
MAINTENANCE COST OF A SOFTWARE DESIGN
A Value-Based Approach

Daniel Cabrero
Dirección General de Tráfico, Spanish Ministry of Internal Affairs, Madrid, Spain

Javier Garzás
Kybele Consulting S.L. Madrid, Spain

Mario Piattini
Alarcos Research Group. University of Castilla-La Mancha. Ciudad Real, Spain

Keywords: Value-Based design, cost estimation, maintenance, design evaluation.

Abstract: Alternative valid software design solutions can give response to the same software product requirements. In
addition, a great part of the success of a software project depends on the selected software design. However,
there are few methods to quantify how much value will be added by each design strategy, and hence very
little time is spent choosing the best design option. This paper presents a new approach to estimate and
quantify how profitable is to improve a design solution. This will be achieved by estimating the
maintenance cost of a software project using two main variables: The probability of change of each design
artifact, and the cost associated to each change. Two techniques are proposed in this paper to support this
approach: COCM (Change-Oriented Configuration Management) and CORT (Change-Oriented
Requirement Tracing).

1 INTRODUCTION

Recently, a Value-based software engineering
(VBSE) agenda has emerged (Boehm, 2005), with
the objective of integrating Value considerations
into the full range of existing and emerging software
engineering principles and practices. One of the
major elements of this agenda is Value-based
architecting, which involves the further
reconciliation of the system objectives with
achievable architectural solutions.

Some work has been already published
according to the agenda. In particular, Value
considerations about requirements (Cleland-Huang
and Denne, 2005, Cleland-Huang et al., 2004,
Heindl and Biffl, 2005, Srikanth and Williams,
2005) and test Value-based aspects (Egyed et al.,
2005, Huang and Bohem, 2006, Srikanth and
Williams, 2005). However, very few proposals about
Value-based design have been written. (Kazman et
al., 2001) exposes an architecture-centric approach
to the economic modelling of software design
decision making called CBAM (Cost Benefit

Analysis Method), in which costs and benefits are
traded off with system quality attributes. However,
this method doesn’t provide any clue of how this
cost should be calculated. Up to now, there is no
work addressing how to calculate cost and benefit of
each design decision in a Value-based context.

The way each design decision affects to the
maintainability and global cost of software projects
is still an open research issue. In general, each
design artifact has a different relative importance. In
fact, the contribution to the global design will vary
depending on where and how the solution is applied.
This lead us to the concept of “Value-based” Design.

2 FROM DESIGN TO VALUE

Software maintenance consumes the largest part of
the overall lifecycle cost (Bennet and Rajlich, 2000,
Pigoski, 1996). The incapacity to update software
quickly and reliably means that organizations lose
business opportunities. Thus, in recent years we

384
Cabrero D., Garzás J. and Piattini M. (2007).
MAINTENANCE COST OF A SOFTWARE DESIGN - A Value-Based Approach.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 384-389
DOI: 10.5220/0002358903840389
Copyright c© SciTePress

have seen an important increase in research
addressing these issues.

Considering the ISO 9126 standard, three
important parameters for quality maintenance of
Object Oriented Micro Architectural Design exist:
Analyzability, Changeability and Stability:

 Analyzability allows us to understand the

design.
 Changeability allows a design to be able to be

altered, an important requirement at the time of
extended functionality into an existing code. In
our case, the element that provides
changeability is what it is called indirection.
(Nordberg, 2001) comments that “at the heart of
many design patterns is an indirection between
service provider and service consumer”.

 Stability allows us reduce risk of unexpected
effect of modifications.

Introducing indirections, such as abstraction

layers or patterns, has a big impact on the
relationship among analyzability, changeability and
stability. Thanks to the fact that experienced
software engineers and domain specialists develop
patterns, the software community can take advantage
of this reliable knowledge, available from pattern
libraries (Gamma et al., 1995).

This new approach was an important milestone
when talking about design techniques. Since then,
however, a lot of applications have been designed.
Some of them implemented no patterns at all, and on
the other hand, some others are overloaded with
patterns. But then, when should I introduce a new
indirection?

Figure 1: Impact of the number of Patterns on
Maintainability extracted from (Garzás and Piattini, 2002).

For example, if a design implements a lot of
design patterns this design will have a great amount
of changeability and stability, but it won’t be
analyzable. On the other hand, if it doesn’t provide
point of change (indirections) it will be analyzable,
but difficult to change. Figure 1 depicts this context.
This problem lead us to the point that not every

pattern or indirection adds the same Value to the
design, it depends on where and how it’s used. This
will be discussed in detail in the next section.

3 COST DRIVEN DESIGN

3.1 Cost of Maintainability

A first approach for calculating the cost of a design
is the generic cost model showed in the equation 1.

Ct = Ci + Cm (1)

The Total Cost of Construction (Ct) is defined by

two factors: The initial development cost (Ci), and
the maintenance cost of that implementation (Cm).

Extending this model, this paper proposes to
decompose the problem into pieces, and to apply this
model to each piece that predicts which will be the
cost of development and maintenance during the
whole project’s life, taking into account not only the
cost, but also the long-term benefit.

This can be done multiplying the probability of
change of each component by the cost of change. Of
course, the probability of change will depend on the
estimated life expectancy of the project. Thus, the
equation 2 models the maintenance cost in this
scenario.

Cm = Σ year, comp Probability(change) * Cchange (2)

Where Σ year, comp Probability(change) is the

probability of change of a component in the whole
life of the project, and Cchange is the cost of change of
this component. The feasibility of this model
depends on a correct estimation of probability and
cost. In addition, a usable technique of
decomposition of the problem must be defined.

3.2 Cost of Refactoring

(Fowler, 1999) introduced the concept of
“Refactoring”. To refactor an application is to
change its internal design in order to make it easier
to maintain but conserving the same external
behaviour.

In this study, we will use the model to decide
whether or not to refactor a faulty expensive-to-
maintain application. In terms of viability and costs,
a software company has to check if the cost of
refactoring (Crefactoring) plus maintenance
(Cm(refactored)) is smaller than the money spent in
the long term maintenance cost without refactoring
(Cm). See equation 3.

MAINTENANCE COST OF A SOFTWARE DESIGN: A Value-Based Approach

385

Cm > Cm(refactored) + Crefactoring (3)

If this statement is true, the refactoring of the

faulty application is viable. Otherwise, it could be
better not to modify the application or to build it
from the beginning.

To be able to apply this model, we must estimate
several variables: the probability of change of a
component (Σ year, comp Probability(change)), the cost
of a change (Cchange), and the cost of refactoring
(Crefactoring). The rest of the paper will focus on this
task.

4 ESTIMATING THE
PROBABILITY OF CHANGE

As stated in section 2.2, the feasibility of this model
depends on a correct estimation of probability of
change.

Two techniques are proposed in this paper to
tackle this problem: COCM (Change-Oriented
Configuration Management) and CORT (Change-
Oriented Requirement Tracing).

4.1 Change-Oriented Configuration
Management (COCM)

This technique reviews which object has changed
and when it happened. The Table 1 shows an
example of data extraction.

Table 1: Example of COCM data extraction.

Object Changes
Object 1 10/10/2006

12/10/2006
15/10/2006

Object 2 10/10/2006
12/10/2006

Object 3 15/10/2006

The historical information available on the Table

2 might be transformed into probability of change.
This probability will be obtained by normalizing the
number of changes.

Table 2: COCM probability of change.

Object Estimated probability of
change

Object 1 3/3 = 100%
Object 2 2/3 = 66%
Object 3 1/3 = 33%

The main advantage of this technique is that it

can be easily automated, but there are two pre-
requisites for its utilisation. The first is that we need

to have all this information available in a
Configuration Management Tool. The other is that
this tool must have been already used for a long
enough period of time to receive a representative
amount of change requests.

4.2 Change-Oriented Requirement
Tracing (CORT)

Using final user input to estimate probability of
change of a design artifact is a difficult task for two
reasons. First, among the existing types of software
artefacts (requirement, design, code, and so on),
requirement artifacts are the only items that can be
understood by the stakeholders. For this reason,
tracing techniques need to be used to identify where
those requirements corresponds to design artifacts.
Second, in most cases, the only link between
designers and final users is the gathered
requirements, which have no mention to the
probability of change and earned Value of each one.

To solve this problem, we propose to extract and
document some additional information concerning
the probability of change for each requirement.
Later, this information will be traced into design
artifacts to find out which requirement will change
and how, according to the final user.

4.2.1 Requirement Elicitation Approach

The aim of this new approach is to identify which
requirement will change. Our technique is inspired
by a case study presented by (Srikanth and Williams,
2005), that used a method called VBRT (Value
Based Requirement Tracing), which sets a
requirement priorization based on the risk and the
relative Value of each requirement. In our case, we
will use a similar approach but focusing on
changeability.

In this way, after identifying stakeholders of the
project, they are asked to assign a “changeability”
variable to each requirement and use case. This will
generate a matrix of requirement/stakeholders with a
number from 1 to 10 expressing the “estimated
variability” of each requirement from each
stakeholder point of view, as showed in the Table 3.

Table 3: “Estimated Variability” matrix.

 User 1 User 2 User 3

Req. 1 3 5 0
Req. 2 2 7 1
Req. 3 0 1 0

This variable is then normalized in order to

obtain a probability. The Table 4 depicts the process.

ICEIS 2007 - International Conference on Enterprise Information Systems

386

Table 4: Probability of change per user of each
requirement.

 User 1 User 2 User 3

Req. 1 3/7 = 28% 5/7 = 71% 0
Req. 2 3/7 = 28% 7/7 = 100% 1/7 = 14%
Req. 3 0 1/7 = 14% 0

The next step is to calculate the average or

probability (or adjusted average assigning weights to
different users if each stakeholder is not equally
important). In this case, for simplicity, we will
consider that all users have the same relative
importance, and we won’t use weights. The Table 5
shows probability of change of the each
requirement.

Table 5: Probability of change of each requirement.

 Probability of Change

Req. 1 33%
Req. 2 47%
Req. 3 5%

The main advantage of this approach is that it

can be easily used by many software requirement
tools, which already have variables associated with
requirements, such as importance or frequency. But
on the other hand, we have the problem that we need
the software requirements specification and direct
contact with stakeholders, which is not always
available.

4.2.2 Tracing Requirements to Design
Artifacts

In software development projects there are
interdependencies between all kinds of artifacts, e.g.
requirements, design, source code, test cases.
Requirements tracing is the ability to follow the life
of a requirement in a forward and backward
direction (Gotel and Finkelstein, 1994).

An interesting summary of tracing oriented to
improve the return of investment is provided by
(Cleland-Huang et al., 2004). The detailed study of
each option is out of the scope of this research.
Anyway, all of them finally establish a relationship
between a set of requirements and an object or group
of objects.

This relationship will allow us to analyse which
objects will change if a given requirement changes,
and to translate that “probability of change” from the
requirement to objects. For example, if requirement
1 has a 33% of probability of change and this change
will affect to the object A and B, we could say that

the object A and B have a 33% of probability of
change.

5 ESTIMATING THE COST OF
CHANGE

It’s very difficult to estimate what we don’t know.
For this reason, the first logical step is to understand
which kind of changes may be needed. Fortunately,
there is a great amount of previous work on Object
Oriented Design Knowledge (OODK). In particular,
we are interested in “design rules” (Garzás and
Piattini, 2005) exposed in the next subsection.

5.1 Classification of Changes Using
OODK Rules

In OODK, rules are the “what”, patterns are the
“how”, and refactorings are the “how to apply”
design practices. In this case, we are interested in the
“what”. A high quality design must be compliant
with design rules. Table 6 shows some design rules.

Table 6: Some of the OODK rules extracted from (Garzás
and Piattini, 2005).

If there is any software design element (class, methods,
code, and so on) duplicated, then eliminate the duplication
If there are dependencies on concrete classes then these
dependencies should be on abstractions.
If there are unused or little-used items then eliminate them
If a super class knows any of its subclasses then eliminate it.
If a class collaborates with too many others then reduce the
number of collaborations.
If a change in an interface has an impact on many clients
then create specific interfaces for each client.
If a service has many parameters then create various
methods, reducing the list, or put these into an object.
If the attributes of a class are public or protected then make
them private and access them through services.

Thus, when we have a software design and we

need to improve it, the most intuitive way is to
detect the deficiencies (in this case, violated rules)
and fix a percentage of deficiency resolutions. Note
that we will use the probability of change to know
when will be profitable to make the change.

5.2 Estimating Cost of Each Type of
Change

The last step in our research is to estimate how much
time will be needed to make a maintenance update in
the code where a OODK rule is violated (we will
call it Cost A), how much will cost to fix that rule

MAINTENANCE COST OF A SOFTWARE DESIGN: A Value-Based Approach

387

violation (Cost B) and to make the change once the
design has been improved (Cost C). The cost will be
expressed in “hours of work”.

Table 7: Example of cost associated to a change.

Rule Cost A Cost B Cost C
Rule 1 4 hours 4 hours 2 hours
Rule 2 3 hours 6 hours 1 hour
Rule 3 8 hours 12 hours 6 hours

The improvement is worth it if the cost A

multiplied by the number of modifications (n) is
bigger than the cost B plus the cost C multiplied by
n. The equation 4 shows the concept.

Cost(A) * n > Cost (B) + (Cost (C) * n) (4)

At first sight, if the change must be done only

once, probably it will be better in terms of cost not
to improve the design. This confirms the importance
of the “probability of change” variable estimated in
the precedent section.

The most direct and reliable way to estimate how
many hours will be necessary to change the code is
to plan an experiment where a group of developers
accomplish this task. This experiment must be
repeated for each design rule. The output of this
experiment could be similar to the data exposed in
the Table 7.

Note that this experiment still hasn’t been carried
out in the context of this research, as noted in the
“Future Work” section.

6 GATHERING ALL TOGETHER

A company maintaining a faulty and expensive-to-
maintain software may wonder whether or not to
redesign some parts of the application, in order to
make the application easier to maintain. To assess
the potential cost of this application the following
steps are proposed.

First, we have to analyse the application in order
to identify violated rules and to estimate the cost to
modify those designs. This process is explained in
detail in section 5. Then, we must estimate the
potential cost of maintenance of the code associated
to that violated rule. To be able to calculate this cost
(Cm) presented in the equation 2, we need to
estimate the probability of change and the estimated
cost of change. This process is reviewed in the
sections 4 and 5.

Later, we use the same equation to estimate the
cost of maintenance after improving the code
(Cm(refactored)), and estimate the cost of refactoring
(Crefactoring) using techniques exposed in section 5.

Only then we will be able estimate if the
modification is profitable verifying if the condition
exposed in the equation 3 is true.

In this way, it is possible to perform a cost-based
guide of design decisions.

7 CONCLUSION AND FUTURE
WORK

For future work, it would be very important to carry
out an empirical validation of results. Several case
studies could be conducted in order to verify
empirically the suitability of the proposal.

In addition we plan to carry out an experiment
that estimates the cost of correcting a violation of
each rule, and the cost of modification of code
containing violated rules. This experiment must be
planned with a group of developers that accomplish
this task, and repeated for each design rule.

We have presented a method for guiding a
software design improvement through value and
design knowledge. The estimation has been based on
how effective the solutions are, instead of measuring
functionality or size. This will be achieved
estimating the maintenance cost of each solution.

To achieve this goal, we have developed a
Value-based model oriented to maintenance costs,
due to the fact that the main goal of a design is to
make applications maintainable (stable, changeable
and analyzable).

ACKNOWLEDGEMENTS

This work has been partially supported by the
ESFINGE project (Ministerio de Ciencia y
Tecnología (TIN 2006-15175-C05-05) and
ENIGMAS (Entorno Inteligente para la Gestión del
Mantenimiento Avanzado del Software), supported
by the Department of Education and Science of the
Junta de Comunidades de Castilla-La Mancha
(Regional Government of Castilla-La Mancha) (PBI-
05-058).

REFERENCES

Antoniol, G., Lokan, C., Caldiera, G. & Fiutem, R. (1999)
A Function Point-Like Measure for Object-Oriented
Software. Empirical Software Engineering, 4, 263 -
287.

Bennet, K. H. & Rajlich, V. T. (2000) Software
Maintenance and Evolution: a Roadmap. ICSE (Track

ICEIS 2007 - International Conference on Enterprise Information Systems

388

on The Future of Software Engineering). Limerick,
Ireland, Finkelstein A.

Boehm, B. (2005) Value-Based Software Engineering:
Overview and Agenda. Value-Based Software
Engineering Springer.

Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark,
B. K., Steece, B., Brown, A. W., Chulani, S. & Abts,
C. (2000) Software Cost Estimation with Cocomo II
Prentice Hall PTR.

Briand, L. C., Emam, K. E., Surmann, D., Wieczorek, I. &
Maxwell, K. D. (1999) An assessment and comparison
of common software cost estimation modeling
techniques. International Conference on Software
Engineering Los Angeles, California, United States
IEEE Computer Society Press.

Cleland-Huang, J. & Denne, M. (2005) Financially
informed requirements prioritization. International
Conference on Software Engineering St. Louis, MO,
USA ACM Press.

Cleland-Huang, J., Zemont, G. & Lukasik, W. (2004) A
Heterogeneous Solution for Improving the Return on
Investment of Requirements Traceability.
Requirements Engineering Conference, 12th IEEE
International (RE'04). IEEE Computer Society

Egyed, A., Biffl, S., Heindl, M. & Grünbacher, P. (2005)
A value-based approach for understanding cost-benefit
trade-offs during automated software traceability. 3rd
international workshop on Traceability in emerging
forms of software engineering Long Beach, California
ACM Press.

Fowler, M. (1999) Refactoring: Improving the Design of
Existing Code, Menlo Park, California, Addison
Wesley.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995)
Design Patterns, Reading, MA, Addison-Wesley.

Garzás, J. & Piattini, M. (2002) Analyzability and
Changeability in Design Patterns. SugarLoafPLoP.
The Second Latin American Conference on Pattern
Languages of Programming. Itaipava, Río de Janeiro,
Brasil.

Garzás, J. & Piattini, M. (2005) An ontology for micro-
architectural design knowledge. IEEE Software
Magazine, 22, 28-33.

Gotel, O. C. Z. & Finkelstein, A. C. W. (1994) An
analysis of the requirements traceability problem. 1st
International Conference on Requirements
Engineering. Colorado Springs, CO, USA.

Heindl, M. & Biffl, S. (2005) A Case Study on Value-
based Requirements Tracing. 10th European software
engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering Lisbon, Portugal ACM Press.

Huang, L. & Bohem, B. (2006) How Much Software
Quality Investment Is Enough: A Value-Based
Approach. IEEE Software, 23, 88- 95.

Kazman, R., Asundi, J. & Klein, M. (2001) Quantifying
the Costs and Benefits of Architectural Decisions.
Proceedings of the 23rd International Conference on
Software Engineering. Toronto, Ontario, Canada,
IEEE Computer Society.

Nordberg, M. E. (2001) Aspect-Oriented Indirection –
Beyond OO Design Patterns. OOPSLA 2001,

Workshop Beyond Design: Patterns (mis)used. Tampa
Bay, Florida, EEUU.

Pigoski, T. M. (1996) Practical Software Maintenance.
Best Practices for Managing your Investements, NY.
USA, John Wiley & Sons.

Srikanth, H. & Williams, L. (2005) On the economics of
requirements-based test case prioritization. 7th
international workshop on Economics-driven software
engineering research St. Louis, Missouri ACM Press

MAINTENANCE COST OF A SOFTWARE DESIGN: A Value-Based Approach

389

