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Face recognition has been actively investigated by the scientific community and has already taken its place

in modern consumer software. However, there are still major challenges remaining e.g. preventing negative
influence from varying illumination, even with well known face recognition systems. To reduce the perfor-
mance drop off caused by illumination, normalization methods can be applied as pre-processing step. Well
known approaches are linear regression or local operations. In this publication we present the results of a
two-step evaluation for real-world applications of a wide range of state-of-the-art illumination normalization
algorithms. Further we present a new taxonomy of these methods and depict advanced algorithms motivated by
the pre-eminent human abilities of illumination normalization. Additionally we introduce a recent bio-inspired
algorithm based on diffusion filters that outperforms most of the known algorithms. Finally we deduce the
theoretical potentials and practical applicability of the normalization methods from the evaluation results.

1 INTRODUCTION

Artificial face recognition is in the focus of challeng-
ing research and besides a widely used technology in
a multitude of applications. The targeted application
of this paper is the field of person recognition in real-
world photo archive scenarios, e.g. unsupervised con-
sumer photo archive management.

In the task of face recognition under real-world
conditions, different factors hinder the recognition
process e.g. pose, facial expression and illumination.
In this publication we concentrate on the impact of
varying illumination that can change the appearance
of one person more than the difference of appearance
between two persons (Adini et al., 1997).

The purpose of this work is an experimental eval-
uation of state-of-the-art illumination normalization
methods for real-world applications. We draw the hy-
pothesis that well performing algorithms under con-
trolled conditions can worsen results under uncon-
trolled real-world conditions versus other algorithms.

We focus on algorithms that can be summarized
as pre-processing techniques. Commonality of that
methods is the ability to process single images with-
out the need of further information.

The contemplated pre-processing algorithms dif-
fer manifestly in their method concerning the impact
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Figure 1: Most illumination estimation algorithms for face
recognition assume high spatial frequency of facial infor-
mation and low frequency of interfering illumination.

of illumination and the manner to normalize it. They
range from well-know histogram manipulations that
directly produce normalized images to sophisticated
methods e.g. adopting human visual concepts that
return illumination estimations for normalizing pro-
cess. These algorithms follow the idea that illumi-
nation L(x,y) and reflecting facial information R(x,y)
are distributed in different frequencies of image infor-
mation /(x,y) depicted in Figure 1.

To allow systematic analysis of the different
algorithms a novel taxonomy of the state-of-the-
art normalizations is introduced. Furthermore we
present an advanced regression algorithm and a novel
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perception-inspired approach for illumination nor-
malization based on diffusion filters.

2 TAXONOMY OF
NORMALIZATION METHODS

2.1 Homogenous Point Operations

Homogenous point operations conduct transforma-
tions on gray scale values of an intensity image (x,y)
independent from their position using a general trans-
formation function F":

I'(x,y) = F(I(x,y)) (1)

Several studies e.g. (Shan et al., 2003) evaluated
homogeneous point operations for illumination nor-
malization. In our experiments we use the Histogram
Equalization (HE), Histogram Matching (HM), His-
togram Stretching (HS), Normal Distribution (ND)
and Logarithmic Transformation (LOG). The LOG
refers to dynamics compression for better resolutions
of dark regions in human perception (Savvides and
Kumar, 2003).

b) c).

Figure 2: Illumination normalization results of homogenous
point operations a) original, b) HE, ¢) HS, d) LOG.

Figure 2 shows the results of selected algorithms.
In general these algorithms yield an improved vi-
sual impression of the distracting illumination impact.
However they are not able to eliminate local illumina-
tion effects like shadows since disregarding any spa-
tial information.

2.2 Local Point Operations

The homogenous point operations can also be ap-
plied in a local window. That type of normalization
for face recognition was first introduced by (Villegas-
Santamaria and Paredes-Palacios, 2005) and (Xie and
Lam, 2006). In our experiments we use the Local His-
togram Equation (LHE), Local Histogram Matching
(LHM) and Locale Normal Distribution (LND).

A common advanced local algorithm is the Lim-
ited Adaptive Histogram Equalization (LAHE). The
LAHE limits the contrast in homogenous regions and
interpolates values of the neighbourhood to avoid
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Figure 3: Normalization results of different local point op-
erations with distinct intensity of artefacts: a) original, b)
LHM, ¢) LHE, d) LAHE.

artefacts. In our experiments we use the LAHE de-
veloped by (Zuiderveld, 1994).

The results of local point operations show im-
proved consideration on local effects of illumination
by concomitant degrease of image quality for human
impression, depicted in Figure 3.

2.3 Statistical Illumination Estimation

(Ko et al., 2002) introduced the Linear Regression
(LREG) model to estimate the influence of illumina-
tion in face recognition as a regression plane. Applied
on image data the regression plane Y’ can be calcu-
lated with an approximated regression factor B. B can
be calculated with the vectorized image X and its co-
ordinates Y by a least square fit:

Y=B-X with =(X'-X)"'.xTy (2

The illumination normalization is achieved by in-
verting the resulting regression layer and substraction
of the original image. For a more adaptive illumina-

Figure 4: Approximations of different regression methods
of an face image with strong shadows: a) original face, b)
LREG, c) QDREG, d) CBREG.

tion estimation we introduce the Nonlinear Regres-
sion (NLREG) for illumination normalization in face
recognition. The NLREG uses an n-th order polyno-
mial as regression function. To prevent over fitting
of the regression to facial contours we use only a 2D
quadratic polynomial (QDREG):

L(x,y) =ap+aj -x+ay-y+az x> +as y* +as-xy (3)
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and a 2D cubic polynomial (CBREG) for our exper-
iments. The regression coefficients a; can be deter-
mined by least squares estimation. Figure 4 shows
the different regression results.

All of these regression methods result in a quite
similar visual impression depicted in Figure 5. This
behavior depends on the same overall slope of the re-
gression layers and the smooth influence of the poly-
nomial characteristics.

-~

a) b) c) d)

Figure 5: Illumination normalization results of statistical al-
gorithms: a) original, b) result LINREG, c) result QDREG
, d) result CBREG.

2.4 Retinex Methods

The retinex model, named after retina and cortex, was
introduced by (Land, 1977) to entitle its model of the
human visual perception. It describes the human vi-
sual cognition of color and illumination by consider-
ing retina and cerebral cortex. The most interesting
point for illumination normalization is the assump-
tion, that perception depends on the relative or sur-
rounding illumination. It means that reflector R(x,y)
equals the quotient of intensity /(x,y) and the illu-
mination L(x,y) calculated by the neighborhood of
I(x,y). The following algorithms estimates the illu-
mination based on the pixel neighborhood.
Single-Scale Retinex (SSCRET) introduced by
(Jobson and Woodell, 1995) defines a Gaussian kernel
to estimate the neighborhood illumination. Within the
SSCRET a logarithmic transformation of the image
data is used as human perceptional oriented dynamic
compression. These step is an additional requirement
of the retinex theory (Levine et al., 2004). For SS-
CRET Equation 4 with a single Gaussian can be used.

s

R(x,y) = Zl(log [1(x,y)] —log[I(x,y)  Gs(x,y)]) ~ (4)
Multi-Scale Retinex (MSCRET) describes an exten-
sion to the SSCRET and uses multiple Gaussian ker-
nels (Rahman et al., 1996). The aim of using different
Gaussian filters with varying G; is a better approxima-
tion. The multiple results are combined by accumu-
lating the single normalizations. Figure 6 shows the
results of SSCRET and MSCRET.

The Self Quotient Image (SLFQUQO) was devel-
oped by (Wang et al., 2004) and estimates an illumi-
nation free image Q as quotient of the intensity image

Perception-inspired Algorithms
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Figure 6: Illumination estimations and normalization re-
sults of Single/Multi-Scale Retinex algorithms: a) illumi-
nation est. SSCRET, b) result SSCRET, c¢) illumination est.
MSCRET, d) result MSCRET.

I and I convolved with a filter F.
1

0= IF ®)
The image Q equals to the reflection R and the fil-
tered image I equals to the approximated illumination
L. Similar to the MSCRET, multiple Gaussian filters
were used. In contrast, a special weighted Gaussian
kernel is designed and used in equation 4 instead of
normal Gaussian kernel G.

In addition to the retinex theory the illumina-
tion estimation according to (Gross and Brajovic,
2003) (GROBRA) uses further information from the
human perceptional research. Psychological experi-
ments show that the ability of human visual percep-
tion to dissolve intensity change Al depends propor-
tionally to the absolute intensity /. That behavior is
described in Weber’s law (Wandel, 1995) as:

7 =P (6)

Instead of Gaussian filters the GROBRA uses an min-
imization approach to estimate the illumination L.

EW) = [ [ plry)-[Liry) — 1) Pddy

+x// (L3 + L3 )dxdy
Q

The weighting function p(x,y) is applied to handle the
local contrast ratio based on equation 6. The second
term of equation 7 describes a smoothing constraint
with A as weighting factor. To solve the minimization
problem a linear partial differential equation system
based on Euler-Lagrange equation is used.

The GROBRA seems to be the most sophisticated
retinex algorithm but Figure 7 shows that at least the
visual result yields the best by visual impression. The
following section describes a novel diffusion filter ap-
proach that relates to the group of retinex algorithms.

)

3 DIFFUSION FILTER
APPROACH

The theory of (Cohen and Grossberg, 1984) about
neural dynamics of brightness perception indicates
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Figure 7: Illumination estimation and normalization result
of SLFQUO and GROBRA algorithms: a) illumination est.
SLFQUO, b) result SLFQUO, c) illumination est. GRO-
BRA, d) result GROBRA.

that diffusion processes are proceeded in human per-
ception. Qualities of features like brightness spread
diffusively up to boundary contours in visual cortex.

In image processing the diffusion approach was
introduced as Scale-Space-Theory (SST) by (Witkin,
1983). The concept of the SST is to describe struc-
tured elements by a multi-resolution pyramid that
is generated by convolutions of the original image
Iy(x,y) with multiple Gaussian filters.

1(x,y,8) = Io(x,y) * G(x,,1) (8)
The varying parameter ¢ results in different sized im-

ages. Another form to describe that context is the dif-
fusion equation as used by (Koenderink, 1984):

0l = V2 = (I + L) 9)

The motivation behind that approach is the as-
sumption that structured elements can be better de-
scribed by increasing the number of resolution planes.
With rising the number of planes a floating approxi-
mation of the image structure can be processed.

Disadvantage of the SST is the linear isotropic be-
havior which means diffusion spread out to all direc-
tions without responding to edges. Further nonlinear
algorithms e.g. (Perona and Malik, 1990) consider
edges and reduce the diffusion by a diffusion coeffi-
cient ¢ that depends on image gradients intensity.

3 =V-(c-VI) (10)

Considering additionally the direction of edges in the
diffusion process, leads to nonlinear anisotropic dif-
fussion (Weickert, 1998). The different impacts on
noisy images are depicted in Figure 8.

Figure 8: Different behaviors of diffusion filter for noise
reduction with attention to structured elements: a) origi-
nal, b) linear isotropic, c¢) nonlinear isotropic, d) nonlinear
anisotropic (Weickert, 1998).

For illumination normalization the diffusion fil-
tered image can be interpreted as the illumination esti-
mation L(x,y). With use of L(x,y) a normalization in
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multiplicative Retinex context can be processed. Fol-
lowing a systematization of diffusion filters by (We-
ickert, 1998) we use the algorithm of (Perona and Ma-
lik, 1990) in our experiments as Nonlinear Isotropic
Diffusion Filter (NLISODIF) that weakens the diffu-
sion at edges by the intensity of the gradient.

Additionally we introduce the novel use of a dif-
fusion tensor based Nonlinear Anisotropic Diffusion
Filter (NLANISODIF) algorithm for illumination nor-
malization. That approach uses a gradient direction
related tensor D instead of diffusion coefficient ¢ to
weaken the diffusion process.

The diffusion tensor D according to (van den
Boomgaard, 2004) is based on a rotation matrix and
can be measured as:

1
D=

(L) + ()2 (11)
, ( di(L)? +dp ()2 (dy—d)Ldy )
(dy —d)Ldy dy (Iy)2 * dZ(IX)Z

Figure 9 shows the normalization results of
NLISODIF and NLANISODIF.

Figure 9: Illumination estimation and normalization results
for different diffusion filter: a) illumination est. NLISODIF,
b) result NLISODIF, ¢) illumination est. NLANISODIF, d)
result NLANISODIF.

The visual impression of the diffusion results is
similar to the related retinex methods. Based on the
algorithmic the NLISODIF resembles the GROBRA
while NLISODIF uses the gradient as weighting func-
tion and GROBRA the Weber contrast.

4 EVALUATION

4.1 Concept

The evaluation concept is based on the hypothesis that
pre-processing methods with ability to solve the sin-
gle problem of varying illumination possibly reduce
recognition rate in real-world environment by remov-
ing necessary facial information.

For that reason we decided to conduct a two-step
evaluation. First we tested under controlled condi-
tions with small changes in pose and facial expres-
sion. This pretest should measure the ability of each
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algorithm to normalize illumination changes and as-
sure a comparability to other publications.

The second step measures the recognition rates
under real-world uncontrolled conditions. This real-
world test should evaluate changes within and be-
tween normalization groups compared by controlled
and uncontrolled conditions. Further it allows to draw
more practical oriented and reliable conclusions for
the given use cases.

4.2 Face Recognition Algorithms

The choice of recognition algorithms plays an impor-
tant role in the evaluation of the normalization meth-
ods. We decided to choose well known and common
algorithms for eased comparability with other publi-
cation results.

We use the eigenface (Turk and Pentland, 1991)
and fisherface (Belhumeur et al., 1997) approaches
which are appearance based subspace methods for
face recognition. These algorithms interpret pixels
of images as coordinates in a high-dimensional space
and transform them into low dimensional subspace
called facespace. Therefore a training process with
observations of reference persons is needed.

4.3 Databases

We used the following setup for our experiments: For
pretest we choose the Yale Face Database B. It is well
suited for evaluation of lightning influence as shown
in (Georghiades et al., 2001).

We use four already defined database subsets with
similar illumination conditions as shown in Figure 10.

Subset 1

Subset 2 Subset 3 Subset 4

Figure 10: Examples of the Yale Face Database B subsets
used for the pretest.

In our experiments we used all possible combina-
tion of these subsets. This procedure is oriented at
realistic conditions, where different lighting environ-
ments can be used as reference and test data. Based
on that procedure we get 4 by 4 recognitions rates.
The final result is estimated as mean of this 16 rates.

Publicly available face recognition databases are
usually based on controlled environmental conditions
and focus on varying specific properties. Regarding
the given use case with real-world conditions we cre-
ated a new special database. It is set-up from private

Perception-inspired Algorithms

consumer photos that were taken by individual pho-
tographers, with different camera types, at very dif-
ferent situations, day-times and mimics. The only re-
striction is a frontally pose. Figure 11 shows exam-
ples of this database. It contains 25 persons with four
observations of each person. Because of the small
number of images per person we iterative changed the
train and test observation to get four results for each
person by using three training images per person.

Figure 11: Examples of the new real-world database that
contains frontal face images varying in all possible aspects.

4.4 Results and Discussion

Figure 12 shows the results of our two-step evalua-
tion. All algorithms went through pretest and real-
world test with eigenface and fisherface recognition
approaches. In addition each algorithm was sepa-
rately evaluated with a preliminary and subsequent
histogram equalization (HE). The subsequent HE im-
proves the results clearly so that we present in each
case only the best combination. The first data set in
the diagram (ORG) represents the initial recognition
rate without any normalization as reference.

As expected, the homogenous point operations
leads to the lowest recognition rates of the test field.
All algorithms supply similar results at least in the
real-world test. Most of the algorithms could reach
there results only by using a preliminary or subse-
quent HE. Based on that fact we ascribe most of the
improvements to the HE.

Local point operations obtain the best results be-
neath the retinex methods. Within the local methods,
especially by evaluating the LND, we could prove
our hypothesis that transferring algorithms from con-
trolled to uncontrolled environments can decrease
performance. Reason for the decline of LND towards
the LAHE could be the worse artefacts of LND that
arise by filtering without paying attention to different
contrast in local window. In real-world test LAHE is
leading in its group and outperforms most of all other
algorithms.

Statistical regression methods lead to good overall
but not best results. On real-world test the nonlinear
extensions come up with better results then LINREG
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Recognition Rates
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Figure 12: Results of two-step evaluation for pretest and real-world test as well as eigenface and fisherface approach.

but within pretest the results are equal. That behavior
can be explained by the heavy cast shadows within
pretest images which results in strong shadow lines
that could not be approximated by the 2th and 3rd
order polynomials. In most real-world images these
strong shadow-light contours appear rarely, so that
CBREG can improve recognition by 8 %.

The group of human perceptional algorithms
based on retinex theory contains with NLANISODIF
and especially GROBRA the outperforming algo-
rithms of our experiments. A reason for that could
be the consequent transfer of human visual process-
ing techniques based on the perceptional concepts
e.g. use of gradient information to approximate the
illumination estimation. Following this conclusion
SLFQUO with its weighted Gaussian filter that at-
tempts to use gradient information could not convince
within real-world test.

However, within the pretest the new diffusion fil-
ter based algorithms lead the overall results with 94 %
recognition rate. Within the real-world test the We-
ber contrast proportion used by GROBRA seems to be
more applicable. The GROBRA becomes the overall
leading algorithm in real-world test with 51 % recog-
nition rate which also supports our hypothesis.

Besides LAHE the GROBRA and NLANISODIF
algorithms are of high practical relevance.
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S CONCLUSIONS

In this paper we presented a new taxonomy of illumi-
nation normalization methods. We introduced an al-
gorithm motivated by human perception and based on
known diffusion filter concepts. Further we presented
the results of a two-step evaluation of 18 different al-
gorithms to verify best approaches under controlled
and uncontrolled real-world conditions. Our experi-
ments suggest a number of conclusions:

e Our experiments showed that variation only in il-
lumination can be normalized up to nearly con-
summate recognition rates of 94 %.

e We demonstrated that recognition rates for real-
world data can be improved with eigenface from
12 % to 40 % and fisherface from 13 % to 51 %.

e Furthermore we verified our hypothesis that well-
performing algorithms under controlled condi-
tions can be worse under real-world conditions
depicted on the overall leading algorithm of
pretest and real-world test.

e Human perception related algorithms outper-
formed nearly all other algorithms.

e The group of local operations brought up multiple
well-performing algorithms.

However, the real-world test results clearly show
that illumination normalization is just one step to an
entire face recognition system. There are a number of
issues to be addressed in future work. First, analyze
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in detail which factors influence the recognition rates
to what extent. Second, evaluating of normalizing al-
gorithms for different aspects e.g. pose or facial ex-
pression under real-world conditions. Finally, evalu-
ation of further face recognition techniques is needed
e.g. Hidden Markov Model (M. Bicego and Murino,
2003) or 2D Gabor Wavelet (Wiskott et al., 1997).
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