
A NEW ALGORITHM FOR TWIG PATTERN MATCHING

Yangjun Chen
Dept. Applied Computer Science, University of Winnipeg, Canada

Keywords: XML databases, Trees, Paths, XML pattern matching, Twig joins.

Abstract: Tree pattern matching is one of the most fundamental tasks for XML query processing. Prior work has
typically decomposed the twig pattern into binary structural (parent-child and ancestor-descendent)
relationships or paths, and then stitch together these basic matches by join operations. In this paper, we
propose a new algorithm that explores both the document tree and the twig pattern in a bottom-up way and
show that the join operation can be completely avoided. The new algorithm runs in O(|T|⋅|Q|) time and
O(|Q|⋅leafT) space, where T and Q are the document tree and the twig pattern query, respectively; and leafT
represents the number of leaf nodes in T. Our experiments show that our method is effective, scalable and
efficient in evaluating twig pattern queries.

1 INTRODUCTION

In XML, data is represented as a tree; associated
with each node of the tree is an element type from a
finite alphabet ∑. The children of a node are ordered
from left to right, and represent the content (i.e., list
of subelements) of that element.
To abstract from existing query languages for XML
(e.g. XPath, XQuery, XML-QL, and Quilt), we
express queries as twig patterns (or say, tree
patterns) where nodes are types from ∑ ∪ {*} (* is a
wildcard, matching any node type) and string values,
and edges are parent-child or ancestor-descendant
relationships. As an example, consider the query tree
shown in Fig. 1, which asks for any node of type b
(node 2) that is a child of some node of type a (node
1). In addition, the b type (node 2) is the parent of
some c type (node 4) and an ancestor of some d type
(node 5). Type b (node 3) can also be the parent of
some e type (node 7). The query corresponds to the
following XPath expression:
 a[b[c and //d]]/b[c and e//d].

In this figure, there are two kinds of edges: child
edges (c-edges) for parent-child relationships, and
descendant edges (d-edges) for ancestor-descendant
relationships. A c-edge from node v to node u is
denoted by v → u in the text, and represented by a
single arc; u is called a c-child of v. A d-edge is
denoted v ⇒ u in the text, and represented by a
double arc; u is called a d-child of u.
Definition 1. An embedding of a twig pattern Q into
an XML document T is a mapping f: Q → T, from

the nodes of Q to the nodes of T, which satisfies the
following conditions:
(i) Preserve node type: For each u ∈ Q, u and f(u)

are of the same type. (or more generally, u’s
predicate is satisfied by f(u).)

(ii) Preserve c/d-child relationships: If u → v in Q,
then f(v) is a child of f(u) in T; if u ⇒ v in Q,
then f(v) is a descendant of f(u) in T.

If there exits a mapping from Q into T, we say, Q
can be imbedded into T, or say, T contains Q. In
addition, if label(T’s root) = label(Q’s root), we say
that the embedding is root-preserving.

As an example, see the document tree and the
twig pattern shown in Fig. 2(a).

There exits a mapping from Q to T as illustrated
by the dashed lines, by which each node of Q is
mapped to a different node of T. However,
according to the definition, an embedding could map
several nodes of Q (of the same type) to the same
node of T, as shown in Fig. 2(b), by which nodes q2
and q5 in Q are mapped onto a single node v2 in T,
and q3 and q4 are mapped onto a single node v3 in T.

4 c d 5

2 b

d 8

1 a

6 c

b 3

e 7

Figure 1: A query tree.

44
Chen Y. (2007).
A NEW ALGORITHM FOR TWIG PATTERN MATCHING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 44-51
DOI: 10.5220/0002356300440051
Copyright c© SciTePress

For the purpose of query evaluation, either of the
mappings is recognized as a tree embedding.

In fact, almost all the existing strategies are
designed to work in this way.

In this paper, we discuss a new algorithm, which
works in a bottom-up way and shows that the join or
join-like operations can be completely avoided. The
algorithm works in O(|T|⋅|Q|) time and O(|Q|⋅leafT)
space, where leafQ is the number of the leaf nodes of
Q.

The remainder of the paper is organized as
follows. In Section 2, we review the related work. In
Section 3, we discuss our main algorithm. Section 4
is devoted to the implementation and experiments.
Finally, a short conclusion is set forth in Section 5.

2 RELATED WORK

With the growing importance of XML in data
exchange, the tree pattern queries over XML
documents have been extensively studied recently.
Most existing techniques rely on indexing or on the
tree encoding to capture the structural relationships
among document elements.

XISS (Li and Moon, 2001) is a typical method
based on indexing, by which single
elements/attributes are indexed as the basic unit of
query and a complex path expression is decomposed
into a set of basic path expressions. Then, atom
expressions (single elements or attributes) are
recognized by direct accessing the index structure.
All other kinds of expressions need join operations
to stitch individual components together to get the
final results.

Paths are also used as the basic indexing unit as
done by DataGuide (Goldman and Widom, 1997)

and Fabric (Cooper and et al., 2001). By DataGuide,
a concise summary of path structures for a semi-
structured database is provided, but restricted to row
paths. No complex path expressions or regular
expression queries can be handled. Fabric works
better in the sense that the so-called refined paths are
supported. Such queries may contain branches, wild-
cards (*) and ancestor-descendent operators (//).
However, any query not in the set of refined paths
has to resort to join operations. Another two
strategies based on the path indexing are APEX
(Chung and et al., 2002) and F+B (Kaushik and et
al., 2002). APEX is an adaptive path index and uses
data mining technique to summarize paths that
frequently appear in the query workload. It has to be
updated as the query workload changes. In stead of
maintaining all paths starting from the root, it keeps
every path segment of length 2. Obviously, to get the
final results, the join operations have to be
conducted. F+B (Kaushik and et al., 2002) shares the
flavour of Fabric (Cooper and et al., 2001). It is
based on the so-called forward and backward index
(F&G index (Abiteboul and et al., 1999)), which
covers all the branching paths. It works well for pre-
defined query types. In normal cases, however, such
a set of F&B indexes tends to be large and therefore
the performance suffers. The method discussed in
(Wang and et al., 2003) can be considered as a quite
different method, by which a document is stored as a
sequence: (a1, p1), ..., (ai, pi), ..., (an, pn), where each
ai is an element or a word in the document, and pi a
path from the root to it. Using this method, the join
operations are replaced by searching a trie structure
(called suffix tree in (Wang and et al., 2003)). The
drawback of this method is that a relatively large
index structure has to be created. Another problem
of this method is that a document tree that does not
contain a query pattern may be designated as one of
the answers due the ambiguity caused by identical
sibling nodes. This problem is removed by the so-
called forward prefix checking discussed in (Wang
and Meng, 2005). Doing so, however, the theoretical
time complexity is dramatically increased.

All the above methods need to decompose a twig
pattern into a set of binary relationships between
pairs of nodes, such as parent-child and ancestor-
descendant relations, or into a set of paths. The sizes
of intermediate relations tend to be very large, even
when the input and final result sizes are much more
manageable. As an important improvement,
TwigStack was proposed by Bruno et al. (Bruno and
et al., 2002), which compress the intermediate
results by the stack encoding, which represents in
linear space a potentially exponential number of
answers. However, TwigStack achieves optimality

c v3 v4 b

b v2

a v1

v8 b

v6 c c v5 v7 d

q3 c q4 c

b q2

q1 a

q5 b

(a)

c v3 v4 b

b v2

a v1

v8 b

v6 c c v5 v7 d

q3 c q4 c

b q2

q1 a

q5 b

(b)

Figure 2: Illustration for tree embedding.

A NEW ALGORITHM FOR TWIG PATTERN MATCHING

45

only for the queries that contain only d-edges. In the
case that a query contains both c-edges and d-edges,
some useless path matchings have to be performed.
In addition, in the worst case, TwigStack needs
O(|D||Q|) time for doing the merge joins as shown by
Chen et al. (see page 287 in (Chen and et al., 2006)),
where D is a largest data stream associated with a
node q in Q, which contains all the document nodes
that match q. Since then, several methods that
improve TwigStack in some way have been reported.
For instance, iTwigJoin (Chen and et al., 2005)
exploits different data partition possibilities while
TJFast (Lu and et al., 2005) accesses only leaf nodes
of document trees by using Dewey IDs. But both of
them still need to do some useless matchings as
shown by the theoretical analysis made in (Choi and
et al., 2003). Twig2Stack (Chen and et al., 2006) is
the most recent method that improves TwigStack. By
this method, the stack encoding is replaced with the
hierarchical stack encoding, by which each stack
associated with a query node contains an ordered
sequence of stack trees. In this way, the path joins
are replaced by the so called result enumeration. In
(Chen and et al., 2006), it is claimed that Twig2Stack
needs only O(|D|⋅|Q| + |subTwigResults|) time. But a
careful analysis shows that the time complexity of
the method is actually bounded by O(|D|⋅|Q|2 +
|subTwigResults|). It is because each time a node is
inserted into a stack associated with a node in Q, not
only the position of this node in a tree within that
stack has to be determined, but a link from this node
to a node in some other stack has to be constructed,
which requires to search all the other stacks. The
number of these stacks is |Q| (see Fig. 4 in (Chen
and et al., 2006) to know the working process.)

The method discussed in (Aghili and et al., 2006)
incorporates a binary labeling as a pre-processing
filtration step to reduce the search space. This
method is effective only for the case that selective
key words at leaf nodes are specified in queries.

Finally, we point out that the bottom-up tree
matching was first proposed in (Hoffmann and
O’Donnell, 1982). But it concerns a very strict tree
matching, by which the matching of an edge to a
path is not allowed. In (Gottlob and et al., 2005), an
XPath is transformed into a parse tree and then
evaluated bottom-up or top-down. Both the bottom-
up and top-down strategies need O(|T|5⋅|Q|2) time
and O(|T|4⋅|Q|2) space. In (Miklau and Suciu, 2004),
an algorithm for tree homomorphism is discussed,
which is able to check whether a tree contains
another and returns only a boolean answer. But our
algorithms show all the subtrees than match a given
twig pattern query.

In comparison with the above methods, our
methods have the following advantages:
- Our first algorithm needs less time than

Twig2Stack. Concretely, our algorithm runs in
O(|D|⋅|Q|) time.

- Neither matching paths nor tree stacks are
generated. Therefore, the costly path joins (Aghili
and et al., 2006), as well as the result
enumeration, a join-like operation (Chen and et
al., 2006), are not needed.

- The runtime memory usage is minimum. During
the process, our algorithm transforms
(dynamically) the data streams to a tree structure
T with all the matching patterns recognized. To
represent the results, each node v in T is
associated with a set of nodes in Q (denoted as
M(v)) such that for each q ∈ M(v) the subtree
rooted at q can be embedded in the subtree rooted
at v. If M(v) contains the root of Q, it indicates an
answer and v will be stored in a global variable (or
report the subtree rooted at v as an answer). Later
on, M(v) will be removed once M(v’s parent) is
established since M(v) will not be accessed any
more.

3 ALGORITHM

In this section, we discuss our algorithm according
to Definition 1. The main idea of this algorithm is to
search both T and Q bottom-up and checking the
subtree embedding by generating dynamic data
structures. In the process, a tree labeling technique is
used to facilitate the recognition of nodes’
relationships. Therefore, in the following, we will
first show the tree labeling in 3.1. Then, in 3.2, we
discuss the main algorithm. In 3.3, we prove the
correctness of the algorithm and analyze its
computational complexities.

3.1 Tree Labeling

Before we give our main algorithm, we first restate
how to label a tree to speed up the recognition of the
relationships among the nodes of trees.

Consider a tree T. By traversing T in preorder,
each node v will obtain a number (it can an integer
or a real number) pre(v) to record the order in which
the nodes of the tree are visited. In a similar way, by
traversing T in postorder, each node v will get
another number post(v). These two numbers can be
used to characterize the ancestor-descendant
relationships as follows.

ICEIS 2007 - International Conference on Enterprise Information Systems

46

Proposition 1. Let v and v’ be two nodes of a tree T.
Then, v’ is a descendant of v iff pre(v’) > pre(v) and
post(v’) < post(v).
Proof. See Exercise 2.3.2-20 in [34].

If v’ is a descendant of v, then we know that
pre(v’) > pre(v) according to the preorder search.
Now we assume that post(v’) > post(v). Then,
according to the postorder search, either v’ is in
some subtree on the right side of v, or v is in the
subtree rooted at v’, which contradicts the fact that
v’ is a descendant of v. Therefore, post(v’) must be
less than post(v). The following example helps for
illustration.
Example 1. See the pairs associated with the nodes
of the tree shown in Fig. 3. The first element of each
pair is the preorder number of the corresponding
node and the second is its postorder number. With

such labels, the ancestor-descendant relationships
can be easily checked.
For instance, by checking the label associated with
v2 against the label for v6, we see that v2 is an
ancestor of v6 in terms of Proposition 1. Note that
v2’s label is (2, 6) and v6’s label is (6, 3), and we
have 2 < 6 and 6 > 3. We also see that since the pairs
associated with v8 and v5 do not satisfy the condition
given in Proposition 1, v8 must not be an ancestor of
v5 and vice versa.
Definition 1. (label pair subsumption) Let (p, q) and
(p’, q’) be two pairs associated with nodes u and v.
We say that (p, q) is subsumed by (p’, q’), denoted
(p, q) (p’, q’), if p > p’ and q < q’. Then, u is a
descendant of v if (p, q) is subsumed by (p’, q’).

In the following, we also use T[v] to represent a
subtree rooted at v in T.

3.2 Algorithm for Twig Pattern
Matching

Now we discuss our algorithm for twig pattern
matching. During the process, both T and Q are
searched bottom-up. That is, the nodes in T and Q
will be accessed along their postorder numbers.
Therefore, for convenience, we refer to the nodes in
T and Q by their postorder numbers, instead of their
node names.

In each step, we will check a node j in T against
all the nodes i in Q.

In order to know whether Q[i] can be embedded
into T[i], we will check whether the following two
conditions are satisfied.
1. label(j) = label(i).
2. Let i1, ..., ik be the child nodes of i. For each ia (a =

1, ..., k), if (i, ia) is a c-edge, there exists a child
node jb of j such that T[jb] contains Q[ia]; if (i, ia)
is a d-edge, there is a descendent j’ of j such that
T[j’] contains Q[ia].

To facilitate this process, we will associate each j
in T with a set of nodes in Q: {i1, ..., ij} such that for
each ia ∈ {i1, ..., ij} Q[ia] can be root-preservingly
embedded into T[j]. This set is denoted as M(j). In
addition, each i in Q is associated with a value β(i),
defined as below.
i) Initially, β(i) is set to φ.
ii) During the computation process, β(i) is

dynamically changed. Concretely, each time we
meet a node j in T, if i appears in M(jb) for some
child node jb of j, then β(i) is changed to j.

In terms of above discussion, we give the
following algorithm.

Algorithm Twig-pattern-matching(T, Q)
Input: tree T (with nodes 0, 1, ..., |T|) and tree Q (with
nodes 1, ..., |Q|)
Output: a set of nodes j in T such that T[j] contains Q.
begin
1. for j := 1, ..., |T| do
2. {let j1, ..., jk be the children of j;
3. for l := 1, ..., k do
4. {for each i’ ∈ M(jl) do β(i’) ← j;
5. remove Μ(jl);}
5. for i := 1, ..., |Q| do
6. if label(i) = label(j) then
7. {let i1, ..., ig be the children of i;
8. if for each il (l = 1, ..., g) we have
9. (i, il) is a c-edge and β(il) = j, or
10. (i, il) is a d-edge and β(il) is subsumed by j;
11. then {insert i into M(j);
12. if i is the root of Q, then report the subtree

rooted at j as an answer;}
13. }
end

In the above algorithm, each time we meet an j in
T, we will establish the new β values for all those
nodes of Q, which appear in Μ(j1), ..., Μ(jk), where
j1, ..., jk represent the child nodes of j (see lines 1 -
4). Then, all Μ(jl)’s (l = 1, ..., k) are removed. In a
next step, we will check j against all the nodes i in Q
(see lines 5 - 13). If label(i) = label(j), we will check
β(i1), ..., β(ig), where i1, ..., ig are the child nodes of i.
If (i, il) (l ∈ {1, ..., g}) is a c-edge, we need to check

A v1

B v2 v6 B

C v3 v4 B

v5 C

(1, 8)

(2, 6)

(3, 1) (4, 5)

(5, 2)

(8, 7)

v5 C v5 C (6, 3) (7, 4)

Figure 3: Illustration for tree encoding.

A NEW ALGORITHM FOR TWIG PATTERN MATCHING

47

whether β(il) = j (see line 9). If (i, il) (l ∈ {1, ..., g})
is a d-edge, we simply check whether β(il) is
subsumed by j (see line 10). If all the child nodes of
i survive the above checking, we get a root-
preserving embedding of the subtree rooted at i into
the subtree rooted at j. In this case, we will insert j
into M(j) (see line 11) and report j as one of the
answers if i is the root of Q (see line 12).
Example 2. Consider the document tree T and the
twig pattern query Q shown in Fig. 2(a) once again.
When applying the above algorithm to T and Q, we
will find that Q can be root-preservingly embedded
into T. Fig. 4 shows the whole computation process.

In the first four steps, we check respectively v3,
v5, v6, and v6 against Q, generating a data structure as
shown in Fig. 4(a), in which M(v3) = M(v5) = M(v6)
= {q3, q4} and M(v7) = { }. In a next step, we meet v4
and generate a data structure as shown in Fig. 4(b).
In more detail, in this step, we first set β(q3) = v4 and
β(q4) = v4, and then try to find any subtree in Q,
which can be embedded into T[v4]. Since label(v4) =
label(q2) = B and both β(q3) and β(q4) are equal to
v4, it shows that T[v4] contains Q[q2]. So M(v4)
contains q2. In addition, since q5 is a leaf node (no
children) and label(v4) = label(q5), M(v4) also
contains q5. In the sixth step, we will meet v2 and the
data structure generated is shown in Fig. 4(c). Here,
we should remark that not only β(q2) and β(q5) are
set to v2, but β(q3) and β(q4) are also changed to v2.
It is because in this step we have M(v3) = {q3, q4}
and v3 is a child node of v2. Therefore, we have
M(v2) = {q2, q5}. In the seventh step, we meet v8 and
generate a data structure as shown in Fig. 4(d).

Although we have label(v8) = label(q2), we cannot
insert q2 into M(v8) since in this step both β(q3) and
β(q4) are equal to v2, not to v8. So M(v8) contains
only q5. In the final step, we meet v1. The
corresponding data structure is shown in Fig. 4(e).
Since M(v1) contains q1, the root of Q, we know that
Q can be embedded into T.

4 CORRECTNESS AND
COMPUTATIONAL
COMPLEXITIES

In this subsection, we show the correctness of the
algorithm given in 3.2 and analyze its computational
complexity.
- Correctness

The correctness of the algorithm consists in a
very important property of postorder numbering
described in the following lemma.
Lemma 1. Let v1, v2, and v3 be three nodes in a tree
with post(v1) < post(v2) < post(v3). If v1 is a
descendent of v3. Then, v2 must also be a descendent
of v3.
Proof. We consider two cases: i) v2 is to the right of
v1, and ii) v2 is an ancestor of v1. In case (i), we have
post(v1) < post(v2). So we have pre(v3) < pre(v1) <
pre(v2). This shows that v2 is a descendent of v3. In
case (ii), v1, v2, and v3 are on the same path. Since
post(v2) < post(v3), v2 must be a descendent of v3.
We illustrate Lemma 1 by Fig. 5, which is helpful
for understanding the proof of Proposition 2 given
below.

Proposition 2. Let Q be a twig pattern containing
only d-edges. Let v be a node in the document tree T.
Let q be a node in Q. Then, q appears in M(v) if and
only if T[v] contains Q[q].
Proof. If-part. A query node q is inserted into M(v)
by executing lines 6 - 11 in Algorithm Twig-pattern-
matching(). Obviously, for any q inserted into M(v)
we must have T[v] containing Q[q].
Only-if-part. Assume that there exists a q in Q such
that T[v] contains Q[q] but q does not appear in
M(v). Then, there must be a child node qi of q such
that (i) β(qi) = φ, or (ii) β(qi) is not subsumed by v.
Obviously, case (i) is not possible since T[v]

Figure: 4: A sample trace.

v5 •
C

v7 •
D

v6 •
C

v2 • B {q2, q5}

v4 • B v3 • C

β(q3)=v2

β(q4)=v2

β(q2)=v2

β(q5)=v2

{q2,
q5}

v4 • B
β(q3)=v2

β(q4)=v2

β(q2)=v2

β(q5)=v2
v5 •

C
v6 •

C
v7 •

D

v3 • C

{q5}
v5 • B

(d)

(a)

v3 • C
{q3, q4}

v5 • C
{q3, q4}

v6 • C
{q3, q4}

v7 • D

v3 • C
{q3, q4}

{}

v4 • B {q2, q5} β(q3)=v4

β(q4)=v4

v5 •
C

v6 •
C

v7 •
D

(b)

(c)

v2 • B
v4 • B

β(q3)=v2

β(q4)=v2

β(q2)=v1

β(q5)=v1
v5 •

C
v6 •

C
v7 •

D

v3 • C
v5 • B

v1 • B { q1}

(e)

• v3

• v1
• v2

Figure 5: A matching subtree with M’s.

v2 is to the right of v1; or
appears as an ancestor of v1, but
as a descendant of v3.

• v3

• v1 • v2

ICEIS 2007 - International Conference on Enterprise Information Systems

48

contains Q[q] and qi must be contained in a subtree
rooted at a node v’ which is a descendent of v. So
β(qi) will be changed to a value not equal to φ. Now
we show that case (ii) is not possible, either. First,
we note that during the whole process, β(qi) may be
changed several times since it may appear in more
than one M’s. Assume that there exist a sequence of
nodes v1, ..., vk for some k ≥ 1 with post(v1) <
post(v2) <... < post(vk) such that qi appears in M(v1),
..., M(vk). Without loss of generality, assume that v’
= vi for some i ∈ {1, ..., k} and there exists an j such
that post(vj) < post(v) < post(vj+1). Then, at the time
point when we check q, the actual value of β(qi) is
the postorder number for vj’s parent, which is equal
to v or whose postorder number is smaller than
post(v). If it is equal to v, then β(qi) is subsumed by
v, contradicting (ii). If post(β(qi) is smaller than
post(v). Thus, we have
 post(v’) < post(β(qi) < post(v).

In terms of Lemma 1, the value of β(qi) is a
descendent of v and therefore subsumed by v. The
above explanation shows that case (ii) is impossible.
This completes the proof of the proposition.

Lemma 1 helps to clarify the only-if part of the
above proof. In fact, it reveals an important property
of the tree encoding, which enables us to save both
space and time. That is, it is not necessary for us to
keep all the values of β(qi), but only one to check the
ancestor-descendent relationship. Due to this
property, the path join (Bruno and et al., 2002), as
well as the result enumeration (Chen and et al.,
2006), can be completely avoided.

Concerning the correctness of the general case
that Q contains both c-edges and d-edges, we have
to answer a question: whether any c-edge in Q is
correctly checked.
To answer this question, we note that any c-edge in
Q cannot be matched to any path with length larger
than 1in T. That is, it can be matched only to a c-
edge in T. It is exactly what is done by the
algorithm. See Fig. 6 for illustration.
Each time we meet a node v, we will set β values for
all those qj’s that appear in an M associated with
some child node of v (see lines 3 - 4). Then, in lines
9 - 10, when we check whether q can be inserted
into M(v), any outgoing c-edge of q is correctly
checked. As shown in Fig. 6, after the value of β(q1)
is set to be v, q is checked and the value of β(q1)
indicates that v’ is a child of v. Since (v, v’) is also a
c-edge, it matches (q, q1). Although the value of
β(q1) is changed from v1 to v during the process, it
does not impact the correctness of c-edge checkings
which use only the newly set β values that are
always the parent of the corresponding nodes.

In conjunction with Proposition 2, the above
analysis shows the correctness of the algorithm. We
have the following proposition.
Proposition 3. Let Q be a twig pattern containing
only both c-edges and d-edges. Let v be a node in T.
Let q be a node in Q. Then, q appears in M(v) if and
only if T[v] contains Q[q].
Proof. See the above discussion.

- Computational complexities
The time complexity of the algorithm can be

divided into two parts:
1. The first part is the time spent on generating β

values (see lines 2 - 5). For each node j in T, we
will access M(jl) for each child node jl of j.
Therefore, this part of cost is bounded by

 O(∑
=

⋅
||

1
|)(|

T

j
j jMd) ≤ Ο(∑

=
⋅

||

1
||

T

j
j Qd) = O(|T|⋅|Q|),

 where dj is the outdegree of j.
2. The second part is the time used for constructing

M(j)’s. For each node j in T, we need O(∑
i

ic)

time to do the task, where ci is the outdegree of i in
Q, which matches j. So this part of cost is bounded
by

 O(∑ ∑
j i

ic) ≤ O(∑
=

||

1
||

T

j
Q) = O(|T|⋅|Q|).

The space overhead of the algorithm is easy to
analyze. During the processing, each j in T will be
associated with a M(j). But M(j) will be removed
later once j’s parent is encountered and for each i
∈ M(j) its β value is changed. Therefore, the total
space is bounded by
 O(leafT⋅|Q| + |T| + |Q|),
where leafT represents the number of the leaf nodes
of T. It is because at any time point for any two
nodes on the same path in T only one is associated
with a M.

5 EXPERIMENTS

We conducted our experiments on a DELL desktop
PC equipped with Pentium III 864Mhz processor,
512MB RAM and 20GB hard disk. We use Oracle-

M(v’) = {…, q1, …}
β (q1) has been once set to be v1.

M(v’) = {…, q1, …}
β (q1) is changed to v when v is
recognized to be the parent of v’.

Figure 6: Illustration for c-edge checking.

a • v a • q

c • v1 b • v’ b • q1 c • q2

b • v1’

A NEW ALGORITHM FOR TWIG PATTERN MATCHING

49

9i Enterprise Edition as the working platform and
implement the algorithms in Oracle PL/SQL
language. We set the size of the buffer cache of
Oracle-9i to be 8 MBytes and the B+-tree built in the
system is used as the index.
- Tested methods
In the experiments, we have tested three methods:
 TwigStack (TS for short) [4],
 Twig2Stack (T2S for short) [10],
 Twig-pattern-matching (discussed in this paper;
TPM for short),
and compare their execution times.
- Data
The data set used for this test is DBLP data set [24]
and a synthetic XMARK data set. The quantitative
characteristics of the sets are described below.
- DBLP. It is a computer science bibliography

database. In this data set, each author is
represented by a name, a homepage, and a list of
papers. In turn, each paper contains a title, the
conference or the journal title where it was
published, and a list of coauthors. In the version
we downloaded, there are 3,332,130 elements and
404,276 attributes, totaling 127 MBytes of data.
Each record in DBLP corresponds to a publication
which is a simple tree structure of maximum depth
6. The average length of a structure-encoded
sequence derived through the reference mechanism
in a tree is around 31. The B+-tree established on
individual publications is about 2 MBytes of data.

- XMARK. It is a popular database in benchmarking
XML index methods. It is a very large and
complicated tree structure, containing some
substructures such as regions, items (objects for
sale), people, open-auction, closed-auction, etc. In
our experiment, we generate an XMARK set by
using xmlgen with scaling factor 1.0. It contains
about 108 MBytes of data. The B+-tree established
on individual sales is about 1.3 MBytes of data.

- Queries
As we know, XML queries may have different
patterns and may or not be with parameters being
specified. To study the performance impact of these
two characteristics, we have tested 10 queries
against DBLP database, which are divided into two
groups. In the first group all the 5 queries are with a
constant while in the second group (another 5
queries) no parameter is specified. Over XMARK
database, we have also tested 10 queries, divided
into 2 groups with each containing 5 queries. In the
first group, each query contains a constant. In the
second group, for each query no constant is
specified. All the queries are shown in Table 1 -
Table 4.

Queries over DBLP:

Table 1: Group I.
query Xpath expression
Q1 //inproceedings/[author]//year [text() = ‘1999’]
Q2 //inproceedings/[author and /title]//year [text() = ‘1999’]
Q3 //inproceedings/[author and /title and //pages]//year [text() = ‘1999’]
Q4 //inproceedings/[author and /title and //pages and //url]//year [text() =
Q5 //articles/[author and /title and //volume and //pages and //url]//year

[text() = ‘1999’]

Table 2: Group II.
query Xpath expression
Q6 //inproceedings/[author]//year
Q7 //inproceedings/[author and /title]//year
Q8 //inproceedings/[author and /title and //pages]//year
Q9 //inproceedings/[author and /title and //pages and //url]//year
Q10 //articles/[author and /title and //volume and //pages and //url]//year

Queries over XMARK:

Table 3: Group III.
query Xpath expression
Q11 /site//open_auction[seller/person]//date [text() = ‘10/23/1999’]
Q12 /site//open_auction[//seller/person and //bidder]//date [text() =

/ /Q13 /site//open_auction[//seller/person and //bidder/increase]//date [text() =
‘10/23/1999’]

Q14 /site//open_auction[//seller/person and //bidder/increase and
//initial]//date [text() = ‘10/23/1999’]

Q15 /site//open_auction[//seller/person and //bidder/increase and //initial and
//description]//date [text() = ‘10/23/1999’]

Table 4: Group IV.
query Xpath expression
Q16 /site//open_auction[seller/person]//date
Q17 /site//open_auction[//seller/person and //bidder]//date
Q18 /site//open_auction[//seller/person and //bidder/increase]//date
Q19 /site//open_auction[//seller/person and //bidder/increase and

//i i i l //dQ20 /site//open_auction[//seller/person and //bidder/increase and //initial and
//description]//date

- Test results
Now we demonstrate the execution times of all

the four strategies when they are applied to the
above queries.

In Fig. 7(a), we show the test results of the first
group. From these we can see that our first algorithm
outperforms all the other strategies. It is because this
algorithm works only in one scan of the data streams
and neither the path join nor the result enumeration
is involved. TwigStack has the worst performance
since some path joins have to be performed.

1

Q1 Q2 Q3 Q 4 Q5

Execution Time (sec.)

TS
5

2

3

4 T2S
TPM

20

Q 6 Q7 Q 8 Q9 Q10

Execution Time (sec.)

TS
60

30

40

50 T2S
TPM

(b) (a)
Figure 7: Results of Group I and Group.

ICEIS 2007 - International Conference on Enterprise Information Systems

50

Fig. 7(b) shows the test results of the second
group. The execution time of all the strategies are
much worse than Group 1 since the queries are all of
quite low selectivity and thus almost all the data set
has to be downloaded into main memory. In this
case, I/O dominates the cost. Again, our first
algorithm has the best performance. Especially,
when the size of queries becomes larger, this
algorithm is 3 - 4 times better than Twig2Stack. First,
the time for constructing a matching tree is much
less than that for constructing the hierarchical stacks.
Secondly, the space used by our first algorithm is
much smaller than Twig2Stack. It is because our
algorithm removes useless data structures earlier
than Earlier Result enumeration utilized by
Twig2Stack. TwigStack shows an exponential-time
behavior since for each path in a query a great many
matching paths will be produced and the cost of join
operations increases exponentially.

In Fig. 8, the test results over the XMARK
database are demonstrated. From these, we can see
that our first algorithm still has the best performance
for this data set.

1

Q11 Q12 Q13 Q 14 Q 15

Execution Time (sec.)

TS5

2

3

4
T2S
A1

*

1

Q 16 Q 17 Q 18 Q19 Q20

Execution Time (sec.)

TS

5

2

3

4 T2S
TPM

6 CONCLUSIONS

In this paper, a new algorithm is proposed to
evaluate twig pattern queries in XML document
databases. The algorithm works in a bottom-up way,
by which an important property of the postorder
numbering is used to avoid join or join-like
operations. The time complexity and the space
complexity of the algorithm are bounded by
O(|T|⋅|Q|) and O(|Q|⋅leafT), respectively, where T is
the document tree and Q the twig pattern query, and
leafT represents the number of leaf nodes in T.
Experiments have been done to compare our method
with some existing strategies, which demonstrates
that our method is highly promising in evaluating
twig pattern queries.

REFERENCES

S. Abiteboul, P. Buneman, and D. Suciu (1999) Data on
the web: from relations to semistructured data and
XML, Morgan Kaufmann Publisher, Los Altos, CA
94022, USA, 1999.

A. Aghili, H. Li, D. Agrawal (2006). and A.E. Abbadi,
TWIX: Twig structure and content matching of
selective queries using binary labeling, in:
INFOSCALE, 2006.

N. Bruno, N. Koudas, and D. Srivastava (2002) Holistic
Twig Hoins: Optimal XML Pattern Matching, in Proc.
SIGMOD Int. Conf. on Management of Data,
Madison, Wisconsin, June 2002, pp. 310-321.

C. Chung, J. Min, and K. Shim (2002). APEX: An
adaptive path index for XML data, ACM SIGMOD,
June 2002.

S. Chen et al. (2006). Twig2Stack: Bottom-up Processing
of Generalized-Tree-Pattern Queries over XML Docu-
ments, in Proc. VLDB, Seoul, Korea, Sept. 2006, pp.
283-323.

B.F. Cooper, N. Sample (2001). M. Franklin, A.B.
Hialtason, and M. Shadmon, A fast index for
semistructured data, in: Proc. VLDB, Sept. 2001, pp.
341-350.

R. Goldman and J. Widom (1997). DataGuide: Enable
query formulation and optimization in semistructured
databases, in: Proc. VLDB, Aug. 1997, pp. 436-445.

G. Gottlob, C. Koch, and R. Pichler (2005). Efficient
Algorithms for Processing XPath Queries, ACM
Transaction on Database Systems, Vol. 30, No. 2,
June 2005, pp. 444-491.

C.M. Hoffmann and M.J. O’Donnell (1982). Pattern
matching in trees, J. ACM, 29(1):68-95, 1982.

Q. Li and B. Moon (2001) Indexing and Querying XML
data for regular path expressions, in: Proc. VLDB,
Sept. 2001, pp. 361-370.

J. Lu, T.W. Ling, C.Y. Chan, and T. Chan (2005). From
Region Encoding to Extended Dewey: on Efficient
Processing of XML Twig Pattern Matching, in: Proc.
VLDB, pp. 193 - 204, 2005.

G. Miklau and D. Suciu (2004) Containment and
Equivalence of a Fragment of XPath, J. ACM, 51(1):2-
45, 2004.

H. Wang, S. Park, W. Fan, and P.S. Yu (2003) ViST: A
Dynamic Index Method for Querying XML Data by
Tree Structures, SIGMOD Int. Conf. on Management
of Data, San Diego, CA., June 2003.

H. Wang and X. Meng (2005), On the Sequencing of Tree
Structures for XML Indexing, in Proc. Conf. Data En-
gineering, Tokyo, Japan, April, 2005, pp. 372-385.

R. Kaushik, P. Bohannon, J. Naughton, and H. Korth
(2002) Covering indexes for branching path queries,
in: ACM SIGMOD, June 2002.

(b) (a)
Figure 8: Results of Group III and Group IV.

A NEW ALGORITHM FOR TWIG PATTERN MATCHING

51

