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Abstract: The paper describes realization of distributed approach to continuous queries with kNN join processing in a 
spatial telemetric data warehouse. Due to dispersion of the developed system, new structural members were 
distinguished - the mobile object simulator, the kNN join processing service and the query manager. 
Distributed tasks communicate using JAVA RMI. The kNN queries (k Nearest Neighbour) joins every point 
from one dataset with its k nearest neighbours in the other dataset. In our approach we use the Gorder 
method, which is a block nested loop join algorithm that exploits sorting, join scheduling and distance 
computation filtering to reduce CPU and I/O usage. 

1 INTRODUCTION 

With expansion of location-aware technologies such 
as the GPS (Global Positioning System) and 
growing popularity and accessibility of the mobile 
communication, location-aware data management 
becomes a significant problem in the mobile 
computing systems. Mobile devices become much 
more available with concurrent growth of their 
computational capabilities. It is expected that future 
mobile applications will require scalable architecture 
that will be able to process a very large and quickly 
growing number of mobile objects and to evaluate 
compound queries over their locations (Yiu, 
Papdias, Mamoulis, Tao, 2006). 

The paper describes realization of distributed 
approach to the Spatial Location and Telemetric 
Data Warehouse (SDW(l/t)), which bases on the 
Spatial Telemetric Data Warehouse (STDW)) 
STDW consist of telemetric data containing 
information about water, gas, heat or electricity 
consumption (Gorawski, Wróbel, 2005). DSDW(l/t) 
(Distributed Spatial Location and Telemetric Data 
Warehouse) is supplied by datasets from Integrated 
Meter Reading (IMR) data system and by mobile 
objects locations. 

Integrated Meter Reading data system enables 
communication between medium meters and 
telemetric database system. Using GPRS or SMS 
technology, measurements from meters located on a 
wide geographical area are transferred into database, 

where they are processed and stored  for further 
analysis. 

The SDW(l/t) supports  tactical decisions making 
process concerning medium productivity on the base 
of short-termed consumption predictions. 
Predictions are supported in the analysis of data 
assembled in a data warehouse during the ETL 
process, evaluated for datasets from the telemetric 
database server. 

2 DESIGNED APPROACH 

First figure illustrates designed approach’s 
architecture. We can observe multiple, concurrently 
operating mobile objects (query points), the Gorder 
(Chenyi, Hongjun, Beng Chin, Jing 2004) service is 
responsible for processing simultaneous continuous 
queries over k nearest neighbors, RMI’s SDWServer 
and the central part of designed data system - 
SDW(l/t), which is also described as a query 
manager. Communication between SDW(l/t) and 
query processing service is maintained with Java’s 
Remote Method Invocation (RMI) solutions.  

Principal notion of the described approach is to 
distribute previously designed system over many 
independent nodes. Asa result we expect faster and 
more efficient processing of similarity join method 
Gorder. In the previous approach all components of 
the system shown in figure 1 were linked together on 
a single computer station. All active processes used 
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the same CPU. Because of high CPU usage and long 
evaluation time we decided to distribute the SDW 
(l/t) into independent services, linked together with 
Java RMI technology. The most efficient solution 
assumes running the Gorder service on a separate 
computer because it is the most CPU consuming 
element. Other components may be executed on 
other computers or on the same computer due to 
their insignificant CPU consumption. 

Designed system works as follows. First we have 
to upload a road map and defined meters into 
database on Oracle Server, using SDW(l/t). Then we 
start the SDWServer, the Gorder service and as 
many mobile objects as we want to evaluate. Every 
new mobile object is registered in the database. In 
SDW(l/t) we define new queries for active mobile 
objects. Queries are also registered in database. The 
Gorder service periodically verifies if any queries 
are defined. Every query is processed during each 
cycle of the Gorder process. The results are sent to 
SDW(l/t), where they are stored for further analysis. 
SDWServer secures steady RMI connection between 
running processes. 

 
Figure 1: DSDW(l/t). 

3 MOBILE OBJECT’S 
SIMULATOR 

For designed approach’s evaluation we developed a 
mobile object simulator that corresponds to any 
moving object like car, man or airplane. Being in 
constant movement, mobile objects are perfect to act 
as a query points. Continuous changes in their 
locations forces data system to continuously process 
queries to maintain up-to-date information about 
object’s k nearest neighbours. While designing the 
mobile object mechanism we made a few 
assumptions. On the one hand, mobile objects are 

not allowed to interfere in system’s behaviour, but 
on the other hand, they provide everything that is 
necessary to conduct system’s overall experiments. 
They also prepare system for realistic, natural 
conditions. 

Mobile object’s simulator is a single process that 
represents a moving object. It consantly changes its 
actual location and destination.  We assume that a 
moving object has the ability to send updates on its 
location to the Oracle server, which is the core of 
DSDW (l/t). It is justifiable assumption because the 
GPS devices are getting cheaper every day. 

In real terms, the location-aware monitoring 
systems are not aware of mobile object’s problem of 
choosing the right direction, because it is not the 
system that decides where specific object is aiming 
to. System only receives information about current 
object’s location and makes proper decisions on the 
way of processing it. Since our project is not a real 
life system, but only a simulation, which goal is to 
evaluate new solutions, we do not have access to the 
central system containing information about the 
mobile objects positions. Therefore, we had to 
develop an algorithm that will decide on mobile 
object’s movement in order to make SDW(l/t) more 
realistic. 

4 GORDER QUERY SERVICE  

k Nearest Neighbor (kNN) join combines each point 
of one dataset R with its k nearest neighbors in the 
other dataset S. Gorder is a block nested loop join 
algorithm which achieves its efficiency due to data 
sorting, join scheduling and distance computation 
reduction. Firstly it sorts input datasets into order 
called G-order (an order based on a grid). As a 
result, the datasets are ready to be partitioned into 
blocks that are proper for efficient scheduling for 
join processing. Secondly, scheduled block nested 
loop join algorithm is applied to find k nearest 
neighbors for each block of R data points within data 
blocks of S dataset. 

Gorder achieves its efficiency due to inheritance 
of strength of the block nested loop join in being 
able to reduce random reads and due to a pruning 
strategy, which reduces unpromising data blocks 
using properties of G-ordered data. Furthermore, 
Gorder utilizes two-tier partitioning strategy to 
optimize CPU and I/O time and reduces distance 
computation cost by pruning away redundant 
computations. 
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4.1 G-ordering 

The Gorder’s authors designed an ordering based on 
a grid called G-ordering to group neighboring  data 
points together, so that in the scheduled block nested 
loop join phase they can identify the partition of a 
block of G-ordered data and schedule it for join. 

Firstly, Gorder conducts the PCA transformation 
(Principal Component Analysis) on input datasets. 
Secondly, it applies a grid on a data space and 
partitions it into ld

 square cells, where l is the 
number of segments per dimension. 
 
Definition 1. (kNN join) (Chenyi, Hongjun, Beng 
Chin, Jing, 2004) Given two data sets R and S, an 
integer k and the similarity metric dist(), the kNN-
join of R and S, denoted as R kNN S, returns pairs of 
points (pi; qj) such that pi is from the outer dataset R 
and qj from the inner dataset S, and qj  is one of the 
K-nearest neighbours of pi. 
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For further notice we have to define the 
identification vector, as a d-dimensional vector 
v=<s1,...,sd>, where si is the segment number to 
which the cell belongs to in ith dimension. In our 
approach we deal with a two-dimensional 
identification vectors. 

Bounding box of a data block B is described by 
the lower left E = <e1, ..., ed> and upper right T = 
<t1, ..., td> point of data block B (Böhm, 
Braunmüller, Krebs, Kriegel  2001). 
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where α is an active dimension of the data block. In 
designed approach points will be represented only 
by two dimensions: E = <ex, ey>, T = <tx, ty>. 

4.2 Scheduled G-ordered Data Join  

In the second phase of Gorder, G-ordered data from 
R and S datasets is examined for joining. Let assume 
that we allocate nr and ns buffer pages for data of R 
and S. Next we partition R and S into blocks of the 
allocated buffer sizes. Blocks for R are allocated 

sequentially and iteratively into memory. Blocks for 
S are loaded into memory in order based on their 
similarity to blocks for R, which are already loaded. 
It optimizes kNN processing by scheduling blocks 
for S so that the blocks which are most likely to 
contain nearest neighbors can be loaded into 
memory and processed first. 

Similarity of two G-ordered data blocks is 
measured by the distance between their bounding 
boxes.  As shown in a previous section, bounding 
box of a block of G-ordered data may be computed 
by examining the first and the last point of data 
block. The minimum distance between two data 
blocks Br and Bs is denoted as MinDist(Br, Bs), and is 
defined as the minimum distance between their 
bounding boxes (Chenyi, Hongjun, Beng Chin, Jing, 
2004). MinDist is a lower bound to the distance of 
any two points from blocks of R and S. 
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According to the corollary shown above we can 

deduce two pruning strategies (Chenyi, Hongjun, 
Beng Chin, Jing, 2004): 

1. If MinDist(Br,Bs) > pruning distance of p, Bs does 
not contain any points belonging to the k-nearest 
neighbors of the point p, and therefore the distance 
computation between p and points in Bs can be 
filtered. Pruning distance of a point p is the distance 
between p and its kth nearest neighbor candidate. 
Initially, it is ∞. 

2. If MinDist(Br,Bs) > pruning distance of Br, Bs does 
not contain any points belonging to the k-nearest 
neighbors of any points in Br, and hence the join of 
Br and Bs can be pruned away. The pruning distance 
of an R block is the maximum pruning distance of 
the R points inside. 
 

Join algorithm firstly sequentially loads blocks 
of R into the main memory. For the block Br of R 
loaded into memory, blocks of S are sorted in order 
according to their distance to Br. At the same time 
blocks with MinDist(Br,Bs) > pruning distance of Br 
are pruned (pruning strategy (2)). That is why only 
remaining blocks are loaded into memory one by 
one. For each pair of blocks of R and S the 
MemoryJoin method is processed. After processing 
all not pruned blocks of S with block of R, list of 
kNN candidates for each point of Br, is returned as a 
result. 
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4.3 Memory Join 

To join blocks Br and Bs each point pr in Br is 
compared with Bs. For each point pr in Br we find 
out if MinDist(Br, Bs) > pruning distance of pr. If the 
condition holds, according to the first pruning 
strategy, Bs cannot contain any points that could be 
candidates for k nearest neighbours of pr, so Bs can 
be skipped. In other way function CountDistance is 
called for pr and each point ps in Bs. Function 
CountDistance inserts into a list of kNN candidates 
of pr this ps, which dist(pr, ps) > pruning distance of 
pr. 2

αd  is a distance between the bounding boxes of 
Br and Bs on the α-th dimension, where 

).,.min( ααα sr BB= . 

5 SDW(L/T) 

The SDW(l/t) acts as a coordinator of all actions. 
Configuration changes are initiated by this service. It 
affects efficiency of the whole DSDW (l/t). The 
SDW(l/t) is responsible for loading a virtual road 
map in the database. All objects included in the 
input dataset for the Gorder join processing service 
are displayed on the map. In this application we can 
define all query execution parameters that may 
affect computation time. We correspond to this part 
of system as a „query manager” because all queries 
are defined and maintained here. 

The SDW(l/t) enables generation of test datasets 
for experimental runs. It is also an information 
centre about all defined mobile objects and about 
their current locations. One of the most important 
feature of the SDW(l/t) enables tracing current 
results for continuously processed queries. 

Query manager provides information about 
newly defined or removed queries to the 
SDWServer. Afterwards, this information is fetched 
by Gorder service, which recalculates input datasets 
for kNN join and returns them for the query 
processing. 

6 EVALUATION OF 
DISTRIBUTED SDW(L/T) 

All experiments were performed on a road map of 
size 15x15 km. Map was generated for 50 nodes per 
100 km2 and for 50 meters per 100 km2 for each type 
of medium (gas, electricity, water). Only evaluation 
on effect of number of meters was conducted for a 

few different maps. The number of segments per 
dimension was set to 10. Block size was 50 data 
points. This values has been considered as optimal 
after performing additional tests that are not 
described in this paper. In the study we performed 
experiments for a non-distributed SDW(1/t) and 
distributed versions of SDW(l/t) – DSDW(l/t). The 
results illustrate influence of distribution on system 
efficiency and query computation time. 

6.1 Testing architecture DSDW(l/t) 

Figure 2 illustrates hardware architecture used 
during evaluation of DSDW(l/t). On first computer 
we place Oracle 10g with the designed database, 
RMI server SDWServer and the SDW(1/t) for 
managing queries. On the separate computer we 
place mobile objects because they do not consume 
much of the computation power and many processes 
can be run simultaneously. On the last computer we 
run only the Gorder service for better evaluation 
time. 
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Figure 2: Testing architecture DSDW(l/t). 

6.2 Single Query Experiments 
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Figure 3a: Effect of value k SDW(l/t). 
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For a single query experiments we define one 
mobile object. Figure 3a. illustrates that average 
evaluation time of a query concerning one type of 
meters (1) is more or less on constant level for non-
distributed version SDW(l/t). We can notice 
distractions for k equal 6 or 8 but this aberrations are 
very small, measured in milliseconds. For query 
encompassing all meters (2), for higher number of 
meters, an average query evaluation time increases 
with the growth of value k starting from value 8, 
where minimum is achieved. However, this increase 
is also measured in milliseconds. For DSDW(l/t) we 
can observe a little higher average measure time, but 
it is constant and it does not change with the 
increase of value k. 
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Figure 3b: Effect of value k DSDW(l/t). 

While testing the influence of of the number of 
meters on query evaluation time we set parameter k 
to value 20 (Figure 4). Performed experiments show, 
that with the growth of number of meters the query 
evaluation time increases. However, time does not 
grow up very quickly. After increasing the number 
of meters six times, query evaluation time increased 
for about 77 % for non-distributed SDW(l/t). For 
DSDW(l/t) we can notice little higher average 
evaluation time. That is caused by the need of 
downloading all meters data to another computer. 

6.3 Simultaneous Queries Experiments 

The time of full Gorder process was measured 
during experiments for simultaneous queries. It 
means that we measured the average summary 
evaluation time for all defined queries that are 
processed during single run of Gorder process. 

Figure 5 summarizes the effect of number of 
simultaneous queries on average Gorder process 
evaluation time. All queries were defined for the 
same type of meters. That is why the evaluation time 
of one cycle of the Gorder process was evaluated 
during one single call of the Gorder algorithm. 

Concurrently with previous results, the influence of 
k value on the process evaluation time is 
insignificant. However, with the growth of number 
of simultaneous queries the time of conducted 
computations increases. For SDW(l/t) experiments 
were performed only for 5 mobile objects due to 
high CPU usage caused by running entire system on 
one computer. It was needless  to run experiments 
for a greater number of mobile objects. An average 
evaluation time increases with the growth of number 
of queries. Each additional query causes time growth  
for about 10 ms. For distributed version of the 
system we could process 12 objects and more. An 
average evaluation time is little higher but it is more 
constant and increases slowly. 
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Figure 4: Effect of number of meters per 100 km2 – 
SDW(l/t) (first figure) and DSDW(l/t) (second figure). 

Differentiation of queries (Figure 6) caused that 
in every single cycle of Gorder process, Gorder 
algorithm was called separately for every type of 
query. Therefore, for four queries about four 
different types of meters Gorder process called 
Gorder algorithm four times. Given results for non-
distributed SDW(l/t) proved that with the growth of 
the number of differential queries, process 
evaluation time increases significantly. We 
processed only three queries with input datasets with 
the same size. 

In the DSDW(l/t) we performed experiments for 
12 queries. 3 queries about water meters, 3 about gas 
meters and 3 about electricity meters. Each of them 
with the same input dataset size. We also added 3 
queries encompassing all meters. By adding queries 
successively, one by one, from each type of query, 
we measured average evaluation time of the entire 
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process. Given results show that with the growth of 
the number of different queries the average 
evaluation time increases slowly. The growth is 
much less significant than in non-distributed version 
and we are able to process much more queries. 

7 SUMMARY 

Pilot system SDW(l/t) is being improved in terms of 
searching for new simultaneously continuous queries 
processing techniques. Distributed approach of 
designed system DSDW(l/t) shows that this 
development direction should be considered for 
further analysis. Furthermore, using incremental 
execution paradigm as the way to achieve high 
scalability during simultaneous execution of 
continuous spatio-temporal queries should be 
considered. Queries should be grouped in the unique 
list of continuous, spatio-temporal queries, so that 
spatial join could be processed between moving 
objects and moving queries.  

We also consider implementing solution for 
balanced, simultaneous and distributed query 
processing to split execution of queries of the same 
type on different computers, depending on their 
CPU usage prediction. 
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Figure 5: Effect of number of simultaneous queries – 
SDW(l/t) (first figure) and DSDW(l/t) (second figure). 
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Figure 6: Effect of differentiation of simultaneous queries 
– DSDW(l/t).  

ICEIS 2007 - International Conference on Enterprise Information Systems

136


