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Abstract. In this paper, we investigate in detail the relationship between entropy
and guesswork. The aim of the study is to lay the ground for future efficiency
comparison of guessing strategies. After a short discussion of the two measures,
and the differences between them, the formal definitions are given. Then, a redef-
inition of guesswork is made, since the measure is not completely accurate. The
change is a minor modification in the last term of the sum expressing guesswork.
Finally, two theorems are stated. The first states that the redefined guesswork is
equal to the concept of cross entropy, and the second states, as a consequence of
the first theorem, that the redefined guesswork is equal to the sum of the entropy
and the relative entropy.

1 Introduction

Computer security is a branch of computer science, where the goal is to protect enti-
ties from being unauthorized tampered with. The three most well-known goals in the
field are confidentiality, integrity, and availability. Confidentiality is the prevention of
unauthorized disclosure of information, integrity is the prevention of unauthorized mod-
ification of information, and availability is the prevention of unauthorized withholding
of information or resources. Collectively they are known as "CIA".

A key problem with computer security is that it is hard to measure and therefore
hard to evaluate. In many situations we have not even agreed on, or defined, generally
accepted security attributes [1], making it impossible to measure security since we do
not know what to measure on. Furthermore, when we actually have agreed on defi-
nitions for security attributes, like in the common criteria [2], the measures are often
qualitative, i.e., based on experience, and do not carry enough information about its
values to allow formal analysis. Hence, quantitative security measures are desirable,
making it possible to perform an analytical and more exact description of security.

Two proposed, quantitative confidentiality measure are entropy [3] and guesswork
[4, 5]. Entropy is the famous and classical security measure of uncertainty that originally
was suggested by Shannon in 1944. He defined it as the average amount of information
of a random variable. Guesswork, on the other hand, gives the minimum expected num-
ber of guesses in an optimal brute force attack. The relationship between entropy and
guesswork has been under consideration for a while, and a connection has only been
found in terms of bounds [4, 5].
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In this paper, the relationship between entropy and gueksisanvestigated in
detail. After a redefinition of guesswork, since the measuret completely accurate,
the relationship or result is stated in two theorems. The firsorem states that the
redefined guesswork is equal to the concept of cross entaoplythe second theorem
states, as a consequence of the first theorem, that the mdigfiesswork is equal to
the sum of the entropy and the relative entropy.

The rest of the paper is organized as follows. In Section 8sging strategies for
entropy and guesswork is presented. The relationship leetwetropy and guesswork
is investigated in Section 3. Finally, Section 4 concludesgaper.

2 Entropy, Guesswork, and Guessing

Guessing the correct value of a random variailecan be seen as a game of two
players. Player one chooses a secret value from a given gmissible values, and
player two tries to guess the correct value, using a strakggyn the known information
about the game, such as the probability distribution of #srch space or conditions
of the guessing process, a set of strategies or actionspasihfe. In the continuation,
the probability distribution of the search space is assutadzk known. Furthermore,
from the set of strategies we normally want to use an optimakging strategy, that
minimizes the needed number of questions to find the valu€.dfhis is the focus of
game theory [6], i.e., how to best play the game.

In order to compare the efficiency between different stiategossibly having dif-
ferent information about the game, measures that give theated number of guesses
to find the correct value are needed. Two such measures ampgrind guesswork.
Entropy gives the minimum number of expected questionspwiehave the possibil-
ity to ask questions of the fori®;="Is X € A?”, for any setA of the search space. A
variant of this question, that for example is used in thedtisa method to find a root
of a continuous function in an interval, is "I§ > a?”. Guesswork, on the other hand,
gives the minimum expected number of questions when we Hevpdssibility to ask
questions of the fornQ.="Is X = z;?".

For guesswork, the optimality (minimum number of questjamnes from the fact
that we can arrange the probabilities of the valugis non-increasing probability order,
and then start testing them. For entropy, the optimalitye®from the fact that entropy
gives the minimum average code length for compression fid] that a sequence of yes
or no questions is equivalent to a binary code. A way to canssuch a set of optimal
guestions is to use the Huffman algorithm [7]. In the follogj we use guesswork and
entropy for both the name of the measure and the optimaégiahat is connected to
the measure.

The difference between guesswork and entropy resides imfoemation of the
two questions(); and@Q». For Q; we are allowed to group several values into a set
of values, and test if the correct value is in that set. @arwe are only allowed to
test one value at a time. Hend®; uses the divide and conquer strategy, binary search,
and Q; uses the one at a time strategy, linear search. Furtherrferés actually a
special case of);, since@. can be rewritten as "I € A = {z,}?" for any set
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A of the search space. This indicates that entropy is alwagdlesnthan (or equal to)
guesswork, something that will be obvious in the next sectio

When searching for the correct value, the chosen strategss gige to a search
tree. This is illustrated in Fig. 1 when we have the searckespa= {x1, 22, x3, 4}
with the probabilitiep(z1) = 0.4, p(z2) = 0.2, p(x3) = 0.2, andp(z4) = 0.2. The
search tree for entropy (using Huffman) is shown in a), wabesz; = 11, 25 = 10,
x1 = 01, andxy = 00, and for guesswork in b), with codes = 1, 2, = 01,
x1 = 001, andz4 = 000. To make things more clear, the first question for entropy is
"Is X € A= {x1,22}?", and the first question for guesswork is As= z,?". This is
the same, in both cases, as to ask "Is the first bit set to oi&® procedure continues
with the second bit, and so on, until the correct value is blmFig. 1, we also see how
entropy and guesswork balances the search tree. Entropydeal the tree by dividing
the remaining probabilities as equal as possible betweehbrinches, while guesswork
creates the tree totally unbalanced. This is similar to #teliours of binary and linear
search.

Fig. 1. The search tree for a) entropy, using Huffman, and b) guesswork.

3 The Relationship between Entropy and Guesswork

In this section, background information as well as formdirdgons of information
entropy, relative entropy, cross entropy and guessworkving Then, a minor mod-
ification in the definition of guesswork is made, since the snea is not completely
accurate. Finally, two theorems are stated. The first tieatates that the redefined
guesswork is equal to the concept of cross entropy, and ttendeheorem states, as
a consequence of the first theorem, that the redefined gudssaexual to the sum of
the entropy and the relative entropy.

3.1 Background

In [4], Massey showed that a trivial upper bound for gues&ioterms of entropy does
not exist. He showed this, by using an infinite probabilitytdbution where guesswork
becomes arbitrary large, while at the same time entropystemdero. Pliam in his PhD
thesis [5], argued that due to this entropy may not be a goasure of guessability for
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brute force attacks. Instead, he proposed the use of gudssavaa measure based on
variational distance, as new possible measures of gudéigsabi

As Massey in [4], the authors in [8] presented a slightlyatigiht example to show
the same. Let the probability distribution g, = 1 — b/n andpy = ... = p, =
b/(n* —n). ThenW (p) = 1 + b/2, constantly, andi (p) — 0, whenn — oo. Hence,
again we have a distribution where guesswork can becomeagblarge, while the
entropy tends to zero.

Even though guesswork does not have an upper bound in teremgropy, Massey
[4] showed that guesswork, however, has a lower bound ingefrantropy

2HP)=2 L1 < W (p) 1)

whenH (p) > 2. This result were derived by using standard calculus oftiamn to find
that a geometric probability distribution maximizes thérepy for a constant value of
the guesswork.

3.2 Formal Definitions

In this subsection the formal definitions of informationreply, relative entropy, cross
entropy and guesswork is given.

Information Entropy. Information or Shannon’s entropy [3], often simply refetre
to as entropy, is the classical measure of uncertainty thatariginally suggested by
Shannon in 1944. He defined it as the average amount of infammitom a discrete
random variable.

Definition 1. The entropyH (p) of a probability distributionp = (p1,...,pn) is de-
fined as

H(p) = - sz' logs (pi) 2
i=1

It is assumed that the higher the entropy of a random variaptae harder it is on the
average to guess its value. This is an assumption that hasgbdoe inconsistent with
guesswork [4,5]. The maximum value of the entropy, with narmary conditions,
is obtained for the uniform probability distributian and H(u) = log,(n), [7]*. In
computer science and information theory the base of theithgais taken to be two,
measured in bits, and in mathematics and physics the baaeeis to be:, measured in
nats.

Relative Entropy. The relative entropy [7], or Kullback Leibler distance, raeges the
distance between two probability distributions. It can beiipreted as a measure of
inefficiency, since it gives the extra number of bits if a coflan arbitrary distribution
is used than the "true” distribution.

! To verify this, sefp; = 2 and calculate the sum.
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Definition 2. The relative entropyD(p||¢) between two probability distributions =
(p1,-..,pn) @andq = (qu, - .., qn) is defined as

Dol =Y pitoss (%) )
=1

qi

The relative entropy is always non-negative and zerp i# ¢. Note that the relative
entropy is not a true distance, since it is not symmetric arebaot satisfy the triangular
inequality.

Cross Entropy. From information theory, we also have the concept of crosopyn
[9] between two probability distributions.

Definition 3. The cross entrop¥ (p, ¢) for two probability distribution® = (p1, ..., pn)
andq = (q1, - - -,qx,) is defined as

H(p,q) == _ pilog,(a) 4
=1

Cross entropy can be seen as a generalization of entropyéo distribution, and if
p = ¢ Cross entropy is equal to entropy.

Guesswork. Guesswork [4, 5] is a measure that gives the minimum expeutatber

of guesses to find the value &f, when we are only allowed to test one value at a time.
This is equal to an optimal brute force. In an optimal brutedaattack the attacker has
complete knowledge of the probability distribution &f, and can, thus, arrange and
start testing the values & in a non-increasing probability order, according to

PL2p2>...2p, 20 (5)
The crack package [10] for UNIX passwords orders the paepéisswords in a similar
way.

Definition 4. GuessworkiV (p) for a probability distributionp = (p1,...,pn), ar-
ranged according to (5), is defined as

n

W)= ip (6)

i=1

The higher the guesswork of a random variable is, the hatderan the average to
guess its value. The maximum value, with no boundary camditiis obtained for the
uniform probability distribution:, andW (u) = 241, [5] 2,

? To verify this, sefp; = 2 and calculate the sum.
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3.3 Redefinition of Guesswork

From equation (6) in definition 4, guesswork, the last teriihasum is weighted with

n. This is, however, not completely accurate, since the lassgin the guessing process
discriminate the last two values of the random variable t af the answer to the last
question is "yes” then the correct valuedis_, and the search finishes. If instead the
answer is "no”, the correct value is,, and the search finishes. For example, if we have
p(A) = 0.5 andp(B) = p(C) = 0.25, thenW(p) = 1.75. However, as illustrated

in Fig. 2, on average it is enough to maké guesses. In half of the times, it will be

Fig. 2. An example of a guessing tree, with4) = 0.5 andp(B) = p(C) = 0.25.

sufficient to use one guess to find the correct value, and irother half it will be
sufficient to use two guesses. This is why we redefine gue&swith the last term in
the sum weighted with, — 1, grouping the last two probabilities together.

Definition 5. Let the probability distributionp be arranged according to (5). Then
guessworli? (p) is defined as

W(p)=> rip; (7
i=1
where
7 ifi<n
Ti_{n—lifi—n (8)

By using the same arguments as in [5], the maximum value afetthefined guess-
work is obtained for the uniform distributian and its value i$V (u) = %1 — 1. Note
that, whem — oo, the maximum value of the redefined guesswork and the gueksswo
is equal. More generalized, when— oo, redefined guesswork is equal to guesswork,
since thenr; = 1.

In Fig. 3, we have for the same probability distribution aséation 3.1p; = 1 —
b/nandpy = ...=p, = b/(n? —n), plotted the redefined guesswork and guesswork
for different values ofn, whend = 10. The uppermost line is the guesswork, with a
constant value ofV (p) = 1 + g and the line below is the redefined guesswork, with
avalue ofW(p) =1+ % — #71) Notice in the figure how the redefined guesswork
narrows guesswork asincreases.
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Fig. 3. Redefined guesswork and guesswork for the probability distribution
p1=1—10/nandps = ... =p, = 10/(n® —n).

3.4 Redefined Guesswork and Cross Entropy

In this section, we show that the redefined guesswork is thdespecial case of cross
entropy.

Theorem 1. The redefined guesswork/(p) is equal to cross entropyH (p,r),
wherer = (277,...,27™), i.e,,

W(p) = H(p,r) ©)
Proof. First note that = (27",...,27 ") is a probability distribution since

n—1

DIEAEED DEREE T2 (10)
=1 =1
=1—2""1 9=

By using equations (7) and (10), we get
Wi(p) => rp; (11)
=1
= - Zpi log,(27)
=1

= H(};,T‘)

where the last step is according to definition 3.
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3.5 Redefined Guesswork and Entropy

Now, we are in a position to state the theorem connecting edefined guesswork,
entropy, and relative entropy.

Theorem 2. The redefined guesswolK (p) is equal to the sum of entrog¥ (p) and
relative entropyD (p ||r), wherer = (27" ...,27"), i.e.,

W(p) = H(p) + D(p||r) (12)

Proof. By standard calculus cross entropy is equal to the sfientropy and relative
entropy.

H(p,q) = - sz' log (¢:) (13)
=1
== pilogy(gi) + Y _pilogy(pi) — > pilogy(ps)
=1 =1 (=1

- Di
=H(p)+ Y _pi logz(;)
i=1 !
= H(p) + D(pllq)
Hence,

W(p) = H(p,r) (14)
= H(p) + D(pl|r)

according to equation (13) and Theorem 1.

Theorem 2, is actually a special case of a theorem showingetiteopy gives the
minimum expected length of codes. Thatig(p) < L(p) = >_, pil;, wherel; is the
length of the code word with probability;. In the theoremlV (p) is changed td.(p),
since guesswork can be seen as a special case of expectdédrngtthe withl; = r;. If
instead guesswork would have been usgd; i, we would have get

n

W(p) = H(p) + D(p|lg) — log, (> _27") (15)
i=1

whereq = 22% Note that whenp — oo, equation (15) and (12) is equal.

InFig. 4, we have plotted the redefined guesswork, entrapyrelative entropy for
the probability distributiom; = 1—b/nandps = ... = p, = b/(n?—n), whenb = 4.
In the figure, by observation, superpositionféfp) and D(p ||rr) becomesd¥V (p).

4 Conclusion and Future Work

We have in this paper investigated in detail the relatignfleitween the two probabilis-
tic confidentiality measures entropy and guesswork. Aftexdefinition of guesswork,
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Fig. 4. The redefined guesswork, entropy, and relative entropy for thleapility distribution
pr=1—4/nandp: = ... =p, =4/(n* —n).

since the originally proposed measure is not completelyrate, we formally proved
that the redefined guesswork is equal to the sum of the entnoghyhe relative entropy.
We hope that result of the paper is a further step towardstarh@tderstanding of the
similarities and differences between these measures.

The goal of our future work is to compare the efficiency betwtbe different guess-
ing strategies, entropy and guesswork. Another goal isdotify under which circum-
stances the different confidentiality measures should bé.We believe that the choice
of measure is dependent on the considered attack moded, thie@mount of informa-
tion an attacker has will affect the number of guesses. Eurtbre, we hope to derive
a formula for the rate of the guesswork, that is connectelleadte of the entropy, and
hence continue to examine the confidentiality levels foectlely encrypted messages
[11].

References

1. Lindskog, S., Jonsson, E.: Adding security to QoS architectuneBuinett, R., Brunstrom,
A., Nilsson, A.G., eds.: Perspectives on Multimedia: Communicatioedi®and Informa-
tion Technology. John Wiley & Sons (2003) 145-158

2. Common Criteria Implementation Board: Common criteria for informat@mhnology se-
curity evaluation, version 3.1. http://www.commoncriteriaportal.org0g)0

3. Shannon, C.E.: Communication theory of secrecy systems. Ba#®yTrechnical Journ2B
(1949) 656—715 Reprinted in Claude Elwood Shannon: Collected p&péited by N. J. A.
Sloan and A. D. Wyner, IEEE Press, 1993.

4. Massey, J.: Guessing and entropy. In: Proceedings of the EEH International Symp. on
Information Theory. (1994) 204



144

~N O

10.
11.

Pliam, J.0.: Ciphers and their Products: Group Theory in PrivageGfgptography. PhD
thesis, University of Minnesota, Minnesota, USA (1999)

. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard \@nsity Press (1997)
. Cover, T., Thomas, J.: Elements of Information Theroy. Johnyl&ons (1991)
. Malone, D., Sullivan, W.: Guesswork is not a substitute for entraqyProceedings of the

Information Technology & Telecommunications Conference. (2005)

. Brown, P.F., Pietra, S.D., Pietra, V.D., Lai, J.C., Mercer,.RAn estimate of an upper bound

for the entropy of english. Computational Linguistit®(1992) 31-40

Muffett, A.D.E.: Crack: A sensible password checker for UN1¥92)

Lundin, R., Lindskog, S., Brunstrom, A., Fischer-Hbner,\$ing guesswork as a measure
for confidentiality of selectively encrypted messages. In GollmannMassacci, F., Yaut-
siukhin, A., eds.: Quality of Protection: Security Measurements andiddetvolume 23.
Springer (2006) 173—-184



