman, 2000).  
 

SampEn = 
A
Bln  (1) 

 
where B is the total number matched m patterns, 

and A is the total number of matched m+1 patterns.  

4.2 Multiscale Entropy 

Multiscale Entropy (MSE) (Goldberger et al., 2000) 
is a modified version of Sample Entropy and 
quantifies the degree of regularity or conversely 
randomness.  

MSE calculation involves two main procedures: 
firstly the data (x) of length N is divided into smaller 
segments of length τ, and then the series of average 
of each data segment is computed and used to obtain 
the “coarse-graining” series yj

 (τ). 
 

∑
+−=

=
τ

τ

τ

τ

j

ji
ij xy

1)1(

)( 1
 (2) 

 
Where j can take values between:  

 

τ
Nj ≤≤1  (3) 
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SampEn is calculated from this coarse graining 
series. 

4.3 Lempel-Ziv Complexity 

Lempel-Ziv (LZ) (Lempel and Ziv, 1976) quantifies 
complexity of a time series, by observing a number 
of unique sequences in a given dataset. One 
dimensional time series X(t) is converted into series 
P(n) of ones and zeros by comparing it to threshold 
Td. Then the transformed series is scanned from left 
to right and number of unique sequences c(n) is 
computed. 
 

Let 
)(log

)(
n

nnb
α

=  (4) 

 
Where n is the length of P and α is the size of 

alphabet, in zero-one conversion α = 2, .then the 
normalized LZ complexity =  

 

)(
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nc  (5) 

4.4 Shannon Entropy 

Shannon Entropy (ShEnt) (Shannon, 1948) has been 
defined as a measure of uncertainty of a signal or 
degree of orderliness of the data. 

 

ShEnt =  ∑
=

−
n

i
ii pp

1

log  (6) 

 
Where pi is an estimate of the probability density 

function. A histogram of the signal with k bins is 
constructed and from this the probability distribution 
can be estimated. 

Entropy measures MSE, SampEnt, and LZ 
complexity all use sequences of data to determine 
complexity or regularity of the signal. Shannon 
entropy considers only signal amplitude in order to 
measure degree of regularity. 

5 METHODS 

To assess the applicability of each of these 
measures, a detection system was implemented, as 
shown in Fig. 1.  

Data acquired from the recording equipment was 
processed to extract each measure. Calculation of 

each entropy/complexity measure assumes that the 
number of data points is large, i.e. ∞⎯→⎯N . The 
International Federation of Clinical 
Neurophysiology (IFCN) recommends that 10 sec is 
the minimum electrographic seizure duration if the 
EEG background is abnormal (De Weered, 1999). 
This suggests a maximum deployable window 
length. A longer duration window may result in the 
detector missing short duration seizures. The length 
of the window was chosen to be 10 sec, similar to a 
study by Gotman (Gotman et al., 1997), the window 
employed in this study was non-overlapping. 

To assess the utility of each entropy feature, a 
Linear Discriminant (LD) classifier model was 
employed in this study. An LD classifier model finds 
the best linear combination that separates between 
two or more classes using Fishers discriminant ratio. 

Cross fold validation is used to provide an 
estimate of the potential utility of these complexity 
and entropy based features when employed in a 
patient independent seizure detection system. The 
classifier model is trained on (n-1) patients and 
tested on the nth patient. Each fold contains all 
features from a single patient i.e. given 11 patients, 
thus fold 1 corresponds to Patient 1 and fold 2 to 
Patient 2 etc. Four features are extracted from each 
10s EEG epoch. 

Experiments were carried out to determine the 
optimum values of parameters used in SampEnt and 
MSE calculations:  

5.1 Sample Entropy Parameter r 

For SampEnt a tolerance value for accepting 
matches, r, must be chosen. In literature (Costa et al, 
2005)  it is common to have parameters m = 2 and r 
between 0.1 and 0.2. in this study m = 2 and r = 0.2 
were chosen.  

5.2 Multi-Scale Entropy Parameters 

In Multi-scale Entropy (MSE) two parameters, scale 
τ and tolerance r must be chosen. 

5.2.1 Scale τ 

Scaling is averaging data points in non-overlapping 
windows of size τ. In other words when using 
scaling we reduce the number points on which 
Sample Entropy is calculated, i.e. when using τ = 10 
with a window size of 10 sec (2000 data points) 
SampEnt is calculated for 200 points only. In this 
study parameters m and r were fixed (m=2, r =0.2) 
and the scale τ = 10 was chosen. 
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5.2.2 Tolerance For Accepting Matches r 

In this study r = 0.2 was chosen. 

5.3 Lempel-Ziv Complexity 
Parameters  

In biomedical signal processing it is common to 
convert a time series into a series of ones and zeros 
by comparing it to a threshold Td. Td is commonly 
chosen as the median of the signal (Aboy et al., 
2006), thus in this study EEG signals were 
transformed into 1’s and 0’s by comparing it to the 
median of the signal. Converting to a binary 
sequence has the advantage of being simple to 
implement in hardware and software and 
computationally less expensive. 

5.4 Shannon Entropy Parameters  

The histogram method was used in order to calculate 
Shannon Entropy. The histogram count was 
constructed with nk =  bins, where n is the total 
number data points in each window. 

6 PERFORMANCE MEASURES 

The performance of each of the complexity and 
entropy based features employed in this study were 
determined using the following measures: Accuracy, 
Sensitivity, Specificity and ROC curve area. 

Accuracy (Acc) is the percentage of each 10 s 
EEG epoch correctly classified by an epoch based 
seizure detector. 

Sensitivity (Sens) is defined as the percentage of 
labeled 10s seizure EEG epochs correctly classified 
as a seizure epoch by the classifier. 

Similarly, specificity (Spec) is the percentage of 
labeled 10s non-seizure EEG epochs correctly 
identified as non-seizure epochs by the detection 
method. 

A receiver operating characteristic curve (ROC) 
(Zweig and Campbell, 1993) is a plot of sensitivity 
versus specificity for different thresholds. 
Trapezoidal numerical integration is used to 
calculate the area under the curve, this area gives an 
indication of how well a given feature discriminates 
between seizure and non-seizure epochs. An area of 
1 corresponds to a perfect discrimination, while a 
ROC area of 0.5 is a result of a random 
discrimination. The closer the ROC area value is to 
unity the better the discrimination between classes.  

7 RESULTS 

To obtain an estimate of the patient independent 
performance of the measures the classifier was 
trained on the data available and then tested on a 
data recorded from a patient that was not included in 
the training. 

The results in Table 2 shows that Shannon 
Entropy (ShEnt) gives the best performance out of 
the four entropy/complexity measures, however 
combining different entropy measures improves the 
detection scheme.  

Table 2: Patient independent results. 

Entropy 
/complexity 

Acc
(%) 

Sens 
(%) 

Spec 
(%) 

ROC  
Area 

ShEnt 69 71 66 0.73 

LZ 64 68 58 0.67 

MSE 57 58 56 0.59 

SampEnt 55 66 43 0.53 

Combination 
of all four 
measures 

73 75 71 0.80 

 

Table 3: Performance of individual patients. 

Patient Acc (%) Sens (%) Spec(%) 

1 79 79 78 

2 71 75 63 

3 63 59 75 

4 69 69 67 

5 44 45 43 

6 51 53 50 

7 97 99 94 

8 80 91 74 

9 87 98 78 

10 52 57 47 

11 82 83 81 
  

Table 3 shows the individual performances of 
each patient in the dataset when all four 
entropy/complexity measures are combined and fed 
to the classifier.  
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Figure 2: Histogram of entropy features (all patients 
combined). 

Figure 2 shows histograms for each 
entropy/complexity measures for all patients 
combined, providing a graphical comparison on how 
these measures discriminate between seizure and 
non-seizure EEG segments. 

The histograms show that the best separation 
between seizure and non-seizure EEG epochs 
through the application of Shannon Entropy to EEG 
data, the next best feature can be seen to be the 
Lempel-Ziv complexity, and thus these measures 
contribute the most in overall detection scheme. 

 

 
Figure 3: Patient independent ROC curves for individual 
features. ShEnt Roc area 0.73, LZ ROC area 0.67, MSE 
ROC area 0.59, SampEnt ROC area 0.53. 

 

 

Figure 4: Patient independent ROC curve (all features 
combined) ROC area 0.8. 

From the ROC curves in Fig. 3 it can be 
observed that SampEnt does not provide a good 
discrimination. We can omit Sample Entropy from 
the feature extractor in the patient independent test 
and obtain equal results based on the remaining 
three entropy measures. 

8 DISCUSSION 

In this study four Entropy/complexity measures 
were applied to neonatal seizure EEG. Results 
indicate that Shannon Entropy gives better 
performance than other entropy/complexity 
measures in discriminating seizure EEG from non-
seizure EEG.  

The main reason Shannon Entropy outperforms 
other entropy measures in neonatal seizure is 
probably due to the fact that Shannon Entropy 
considers amplitude of the signal when calculating 
entropy and so is suitable for detecting high 
amplitude seizures.  

The poorest performing entropy measure applied 
in this study was Sample Entropy. The patient 
independent results showed that if Sample Entropy 
is omitted from the feature extractor, equal results 
are obtained from the three remaining entropy 
measures. 

The results also showed that combining different 
entropy and complexity measures (with the 
exception of SampEn) improved the overall 
detection system Acc by 4% compared to the system 
when ShEnt is extracted alone.  The results also 
show that Sample Entropy gives the lowest Acc 
results of 55% and a ROC area of 0.53 which is not 
much better than a random detection. Thus we 
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conclude that SampEn does not provide a good 
discrimination.  

From Fig. 2 is can be observed that while Sample 
Entropy and Lempel-Ziv complexity values decrease 
as a seizure is occurring, Shannon Entropy and 
Multi-Scale Entropy increase as a seizure is taking 
place. Similar behavior of entropy measures were 
reported in (Costa et al., 2005) for ECG analysis and 
(Ferenets et al., 2006) for EEG analysis. Ferenets et 
al explain that ShEnt “is indifferent to the time order 
of the signal”, while SampEnt and LZ are dependent 
on the order of signal thus this might explain the 
behavior mentioned above.  

In a recently reported EEG based detection 
method (Greene, 2006) six features were extracted, 
one being Spectral Entropy. The patient specific 
results reported in (Greene, 2006) showed that the 
best performing feature was line length, while 
Spectral Entropy and Non-linear Energy were 
second best performing features. Therefore, it would 
be beneficial to investigate if adding Spectral 
Entropy to the list of features extracted in this study 
will improve the overall performance of the 
detection method. 

In this study, the total amount of data employed 
was 10.13 hours. In order to attain a clinically 
relevant performance estimate for the method 
proposed, a much larger data set would be required. 
Using the features, with the parameter values chosen 
from this study, on a new larger dataset containing 
multi-channel continuously recorded EEG, would 
further validate the effectiveness of these measures 
in neonatal seizure detection.  

9 CONCLUSIONS 

The conclusion drawn from this study is that out of 
the four entropy/complexity measures investigated. 
Shannon entropy provides the best discrimination 
between seizure and non-seizure EEG in the 
neonate. 
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