
A FLEXIBLE PERSPECTIVE FOR SOFWARE PROCESSES
Supporting Flexibility in the Software Process Engineering Metamodel

Ricardo Martinho
School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal

Dulce Domingos
Department of Informatics, Faculty of Sciences, University of Lisboa, Lisboa, Portugal

João Varajão
Engineering Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Keywords: Flexibility, software process modeling, process-centered software engineering environments.

Abstract: The lack of flexibility in software process modeling is an important drawback pointed out as the main cause for
the low adoption of Process-centered Software Engineering Environments (PSEEs). The Object Management
Group (OMG) has been working on the Software Process Engineering Meta-model (SPEM) in order to provide
a uniform object-oriented meta-model for building software process models, like the Rational Unified Process
(RUP). Nevertheless, the SPEM neither takes into account flexibility aspects nor provides a flexibility meta-
model for derived software process models. This paper proposes a flexibility meta-model for building flexible
SPEM-based software process models. SPEM compliant PSEEs that implement the proposed meta-model will
provide the ability to build flexible software process models, and to associate distinct flexible mechanisms to
their corresponding modeling elements.

1 INTRODUCTION

Interest in software process modeling and program-
ming was triggered mainly by Osterweil’s keynote
addressed at ICSE 9 in 1987, and his well known
quote“Software processes are software too”(Oster-
weil, 1987). Software processes define sets of activ-
ities and related deliverables, data and organizational
resources necessary to the production of a software
product.

Over the past two decades, advances in process
automation technologies and tools have given relevant
contributions for the emergence of Process-centered
Software Engineering Environments (PSEEs). PSEEs
main goal is to manage software process models and
related instances. Software process models repre-
sent abstract architectures, designs and definitions of
software processes that may be instantiated and pa-
rameterized in the occurrence of a specific software
project. In this context, the Object Management
Group (OMG) has been developing the Software Pro-
cess Engineering Metamodel specification (SPEM),
being its latest version 1.1 dated from January, 2005

(OMG, 2005). SPEM is concerned with defining the
minimal set of process modeling elements necessary
to describe any software development process.

Nevertheless,flexibility is a cross-model property
for software process models. Software process flex-
ibility is concerned with the ability of changing or
evolving software process models and corresponding
instances. For example, a process modeler may want
to change a software process model in order to accom-
modate new activities into the process. The SPEM
specification does not provide support for defining
flexibility properties for software process modeling
elements.

In this paper we propose a flexibility meta-model
for SPEM compliant software process models. This
meta-model takes into account distinct types of flexi-
bility and related mechanisms, as well as the way they
apply for each different SPEM process modeling ele-
ment.

Below we proceed as follows: section 2 briefly de-
scribes the SPEM meta-model. Section 3 provides a
classification for flexibility concepts, along with four
examples of flexibility requirements. In section 4 we

559
Martinho R., Domingos D. and Varajão J. (2007).
A FLEXIBLE PERSPECTIVE FOR SOFWARE PROCESSES - Supporting Flexibility in the Software Process Engineering Metamodel.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 559-562
DOI: 10.5220/0002382505590562
Copyright c© SciTePress



present our flexibility meta-model for SPEM software
processes, based on the classification proposed in sec-
tion 3. Section 5 discusses related work and section 6
concludes the paper.

2 THE SPEM META-MODEL

To provide the necessary context for the rest of this
paper, we resume in this section adapted descrip-
tions according to the last (v1.1) SPEM specification
(OMG, 2005).

The SPEM meta-model is used to describe a
concrete software development process or a fam-
ily of software development processes, like Uni-
fied Process (UP) based processes (Jacobson et al.,
1999). The SPEM meta-model is materialized
in a SPEM_Extensions package, that includes five
specific subpackages with required modeling ele-
ments and semantics for software process engineer-
ing, namely:
• BasicElements - includes Guidance,
GuidanceKind and ExternalDescription
elements. AModelElement is associated with
one or moreExternalDescriptions. Guidance
elements may be associated withModelElements
in order to provide associatedGuidanceKinds
that may represent guidelines, techniques, met-
rics, examples, UML Profiles, tool mentors,
checklists or even templates that can be used from
a practitioner point of view;

• Dependencies - classifies association types
between modeling elements, and includes the
Trace, RefersTo, Precedence, Impacts,
Categorizes andImport dependency types;

• ProcessStructure - defines the main structural
elements from which a process description is con-
structed, including theWorkProduct, Activity,
Step andProcessRole modeling elements;

• ProcessComponents - includes elements that
are concerned with dividing one or more pro-
cess descriptions into self-contained parts that
can be placed under configuration management
and version control. Examples includePackage,
Process andDiscipline elements;

• ProcessLifecycle - introduces process defini-
tion elements to help define the dynamic perspec-
tive of the process, that is, how will the process
perform over time and itsLifecycle structure in
terms ofPhases andIterations.
In the next section we identify and classify flexi-

bility concepts of software processes, in order to ex-
tend SPEM to accommodate flexibility.

3 FLEXIBILITY IN SOFTWARE
PROCESSES

Software process models have peculiar aspects be-
cause they include people that perform creative ac-
tivities. Therefore, it is difficult to foresee all the
lifecycle of a process. Quite often, software projects
begin without previous knowledge of all activities,
mainly because software projects involve uncertainty.
In the next sections we provide examples of flexibility
requirements related to a SPEM compliant software
process model, and then we identify generic con-
cepts and mechanisms associated with process flex-
ibility and how they can be related specifically with
the SPEM approach.

3.1 Software Process Model Flexibility:
An Example

To elicit our problem, let us consider the example
where a process modeler wants to create a customized
SPEM software process model based on UP. Theflex-
ibility requirements for the customized process model
can be resumed as follows:

• R1 - Regarding the UP Requirements
Discipline, the capture of software re-
quirements may be accomplished by using one of
two techniques (Guidances): 1) UML use-case
modeling; and 2)prototyping;

• R2 - The Construction Phase should not
be strictly modeled into the process model.
Programmers will be responsible for adjust-
ing, during execution time, the corresponding
WorkDefinitions;

• R3 - The software project manager should be able
to adapt software quality requirements to conform
with new unforeseen standard directives. This
adaptation should affect all running projects, as
well as new projects derived from the UP-based
process model;

• R4 - For each UP-based process modelPhase, the
number ofIterations will depend on the size
of the software project, and on the amount of re-
quirement changes occurred during the execution
of the project.

Given these requirements, the software process
modeler will produce aflexible UP-based process
model that can be instantiated for each project that the
company gets. In the next subsection we classify flex-
ibility concepts to serve as foundations for the flexi-
bility meta-model proposed in section 4.

ICEIS 2007 - International Conference on Enterprise Information Systems

560



3.2 Flexibility Types and Mechanisms

Several relevant works have contributed to solve the
lack of flexibility, either for generic Process Aware
Information Systems (PAIS) (e.g. (Casati et al.,
1998; Sadiq et al., 2005), or particularly for PSEEs
(Bandinelli et al., 1993; Heimann et al., 1996; Ar-
baoui et al., 2002). Based on these contributions, we
classify process flexibility in the following categories:

• flexibility by selection - the process supports
expected exceptions, i.e., it supports alternative
paths to normal behavior. These paths may either
be modeled: 1) in advance (advance modeling)
into the process definition, before execution time,
or; 2) as “black boxes”, and be specified not be-
fore its actual execution time (late modeling);

• flexibility by adaption - the process supports un-
expected exceptions, i.e., adjustments to process
definitions and/or instances to conform to unfore-
seen, emergent events. Adaptations made at the
process definition level are calledevolutionary
changesand the ones made at the instance level
are calledad-hoc changes.

Further on, these categories may be achieved
through different mechanisms. For example, in
flexibility by selection, advance modeling may be
achieved either throughprescriptive modeling, where
process definitions are rigorously detailed, or through
descriptive modeling, where process definitions are
reduced to a minimum set of elements, allowing for
them to combine in different ways.R1 is an example
of an advanced prescriptive modelingrequirement,
and R2 provides alate modelingflexibility require-
ment.

In flexibility by adaption, there are several al-
ternatives regarding the propagation of evolutionary
changes, including (Casati et al., 1998): 1) stopping
all old process instances; 2) waiting for all old process
instances to complete before starting new ones; or 3)
progressively migrate old process instances to com-
ply with new ones. TheR3 requirement is an example
of anevolutionary changethat should be propagated
to all running instances.Ad-hoc changesmade to se-
lected process instances may also be enforced using:
1) a definition of a set of operations to change run-
ning process instances; 2) defining a new version for
the process definition to accommodate the unforeseen
changes, and migrating all affected process instances
to the new version; or 3) tolerating inconsistencies of
process instances with respect to their definitions.R4
is a typical ad-hoc type of flexibility requirement.

In the next section we present our meta-model that
reflects these flexibility concepts applied to SPEM
modeling elements.

+getFlexibleFacet()

«interface»

FlexibleElement

+getEvolvableFacet()

«interface»

EvolvableElement

+getAdHocFacet()

«interface»

Ad-hocElement

+getAdvModelingFacet()

«interface»

AdvModelingElement

+getLateModelingFacet()

«interface»

LateModelingElement

1 0..*

Facet

main facet

ModelElement

+getFlexibleFacet()

FlexibleFacet

Figure 1: Proposed SPEM flexibility meta-model structure.

4 THE SPEM FLEXIBILITY
META-MODEL

SPEM modeling elements neither have to be exclu-
sively of one flexibility type, nor one type is imple-
mented in the same manner for each modeling el-
ement. For example, a software processActivity
may be both flexibleby selectionand by adaption,
being associated with both mechanisms forlate mod-
elingandad-hoc changes. Thus, on one side we have
modeling elements that may implement several flex-
ible interfaces, and on the other side, operations de-
fined by those interfaces are implemented according
to a particular modeling element.

In Figure 1 we present our proposed SPEM flex-
ibility meta-model. The model implements thefacet
design pattern, proposed in (Crahen and Ramamurthy,
2002). The facet pattern allows for a clean separation
of behavior from its implementation. In this case, the
pattern helps us to separatewhat types of flexibility
should a SPEMModelElement implement, fromhow
can they be implemented, regarding its type (e.g. if it
is of typeActivity or Phase). Elements in Figure 1
include:

• FlexibleElement - represents a flexible el-
ement interface. Specializations include sub-
types of flexible interfaces that can be imple-
mented by a SPEMModelElement (the dashed
generalization association). Each specialization
of FlexibleElement represents a distinct flexi-
ble interface, which defines distinct operations for
fetching the rightFlexibleFacet;

• ModelElement - represents the topmost
generic modeling element of the SPEM meta-
model. ModelElements may implement none to
severalFlexibleElement interfaces, having, for
each one of them, the corresponding operations
and the associatedFlexibleFacets;

• FlexibleFacet - corresponds to con-
crete implementations of flexible mechanisms,
driven by flexibility interfaces implemented
by ModelElements. The shared aggregation
association means that none to several flex-

A FLEXIBLE PERSPECTIVE FOR SOFWARE PROCESSES - Supporting Flexibility in the Software Process
Engineering Metamodel

561



ible mechanisms are strictly bounded to a
ModelElement’s type.

A process modeler can build her own process
model by composing SPEMModelElements and as-
sociating them with the required flexibility mecha-
nisms (implemented throughFlexibleFacets). For
example, to model theR2 requirement, the process
modeler can start by defining the fourPhases of
the Lifecycle of the process model, and choose
theLateModelingFacet for theConstructionPhase
from a list of available facets. This means that a
software project derived from the customized process
model could be instantiated and started without the
full definition of theActivities andSteps that com-
pose theConstructionPhase, fulfilling the R2 flexibil-
ity requirement.

5 RELATED WORK

Important early contributions on software process
evolution include the work in (Bandinelli et al., 1993)
and the proposed SPADE system. SPADE is a PSEE
that supports software process evolution through the
reflective features of its custom Process Modeling
Language (PML). Process models may be modified
using predefined evolution mechanisms offered by the
PSEE and tightly coupled to its PML. In (Cugola,
1998) the author proposes the PROSYT PSEE and
follows a different approach, enhancing the support
of small deviations betweenreal processes andmod-
eledprocesses. However, none of these works men-
tioned above promotes a clean separation of types of
flexibility, or allows for fine-grained and loose cou-
pled associations between flexibility types and flexi-
ble mechanisms for each distinct element of a process
model.

In an interesting work presented in (Balust and
Franch, 2001), the authors use a similar approach by
adopting a UML software process meta-model, and
extending it by using a PML called PROMENADE.
The definition of flexible software process models is,
however, limited toadvanceandlate modelingmech-
anisms, and no extensible flexibility meta-model is
proposed.

6 CONCLUSIONS

This paper proposes a flexibility meta-model for
SPEM-based software process models. Main advan-
tages of our approach include: 1) considering SPEM
as the reference software process meta-model, as it

enhances process modeling standardization and ac-
ceptance; 2) using thefacetdesign pattern to enhance
a clean separation between flexibility interfaces and
corresponding implementations (facets) that depend
on eachModelElement specialization; and 3) provid-
ing an extensible interface hierarchy, fomenting flexi-
bility type modularity.

We are implementing this flexibility meta-model
in a SPEM-compliant PSEE. We are also apply-
ing the facet pattern to support distinct flexible per-
spectives that a processModelElement can have
in our PSEE. Preliminary work starts by con-
sidering FlexibleFacets associated with SPEM
ModelElements that not only provide flexibility into
process enactments but also to process modeling.

REFERENCES

Arbaoui, S., Derniame, J.-C., Oquendo, F., and Verjus, H.
(2002). A comparative review of process-centered
software engineering environments.Ann. Softw. Eng.,
14(1-4):311–340.

Balust, J. M. R. and Franch, X. (2001). Building expres-
sive and flexible process models using a uml-based
approach. InEWSPT ’01: Proc. of the 8th Eu-
ropean Workshop on Software Process Technology,
pages 152–172, London, UK. Springer-Verlag.

Bandinelli, S. C., Fuggetta, A., and Ghezzi, C. (1993). Soft-
ware process model evolution in the spade environ-
ment. IEEE Trans. Softw. Eng., 19(12):1128–1144.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1998).
Workflow evolution.Data & Knowledge Engineering,
24(3):211–238.

Crahen, E. and Ramamurthy, B. (2002). Facet: A pattern for
dynamic interfaces. InPLoP 2002: Proc. of the 9th
Conf. on Pattern Language of Programs, Monticello,
Illinois, USA.

Cugola, G. (1998). Tolerating deviations in process sup-
port systems via flexible enactment of process models.
IEEE Trans. Softw. Eng., 24(11):982–1001.

Heimann, P., Joeris, G., Krapp, C.-A., and Westfechtel, B.
(1996). DYNAMITE: Dynamic task nets for software
process management. InICSE ’96: Proc. of the 18th
Int’l Conf. on Software Engineering, pages 331–341,
Washington, DC, USA. IEEE Computer Society.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999).The Uni-
fied Software Development Process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

OMG (2005). Software Process Engineering Metamodel
Specification, v1.1. Technical report, Object Manage-
ment Group.

Osterweil, L. (1987). Software processes are software too.
In ICSE ’87: Proc. of the 9th Int’l Conf. on Software
Engineering, pages 2–13, Los Alamitos, CA, USA.
IEEE Computer Society Press.

Sadiq, S. W., Orlowska, M. E., and Sadiq, W. (2005). Spec-
ification and validation of process constraints for flex-
ible workflows. volume 30, pages 349–378, Oxford,
UK, UK. Elsevier Science Ltd.

ICEIS 2007 - International Conference on Enterprise Information Systems

562


