
TRANSPARENT EXTENSION OF SINGLE-USER
APPLICATIONS TO MULTI-USER REAL-TIME

COLLABORATIVE SYSTEMS
An Aspect Oriented Approach to Framework Integration

Ansgar R. S. Gerlicher
London College of Communication, Hochschule der Medien, Stuttgart, Dingelstedtstr. 5, Hannover, Germany

Keywords: CSCW, Groupware, Collaborative Editing, Collaboration Transparency, Software-Architecture, Aspect-
Oriented Programming, XML, Distributed-Systems.

Abstract: This paper discusses the transformation of a single-user SVG editing application into a multi-user real-time
collaborative editing system. The application’s extension with collaboration functionality was realized by
using a novel aspect-oriented programming approach to framework integration. This approach is platform
independent, supports heterogeneous applications and does not require an application specific API or access
to the application’s source code. The collaboration functionality in this case is provided by the Collaborative
Editing Framework for XML (CEFX) which uses the Document Object Model as a standard interface to the
application’s data model.

1 INTRODUCTION

Cooperative work is a day-to-day activity in many
areas. Software development teams cooperatively
develop applications or write documentation. Engi-
neers cooperatively design a circuit diagram or work
together on a 3D model of a new machine. The
documents that are cooperatively edited range from
simple text documents over 2D graphics to complex
3D models.

However, software support for real-time group
editing in commercial applications today is uncom-
mon. Thus support for collaboration is often limited
to turn-taking, split-combine and copy-merge. Exist-
ing real-time group editors - derived from research
projects - are usually very specialized and despite
latest achievements in the research field of Com-
puter Supported Cooperative Work, many such sys-
tems suffer from a lack of user acceptance in the
professional area. One reason for this seems to be a
low motivation of users to learn new user interfaces
and application functions if they can not see their
personal benefit in the collaboration features
(Grudin, J., 1994). Another reason may be that exist-
ing real-time group editors generally can not com-
pete with established single-user editors regarding
the functionality and usability (Xia, Sun et al. 2004).

A more promising approach therefore is to ex-
tend accepted single-user editing applications with
collaborative real-time editing functionality. The
difficulty with this approach is to extend an applica-
tion transparently (that is without modifying the ap-
plication’s source code) with as little effort as possi-
ble and at the same time providing the best support
for real-time collaboration.

Systems for application sharing such as VNC,
NetMeeting or Netviewer allow sharing the view of
any single-user application among a group of users.
These systems are application independent and ap-
plication transparent. The effort to share an applica-
tion is very little, but they only support strict
WYSIWIS. Independent user interaction on the
shared document or application is not supported.

A number of research projects investigated in
how to transparently extend single-user applications
with collaborative editing functionality (Xia, Sun et
al., 2004, Li, Li, Yu and Yang, 2003, Begole, 1999).
Their approaches support real-time collaboration and
relaxed WYSIWIS. However, these approaches ei-
ther depend on an application’s programming inter-
face (API) or require translating operating system
events into meaningful editing operations. This is
labour intensive and the integration code has to be

327

R. S. Gerlicher A. (2007).
TRANSPARENT EXTENSION OF SINGLE-USER APPLICATIONS TO MULTI-USER REAL-TIME COLLABORATIVE SYSTEMS - An Aspect Oriented
Approach to Framework Integration.
In Proceedings of the Ninth International Conference on Enterprise Information Systems, pages 327-334
Copyright c© SciTePress

rewritten for each new application that is to be ex-
tended.

In this paper, we propose a novel approach to ex-
tending a single-user application with collaborative
real-time editing functionality. Our approach sup-
ports relaxed WYSIWIS and heterogeneous applica-
tions. An application is thereby extended without
modification of the source code and without being
dependent on an application API or on operating
system event translation. Our approach only assumes
a standard interface to the applications data model
and a runtime environment that supports introspec-
tion. We use the functionality of the Collaborative
Editing Framework for XML (CEFX) in order to
extend an application (Gerlicher, 2006). CEFX,
among other things, takes care of synchronising the
shared document. This paper discusses how we ap-
plied the concepts of aspect-oriented programming
(AOP) in order to integrate CEFX into an existing
single-user editing application.

The paper is structured as follows. In the next
section, the different approaches of recent research
projects are discussed and compared with our ap-
proach. Section 3 discusses our approach, the CEFX
software architecture, the implementation and how
awareness support can be achieved. Section 4 dis-
cusses the requirements for this approach and then
conclusions are drawn in the last section.

2 RELATED WORK AND GOALS

Xia, Sun et al. propose the Transparent Adaptation
(TA) approach for the extension of single-user ap-
plications with collaboration functionality (Xia, Sun
et al., 2004). In CoWord, they have extended the
Microsoft Word application transparently by making
use of the Microsoft application and execution envi-
ronment APIs.

The TA approach requires each application to be
adapted before being shared. The adaptation of an
application requires the developer to have a detailed
knowledge of the application and execution envi-
ronment specific API. Additionally an interpretation
of the user actions in relation to the current applica-
tion contexts is required. Operational Transforma-
tion (OT) (Chen, Sun et al., 1998) is used for the
concurrency control of a shared Word document.
This requires to map each operation executed on the
application’s data model into an operation that can
be processed by the OT concurrency control mecha-
nism. This is the responsibility of the Collaboration
Adapter in CoWord. However, mapping user actions
to OT operations can become complex and requires

that the application’s data model supports positional
addressing of objects, which may not be feasible for
complex 3D modelling applications. These limita-
tions of CoWord are not inherent to the OT approach
but come from the design choices made concerning
the integration of concurrency control into an appli-
cation.

A similar approach is proposed by Li et al. called
Intelligent Collaboration Transparency (ICT) (Li, Li,
Yu and Yang, 2003). The focus of their work is on
sharing heterogeneous applications of the same ap-
plication family. They propose a system that allows
extending single-user applications such as GVim
and MS Word. For each application a so called ICT
agent is implemented that captures events from the
operating system and the application, translates them
into semantic operations and then transmits those to
the other collaborating sites, where the events are
replayed in the form of a sequence of editing events.
Their event capture and replay mechanism makes
intensive use of application and operating system
specific APIs and thus suffers from the same prob-
lems as the TA approach in terms of implementation
complexity. Additionally the complexity is increased
by supporting heterogeneous applications. This re-
quires a formalisation of application semantics in
order to be able to translate the user actions of one
application to the relating user actions of another
application.

The high implementation effort was one of the
reasons for the second generation of the ICT project,
ICT2. In contrast to their previous work, ICT2 does
not attempt to intercept and understand the operating
system level events. Instead it uses an adapted ver-
sion of the diffing algorithm (Myers, 1986) to derive
the editing sequences between document states (Lu
and Li, 2004). However, this new approach is not
suited for fine-grained real-time group editing such
as TA and ICT, because of its limitations in terms of
performance. The support for heterogeneous appli-
cations is limited to those applications that have the
same writing style. Sharing a document between for
example Latex and Word is not supported. The diff
algorithm that is applied supports determining the
differences of text documents only. In order to sup-
port structured and formatted documents, more so-
phisticated diffing algorithms would be required (Li
and Lu, 2006).

Begole (Begole, 1999) proposes a different ap-
proach. The Flexible JAMM (Java Applets Made
Multi-User) project extends a single-user application
by replacing selected components of it with multi-
user versions. The basic idea of this approach is not
to use an application or operating system specific

ICEIS 2007 - International Conference on Enterprise Information Systems

328

API for the integration of collaboration function, but
the Java Swing API. This has the advantage that the
components which are replaced are well known and
it is not required to implement a translation layer as
in the TA approach or convert user actions into ap-
plication semantic commands or API calls as in ICT.
The disadvantage is that the set of applications that
are suitable for an extension is restricted to Java
Swing based applications.

To summarise, all approaches use a certain API
in order to extend a single-user application. TA and
ICT both use an API on operating system and on
application level. JAMM uses an API on the level of
the runtime’s graphical user interface (GUI) library.
The first two approaches face the problem of im-
plementation complexity for each new application
that is to be extended. The JAMM approach has the
problem of being dependent on the fulfilment of
certain runtime requirements.

The goal of our approach is to reduce the com-
plexity of integrating a collaboration framework into
a single-user application and provide a solution that
is more general, supporting many different types of
applications. We argue that this can be achieved by
using aspect-oriented programming and concentrat-
ing on the application’s data model instead of an
application, operating system or GUI library API.

The application data model describes how data is
represented and used. For example in a text editing
application, the data model represents the text that is
edited. The structure of the data model can thereby
be different to its visual representation. One aspect
of an application is the manipulation of the data
model. The code for updating or querying the data
model can be distributed within the entire applica-
tion. In the terminology of AOP such aspects are
called crosscutting concerns. In our approach, we
identify these crosscutting concerns or system-level-
concerns within an application and define advices
that then create events for the underlying collabora-
tion framework in order to synchronise the data
model between the different sites. This has the ad-
vantage that once developed advices can be reused
for all applications that use the same methods for the
manipulation of their data model. This is for exam-
ple the case for all applications using the Document
Object Model (DOM) as a standard interface for the
manipulation of XML content. Although new ad-
vices have to be developed for applications that use
other methods for the data model manipulation, we
assume that the implementation effort is low com-
pared to other methods.

3 THE AOP APPROACH

For extending a single-user application with collabo-
rative real-time editing functionality, the Collabora-
tive Editing Framework for XML (CEFX) was used.
CEFX is a collaborative real-time system specialised
on XML based applications. It satisfies the collabo-
rative requirements of communication, group
awareness, session management and concurrency
control (Pichiliani and Hirata, 2006).

We selected the GLIPS Graffiti editor (GLIPS
Graffiti Editor) as single-user application for the
transparent integration of CEFX. The GLIPS Graffiti
editor is a cross-platform SVG graphics editor de-
veloped by ITRIS (ITRIS). It enables to create regu-
lar SVG files. As GLIPS is a Java application, it was
necessary to use an aspect-oriented extension to the
Java programming language. We used AspectJ for
the development of the required aspects.

Aspect-oriented programming (AOP) is a pro-
gramming paradigm for the separation and encapsu-
lation of concerns, especially crosscutting concerns,
within a software. The most popular AOP language
is AspectJ (The AspectJ Project), developed by
Gregor Kiczales et al. at Xerox PARC (PARC).

In order to encapsulate crosscutting concerns at
one place, so called aspects are defined which are
then integrated into the software not earlier then at
compile time. Using AOP implementations that sup-
port byte-code weaving (AspectJ), allows to extend
applications without access to their source code. An
aspect can alter the behaviour of the base code (the
non-aspect part of a program) by applying advices
(additional behaviour) at various join points (points
in a program) specified in a quantification or query
called a pointcut (that detects whether a given join
point matches). An aspect can also make binary-
compatible structural changes to other classes, like
adding members or parents. (Aspect-oriented pro-
gramming).

The following section describes the relevant
parts of the CEFX software architecture. Section 3.2.
discusses the implementation of the advices and in
section 3.3 the integration of awareness mechanisms
is discussed.

3.1 Software Architecture

CEFX is based on a hybrid software architecture,
which is a mixture of a centralised and a replicated
architecture. The central server side is responsible
for the session handling and management of the
shared documents. When a client connects to the
server in order to work on a certain document, the
server checks if a session for that requested docu-

TRANSPARENT EXTENSION OF SINGLE-USER APPLICATIONS TO MULTI-USER REAL-TIME
COLLABORATIVE SYSTEMS - An Aspect Oriented Approach to Framework Integration

329

ment is already open and connects the client to it.
The client then retrieves a copy of the shared docu-
ment from the server. Each operation that is exe-
cuted at a client site is executed locally first and then
propagated to each other client in a session and to
the server site. This guarantees good response times.

CEFX is composed of a set of plug-in compo-
nents that are responsible for the different aspects of
a collaboration system. The flexible plug-in architec-
ture of CEFX supports the extension of the frame-
work itself by providing new plug-in components.
The figure below depicts a simplified model of the
internal structure of the client part of CEFX.

cd Ov erv iewCEFX Client

CEFXDOMAdapter

CEFXController

ConcurrencyController

«interface»
OperationExecutor

NetworkController

AwarenessControllerAwarenessWidget

ExtensionRegistry

«interface»
org.w3c.dom.Document

ConflictResolutionProv ider
1 1

1
1

1

1

0..* 1 11

1

1

11

1

1

«realize»

1

1

1
1

Figure 1: CEFX client components.

The CEFX Controller is the central controller
component of the framework. It owns a Extension
Registry (ER) which contains information on plug-in
components that need to be instantiated. The CEFX
Controller processes all framework events and dele-
gates them to the corresponding components.

The Network Controller (NC) is responsible for
sending and retrieving information over the network
The Concurrency Controller (CC) at each client and
the server site takes care of the synchronisation of
the shared documents and handles conflicts. The
concurrency control algorithm used was specifically
developed for the synchronisation of XML docu-
ments. It follows the same principles of causality
and convergence as the algorithms described in
Davis, Sun et al., 2002, Ignat and Norrie, 2002 and
Molli et al. 2002. In contrast to these algorithms
universal unique ids (UUIDs) are used for address-
ing nodes and operational transformation is not ap-
plied for preserving user intentions. However, a de-
tailed explanation of the used consistency mainte-
nance algorithm in CEFX goes beyond the scope of
this paper.

In the case of a conflict the Conflict Resolution
Provider (CRP) provides hints to the concurrency
controller on how the conflicting operations should
be treated.

Furthermore each client site has an Awareness
Controller (AC) that is responsible for the propaga-
tion of awareness events, such as mouse selection
events. It delegates awareness information to the
corresponding awareness widgets which are respon-
sible for the visualisation of these events.

The CEFX DOM Adapter (DA) is our entry
point to the framework. At the beginning of each
collaborative session, when a document is opened by
the user, the DA is provided with a reference to the
Document Object Model (DOM) of the application.
This is done by one of the advices that are called if a
certain join point within the application is executed.
For each local modification of the DOM, the DA
creates an operation which is then executed and
propagated to the other sites. Incoming operations
are - after passing different synchronisation steps -
eventually executed directly on the DOM of the ap-
plication, as if they were executed locally by a user
action.

3.2 Implementation

When extending the GLIPS Graffiti editor, the
crosscutting concerns that we were interested in is
the modification of the applications data model. The
first step was to identify the relevant join points that
are executed, when the data model is modified. User
operations such as drawing a line, changing the col-
our of an object or deleting a object modify the ap-
plications data model.

The GLIPS Graffiti editor is used to create and
edit Scalable Vector Graphics (SVG). As SVG is an
XML document format, GLIPS uses an XML docu-
ment internally as data model. For the modification
of the XML document, GLIPS makes use of the
DOM API. For rendering the SVG graphics to the
screen, the Apache Batik library is used (Batik SVG
Toolkit). Batik provides its own implementation of
the DOM which complies to the W3C Document
Object Model specification (W3C Document Object
Model).

This simplified the identification of the relevant
join points. All calls to functions defined by the
W3C DOM API were possible candidates for a rele-
vant join point.

The next step was to write an Aspect class that
encapsulates the crosscutting concerns at one place.
The Aspect class is similar to a Java class and can
contain normal Java code and additionally AspectJ
components. A simple example:

public aspect DOMAccessAspect {
…
}

ICEIS 2007 - International Conference on Enterprise Information Systems

330

The defined Aspect is then weaved into the applica-
tions bytecode. The applications source code is not
modified. The Aspect class defines point cuts that
are executed by AspectJ when the matching join
points are reached within the application.

We identified calls to the following W3C DOM
API methods as most relevant to the modification of
the GLIPS data model:

Node appendChild(…)
Node insertBefore(…)
Node removeChild(…)
void setAttributeNS(…)
void setAttribute(…)

The methods appendChild() and insertBe-
fore() are called, whenever a node is added to the
document. This is the case for example if the user
draws a line in the SVG document. The method re-
moveChild() is called, whenever a node is re-
moved from the document. That is the case if the
user deletes an object from the document. The meth-
ods setAttributeNS() and setAttribute() are
called if for example the user changes the colour of
an object. In SVG the colour information of an ob-
ject is contained in the value of the style attribute.

The figure below shows a scenario of what hap-
pens, if for example the colour of an object is
changed. Whenever the method setAttribute()
on an element node of the XML document is called,
the call is intercepted by AspectJ. Instead of directly
executing the code of the DOM implementation pro-
vided by Batik, the defined pointcut of our aspect
class selects the relevant join point and the specific
advice is applied. The advice then delegates the call
to the DA. The DA creates an update operation
which is handled by the CEFX Controller and asyn-
chronously propagated to all sites of the current edit-
ing session by the NC. The operation is instantly
executed on the local element node and the attribute
value is updated.

Figure 2: Scenario of code interception.

Pointcuts pick out interesting join points in the exe-
cution of a program. These join points can be for
example method invocations and executions. An
AspectJ pointcut definition gives a name to a point-
cut. The code snippet below shows how the pointcut
of the above scenario is defined in AspectJ.

…
pointcut setAttributePC(Element p,
String attr, String value):
target(p) && args(attr,value) &&
call (
void setAttribute(String,String))
&& !within(DOMAccessAspect);
…

This pointcut picks out all join points matching a
call to a method with the same signature and pa-
rameters as given in the call() statement. For each
pointcut an advice is defined, that contains the code
that is to be executed if the pointcut is met.
For each of the relevant pointcuts, we defined an
advice. The advice, that is executed for the above
pointcut is shown in the following code snippet.

…
void around(Element p, String attr,
String value):
setAttributePC(p,attr,value)
{
Advices.setAttribute(p,attr,value);
}
…

The static method setAttribute() of the class
Advices is called here. The class Advices is a
helper class containing the advices code. This was
done for clarity reasons and in order to separate the
Java code from AspectJ code. The code that is exe-
cuted here is shown in the following code snippet.

…
public static void setAttribute
(Element p,String attr,
 String value)
{
 CEFXDOMAdapter doma =
 CEFXUtil.getDOMAdapter();
 if (doma != null) {
 if(doma.isCollaborationReady()) {
 doma.Element_setAttribute(p,attr,
 value);
 return;
 }
 }
 p.setAttribute(attr, value);
}
…

TRANSPARENT EXTENSION OF SINGLE-USER APPLICATIONS TO MULTI-USER REAL-TIME
COLLABORATIVE SYSTEMS - An Aspect Oriented Approach to Framework Integration

331

First a reference to the CEFXDOMAdapter is re-
trieved by calling the static method getDO-
MAdapter() of the CEFXUtil class, a utility class
provided by CEFX. If the DA is already initialised
and ready for collaboration, the call to setAttrib-
ute() is delegated to the corresponding DA
method. If the DA was not properly initialised, the
setAttribute() of the target object is called di-
rectly, setting the new value to the attribute. This is
done for example, if the client is not connected to a
collaboration session.

For all other relevant pointcuts the same proce-
dure was applied. The following code shows an ex-
ample on how the other advices were defined using
anonymous pointcuts.

…
Node around(Element p, Element c):
target(p) && args(c) &&
call(Node appendChild(Node)) &&
!within(DOMAccessAspect)
{
return Advices.appendChild(p,c);

 }
…

Additionally to the advices for the manipulation of
the data model, advices for creating or loading of a
document and the initialisation of the render context
are needed. Creating a new SVG document or load-
ing and parsing of an existing document is handled
by the SAXSVGDocumentFactory class provided
by Batik. Rendering of an SVG document to the
screen is handled by the SVGCanvas class (the ren-
der context) provided by GLIPS. When a document
is opened, the DA is provided with a reference to it,
in order to integrate changes from the remote sites.
After the execution of a remote operation, the render
context of the application is notified in order to re-
paint the document. For this reason, the DA is pro-
vided with a reference to the application’s render
context. The following advice code is executed,
when a document is opened by the user.

…
SVGDocument
around(SAXSVGDocumentFactory fac,
String uri):
target(fac) && args(uri) &&
call(SVGDocument createSVGDocu-
ment(String)) &&
!within(DOMAccessAspect)
{
//Initalisation of the DA
 CEFXDOMAdapter da =
 new CEFXDOMAdapterImpl();

//Proving DA with factory reference
 da.setDocumentFactory(fac);
//Creating the document and
//providing DA with a reference to it
SVGDocument doc = (SVGDocument)
da.createDocument(uri);
…
}
…

The DA is also provided with a reference to the
document factory. This is required for example, if a
session for the opened document already exists. In
this case, CEFX loads the document from the server
and handles the document parsing and initialisation.

The advice for setting the render context is called
when the SVGCanvas is initialised within the appli-
cation. The following code illustrates how this is
achieved.

…
after(SVGCanvas panel): target(panel)
&& call(* initializeCanvas(*))
{
 CEFXDOMAdapter da =
 CEFXUtil.getDOMAdapter();
 if (da != null) {
 da.setRenderContext(panel);
 }
}
…

The SVGCanvas class is derived from
javax.swing.JlayeredPane and provides a
method initializeCanvas(). The advice is exe-
cuted after the initialisation method has been called.
Thus in this case the method call is not intercepted.
The advice is solely used for notifying CEFX of the
initialisation and providing it with a reference to the
render context.

To summarize, using aspect-oriented program-
ming for the integration of CEFX into the GLIPS
Graffiti editor did not require much programming
effort. Only seven advices were needed to provide
GLIPS with the basic collaboration functionality.
Five of the used advices were related to the DOM
API and can be reused for other applications using
the DOM. One advice was specific to the Batik li-
brary and one was specific to the application. The
overall performance of the application did not
change noticeable.

AspectJ is one of many existing implementations
of AOP. In this case for example HyperJ (HyperJ
Overview) could alternatively be used. AOP imple-
mentations exist for many different languages and
platforms such as Java, C#, VB.NET, JavaScript,
C/C++, Lua, Python, Ruby, Perl, PHP, Common
Lisp and many others.

ICEIS 2007 - International Conference on Enterprise Information Systems

332

3.3 Awareness Support

The discussed advices are used to integrate CEFX in
a way that satisfies the requirements of communica-
tion, session management and concurrency control.
In order to satisfy the requirement of group aware-
ness, additional effort is necessary.

CEFX provides simple awareness widgets that
allow to notify each user in a collaborative session
for example on other user’s mouse movements. This
can help a user to get an understanding of what other
users are working at. The awareness widgets are
little windows, controlled by the CEFX client and
independent of the extended application. The appli-
cation is not aware of those widgets.

For the integration of the awareness support pro-
vided by CEFX into the GLIPS editor, additional
advices can be used. Java applications make use of
certain interfaces from the java.awt.event pack-
age in order to retrieve information on mouse clicks
and mouse movements. In the following example we
show how we notified CEFX of a user’s mouse
clicks. A new Aspect class containing advices for
mouse events was developed.

public aspect SelectionAspect {
…
 after(MouseEvent event):
 args(event) && execution(
 void mousePressed(MouseEvent))&&
 !within(SelectionAspect)
 {

Advices.mousePressed(event);
 }
…

The above code snippet shows the advice that is
executed when the user presses the mouse button.
The static method mousePressed() of the Advices
helper class delegates the mouse event to the
MouseEventPropagator component of CEFX.

…
public static void
mousePressed(MouseEvent event)
{
 CEFXDOMAdapter da =
 CEFXUtil.getDOMAdapter();
 if (da != null) {
 MouseEventPropagator li =
 (MouseEventPropagator)
 da.getEventPropagator(event);
 if(li!=null)
 {
 li.mousePressed(event);
 }
 …

The MouseEventPropagator component is regis-
tered with the AC component of CEFX and is re-
sponsible for propagating the mouse events to the
other sites, where they are displayed in the corre-
sponding awareness widgets. The same kind of ad-
vices can be implemented for all other kinds of user
events such as typing the keyboard or mouse move-
ments. Using AOP here allows a transparent integra-
tion of awareness mechanisms into the application.

4 REQUIREMENTS

AOP implementations are available for a large num-
ber of programming languages and platforms. One
requirement though is that the target application is
written in a language that is supported by AOP. Ad-
ditionally some AOP implementations require re-
compilation of the application’s source code in order
to weave the generated aspect code into it. Other
AOP implementations do not require source code.
AspectJ for example supports byte-code weaving
and advanced load-time weaving. This allows using
AOP without access to the application’s source
code, which makes it suitable for the extension of
commercial applications.

The integration of CEFX into the GLIPS applica-
tion had the advantage that GLIPS uses the DOM for
accessing it’s data model. This simplified the identi-
fication of relevant join points. For applications that
do not use a standard interface for modifying their
data model the identification of the join points may
be more difficult, but still feasible.

It is worth noticing that the support for heteroge-
neous applications in this approach is limited to ap-
plications using the same type of XML document.
The support for real heterogeneous applications (us-
ing different XML document types) is a subject for
future research.

5 CONCLUSIONS

This paper proposes a novel approach to the integra-
tion of a collaborative editing framework in order to
transparently extend a single-user application with
group editing functionality.

We assume that using standardised data model
interfaces and aspect-oriented concepts can dramati-
cally reduce implementation efforts in comparison to
other approaches using window event translation
and application specific programming interfaces.
This paper shows how little the effort is to transpar-

TRANSPARENT EXTENSION OF SINGLE-USER APPLICATIONS TO MULTI-USER REAL-TIME
COLLABORATIVE SYSTEMS - An Aspect Oriented Approach to Framework Integration

333

ently extend a single-user SVG editing application
using this approach. The application was extended,
by making use of the standard Document Object
Model and the Collaborative Editing Framework for
XML. The developed aspect-oriented programming
advises are reusable and the next step will be to ex-
tend a number of other single-user applications with
group editing functionality.

More and more applications today use XML as a
file format, for example OpenOffice, Mircosoft
Word 2007 and a number of editors for other XML
based file formats. If those applications make use of
the DOM API internally for the modification of their
data model, this will ease their extension with real-
time collaboration features.

However, one aim of this research project is to
provide collaboration support to existing and future
applications used for the design of vehicle electrical
systems in the automotive industries. Today, the
SVG format is a de facto standard for the representa-
tion of circuit diagrams in this area. Other XML
based document formats such as ELOG (Elec-
trological Model) are currently under development.
The development of a vehicle electrical system is a
complex process requiring intensive collaboration
between a number of different companies such as
the OEM, the suppliers and manufacturers of the
cable loom and different subcontractors, but the cur-
rent applications used in this area do not provide
support for real-time collaboration. Providing a sys-
tem that supports real-time collaborative engineering
would allow all parties to work on a single source.
This could lead to a better quality and higher pro-
ductivity.

REFERENCES

Chen, D., Sun, C., Jia, X., Zhang, Y., Yang, Y., 1998.:
Achieving convergence, causality-preservation, and
intention-preservation in real-time cooperative editing
systems. In ACM Transactions on Computer-Human
Interaction, Vol.5, No.1, pp.63-108.

Ignat, C., Norrie, M. C., 2002.: Tree-based model algo-
rithm for maintaining consistency in real-time collabo-
rative editing systems. In ACM Proceedings of the
Fourth International Workshop on Collaborative Edit-
ing Systems, New Orleans, Louisiana.

Molli, P., Skaf-Molli, H., Oster, G., Jourdain, S., 2002.:
Sams: Synchronous, asynchronous, multisynchronous
environments. In Proccedings of the Seventh Interna-
tional Conference on CSCW in Design, Rio de Ja-
neiro, Brazil.

Davis, A., Sun, C., Lu, J., 2002.: Generalizing Operational
Transformation to the Standard General Markup Lan-
guage. In Proceedings of ACM 2002 Conference on

Computer Supported Cooperative Work, New Orleans,
Louisiana, USA.

Xia, S., Sun, D., Sun, C., Chen, D., Shen, H., 2004.: Lev-
eraging single-user applications for multi-user collabo-
ration: the CoWord approach. In Proceedings of ACM
2004 Conference on Computer Supported Cooperative
Work, Chicago, IL USA.

Lu, J., Li, R., Li, D., 2004.: A state difference based ap-
proach to sharing semi-heterogeneous single-user edi-
tors. In Proceedings of CSCW'04 workshop on col-
laborative systems (IWCES-6) and application sharing
systems. Chicago.

Li, D., Li, R., Yu, Y., Yang, Y., 2003.: Using Familiar
Single-User Editors for Collaborative Editing. In Pro-
ceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS'03).

Begole, J.M.A., 1999.: Flexible Collaboration Transpar-
ency: Supporting Worker Independence in Replicated
Application-Sharing Systems. Ph.D. Dissertation. Vir-
ginia Polytechnic Institute and State University,
Blacksburg.

Gerlicher, A.R.S., 2006: A Framework for Real-time Col-
laborative Engineering in the Automotive Industries.
In Proceedings of Third International Conference on
Cooperative Design, Visualization and Engineering,
CDVE 2006, Mallorca, Spain.

Myers, E. W., 1986.: An O(ND) difference algorithm and
its variations. Algorithmica I, pages 251-266.

Li, D., Lu, J., 2006.: A Lightweight Approach to Trans-
parent Sharing of Familiar Single-User Editors. In
Proceedings of ACM CSCW'06, Banff, Alberta, Can-
ada.

Pichiliani, M. and Hirata, C. M., 2006.: A Guide to Map
Application Components to Support Multi-User Real-
time Collaboration. ITA (short paper), Collaborate-
Com 2006, Atlanta, Georgia, USA.

Grudin, J., 1994.: Groupware and social dynamics: eight
challenges for developers. Communications of the ACM,

Volume 37 ,Issue 1, pages 92 – 105.
HyperJ Overview (Tarr, P). Retrieved January 14, 2007,

from http://www.alphaworks.ibm.com/tech/hyperj.
GLIPS Graffiti Editor (n.d.). Retrieved January 14, 2007,

from http://glipssvgeditor.sourceforge.net/.
ITRIS (n.d.). Retrieved January 14, 2007, from

http://www.itris.fr.
PARC, Palo Alto Research Center, Inc. Retrieved January

14, 2007, from http://www.parc.xerox.com/.
The AspectJ Project (n.d.). Retrieved January 14, 2007,

from http://www.aspectj.org.
Aspect-oriented programming - Wikipedia (n.d.). Re-

trieved January 14, 2007, from
http://en.wikipedia.org/wiki/Aspect-
oriented_programming.

Batik SVG Toolkit (n.d.). Retrieved January 14, 2007,
from http://xmlgraphics.apache.org/batik/.

W3C Document Object Model (n.d.). Retrieved January
14, 2007, from http://www.w3.org/DOM.

Electrological Model, ELOG, VDA. Retrieved January 14,
2007, from http://www.ecad-if.de/elog.html.

ICEIS 2007 - International Conference on Enterprise Information Systems

334

