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Abstract: Accurate reconstruction of deformable structures in image sequences is a fundamental task in many appli-
cations ranging from forecasting by remote sensing to sophisticated medical imaging applications. In this
paper we report a novel automatic two-stage method for deformable structure reconstruction from 3D image
sequences. The first stage of the proposed method is focused on the automatic identification and localization
of the deformable structures of interest, by means of fuzzy clustering and temporal regions tracking. The final
segmentation is accomplished by a second processing stage, devoted to identify finer details using a Multi-
level Artificial Neural Network. Application to the segmentation of heart left ventricle from MRI sequences
are discussed.

1 INTRODUCTION

In the field of computer vision, analyzing the de-
formation pattern of non-rigid structures may con-
vey useful information in a variety of settings. For
example satellite image sequences display tempo-
ral evolution of complex structures like clouds and
vortices, whose analysis is essential for meteoro-
logical forecast (Papin et al., 2000); reinforcement
of speech recognition by visual data may also be
based on the analysis of lips deformation (Bregler and
Konig, 1994). More interestingly for our purposes,
deformable structures show up in human anatomy
(lungs and heart being key examples) and their defor-
mation modes are of key importance in understanding
the functional properties of the related organs and as-
sessing their health-state (Moroni et al., 2006).

Imaging modalities provide an invaluable aid in
analyzing such complex structures. However image
sequences contain a huge amount of high dimensional
data (2 or 3 spatial dimensions plus time) which can-
not be fully exploited unless with the help of suitable
tools for image processing and pattern recognition.
The main goal is to compactly but faithfully describe
deformable structure in such a way to allow for defor-
mation pattern characterization and assessment. Such

an encodingwould be useful to build up a reference
database for similarity searches or data mining proce-
dures.
Of course, an essential step in characterizing de-
formable structures is first of all their localization and
reconstruction from an image sequence.
In this paper we address this preliminary problem,
assuming that structures are periodically deformable
3D structures. The developed method consists in a
two-stage procedure, based on fuzzy clustering and
Artificial Neural Networks (ANN), for the identifica-
tion and reconstruction of the deformable structures
of interest in an image sequence. As an application of
this procedure we describe the segmentation of heart
Left Ventricle (LV) from Magnetic Resonance (MR)
image sequences, extending and refining (Colantonio
et al., 2005). Actually the LV, pumping oxygenated
blood to the body, is of great importance in assess-
ing the health or pathological states of the heart since
it has been demonstrated that different pathologies of
the heart are deeply correlated to its dynamics.

The paper is organized as follows. In Section 2
we define the class of structures we are interested
in, making explicit the necessary assumptions. Then
in Section 3 the proposed approach is outlined and
its basic modules are described in detail. More pre-
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cisely in Section 3.1 we address the problem of au-
tomatic localization of periodically deforming struc-
tures, while in Section 3.2 we propose a method for
the actual reconstruction. In Section 4 we discuss LV
segmentation and show some experimental results,
whereas conclusions and directions for further work
are briefly collected in Section 5.

2 PERIODICALLY
DEFORMABLE STRUCTURES

A structureO embedded in the background spaceΩ⊂
R

3 is a collection

O = {Vα}α=1,2,...,k

of smooth surfacesVα embedded inΩ. The smooth-
ness assumption is a quite common hypothesis in
computational anatomy (see e.g. (Grenander and
Miller, 1998)) and it is satisfied in practice to a large
extent. We use, moreover, collection of surfaces -
instead of a single one- to be able to describe and
characterize also subparts of the structures.

A deformable structureC = (Ot)t=1,2,... is a tem-
poral sequence of structures satisfying some smooth-
ness constraint. EachOt = {Vα

t }1≤α≤k should be re-
garded as thesnapshotof the deformable structure at
time t.
We require that each surfaceVα

t appearing in the
snapshot at timet can be smoothly deformed into
Vα

t+1 in the subsequent snapshot. Tears or crack of
any structure subpart are, therefore, ruled out; more-
over, in such a way, we avoid dealing with changes
in topology, that would require to model shape tran-
sitions. Such a task would be essential for example
in meteorological applications, but is far beyond our
present scopes in biomedical problems.

Finally, a periodically deformable structure is a
deformable structure for which there exists an inte-
ger T such that∀t : Ot = Ot+T . In other words, the
deformable structure depicts a periodic motion; thus,
a periodically deformable structure is characterized
by a finite list of snapshots(O0,O2, . . . ,OT−1), which
will be referred to as its deformation cycle.

It is assumed that a 3D image sequence
(St)0≤t≤T−1 has been acquired from which morphol-
ogy of the structure can be inferred so as to represent
faithfully a physical body or phenomenon of inter-
est. Without loss of generality, considering biomedi-
cal applications, we assume that each scanSt consists
of a set ofh parallel 2D slices. The pixels of each slice
are identified by their position(x,y) in the slice plane
and by a third coordinate,z(z= 1, . . . ,h), which refers

to the index of the slice itself in the stack. In the fol-
lowing, the three coordinates(x,y,z) will be referred
to as a voxel andSt(x,y,z) will denote its intensity
value.

3 TWO-STAGE DEFORMABLE
STRUCTURE SEGMENTATION

We address the problem of deformable structures seg-
mentation with a two-stage method, which, firstly, au-
tomatically localize the deformable structure and then
extracts its finer details, looking for precise contours
of the whole structure and of its subparts.

To each scanSt , the following two-stage proce-
dure is applied:

1. Structure automatic localization:a cluster analy-
sis, based on the fuzzyc-means algorithm, is ap-
plied to identify and label homogeneous regions
in each scan. Through a region tracking proce-
dure, the behavior of these regions is analyzed
over an entire cycle, in order to extract a rough ap-
proximationC ′ = {O′

t}0≤t≤T−1 of the deformable
structureC .

2. Segmentation refinement:C ′ is used to com-
pute the approximate orientation of the real struc-
ture C , which, in turn, is used to extract three-
dimensional features processed by a dedicated
ANN, in order to complete the segmentation, by
identifying accurate contours ofC .

3.1 Automatic Localization of
Deformable Structures

We assume that shape descriptors of the deformable
structure tracked on time exhibit a periodical behav-
ior, with main frequency concentrated in the motion
frequency. Further we assume that the subparts of
the deformable structures appear as homogeneous re-
gions at some scale. However the latter assumption
is dictated by our implementations and can be substi-
tuted without altering the spirit of this contribution.

3.1.1 Clustering

Homogeneous image regions are first labelled us-
ing an unsupervised clustering method, based on
the fuzzyc-means algorithm (FCM) (Bezdek, 1981).
This algorithm groups a set of data in a predefined
number of regions so as to iteratively minimize a cri-
terion function, namely the sum-of-squared-distance
from region centroids, weighted by a cluster member-
ship function. A membership gradep∈ [0,1] is asso-
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ciated to each element of the data set, describing its
probability to be in a particular cluster.

The FCM algorithm is applied to each 3D scanSt
to produce a number of clusters: for any voxelx, a
features vector(I0(x), I1(x), I2(x), . . . , Ir(x)) is com-
puted so thatI0(x) = St(x), and ford = 1, . . . , r, we
setId(x) = Gd∗St(x), whereGd is a Gaussian kernel
with standard deviationσ ∝ d.
This, in turn, induces a partition of the image domain
into a setPt = {R1

t ,R
2
t , . . .} of disjoint connected re-

gions, where the upper indices 1,2, . . . are region la-
bels. In the following,ρt will denote the generic re-
gion inPt .

3.1.2 Region Tracking

Once eliminated regions of negligible volume (island
removal), an intra-cycle tracking procedure is per-
formed. A simple centroid-based tracking algorithm
associates, to any regionρt ∈ Pt in the phaset, its
correspondent regionT(ρt) ∈ Pt+1 in the subsequent
phaset +1. The procedure can be iterated, thus pro-
ducing a region sequence

ρt = T0(ρt) → T1(ρt) → T2(ρt) → . . .

which may be thought as the evolution of the start-
ing region ρt in the different phases. Considering
t = 0 as reference phase, for eachρt ∈ Pt the re-
gions appearing in its evolution are collected in a list
Ev(ρ0) = (Tt(ρt))0≤t≤T−1.

3.1.3 Features Extraction

For any regionρ0 ∈P0, the behavior in time of a shape
descriptorG (such as elementary geometric proper-
ties: volume, inertia moments etc. ) can be estimated
by evaluatingG for every element in the list Ev(ρ0),
thus obtaining a vectorfG(ρ0) = (G.Tt(ρ0))0≤t≤T−1.

To detect the oscillatory behavior offG(ρ0), it is
effective and convenient to switch to frequency do-
main and consider its power spectrum density (PSD)
function.

In more detail, first the vectorfG(ρ0) is normal-
ized:

µG(ρ0) =
T−1

∑
t=0

G.Tt(ρ0)

f ′G(ρ0) =
1

µG(ρ0)
fG(ρ0)

to obtain a scale invariant vector and, thus, getting rid
of the relative size ofG. Then the Fourier transform
in non negative frequencies is computed:

F ′
G(ρ0) = F ( f ′G(ρ0))

and the PSD is estimated using the periodogram
method:

PSDG(ρ0) = |F ′
G(ρ0)|

2

The first harmonic coefficientνG(ρ0) in PSDG(ρ0) is
then selected as a salient feature. Indeed, for fixed re-
gions the variations inG during time are essentially
due to noise; instead for regions in periodic motion
the spectrum power is concentrated in the motion fre-
quency.

Finally, for a predetermined list{G,H, . . .}
of shape descriptors, a features vectorI (ρ0) =
(µG(ρ0),νG(ρ0),µH(ρ0),νH(ρ0), . . .) is associated to
eachρ0 ∈ P0.

3.1.4 Region Classification

Let O′
t denote the region corresponding to the de-

formable structureC at the phaset. At first, the ref-
erence phase is considered andO′

0 is searched among
regionsρ0 ∈P0, taking into account their features vec-
torsI (ρ0). More precisely, a set of learning examples
is used to introduce a Mahalanobis distance in the fea-
ture space. LetI1, I2, . . . Is be a set of observed fea-
ture vectors relative to a training set of regionsC ′ with
meanmand covariance matrixΣ. The associated Ma-
halanobis distance, defined by

D(I ) =
(

(I −m)tΣ−1(I −m)
)1/2

,

measures the dissimilarity of a feature vector w.r.t. to
the expected region feature vector. Thus, for any new
case,O′

0 is selected among candidate regionsρ0 ∈ P0
according to the criterion:

O′
0 = arg min

ρ0∈P0
D(I (ρ0))

In subsequent phases, the regionO′
t is singled out by

means of the tracking algorithm, namelyO′
t is defined

asTt(O′
0).

3.2 Segmentation Refinement

The localization of the deformable structure in the
previous section supplies as a byproduct a rough ap-
proximation of its boundary surface, which may suf-
fer from poor intensity contrast or the presence of spu-
rious structures.

The aim of this section is to refine the segmenta-
tion found in the previous section and to identify as
well the contours of the structure subparts.
The set up is as follows. LetΩ ⊂ R

3 be the image
domain of the scanSt . First we define in 3.2.1 a fea-
tures functionF t : Ω → R

s, that assigns to each point
x ∈ Ω a vectorF (x) of local features extracted from
the image dataSt . Then we use an approach based
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on Multi-Level Artificial neural networks (MANN) to
find functionsΦα : Ω×R

s → R (α = 1,2, . . . ,k) s.t.
the level sets:

Vα = {x ∈ Ω| Φα(x,F (x)) = 0} α = 1,2, . . .k

correspond to the surfaceVα respectively.
The functionsΦα are learned using a training set of
segmented images and they can be used subsequently
to segment new instances.

3.2.1 Features Extraction

Given a scanSt : Ω → R we briefly describe how a
features functionF t : Ω → R

s may be constructed.
Since the neural network will eventually use this func-
tion for the identification of image edges, it is clear
that the functionF t should include “edge detector”-
like clues.
The involved features can be divided into two classes.
First, low-level features are considered: they are
context-independent and do not require any knowl-
edge and/or pre-processing. Some examples are voxel
position, gray level value, gradients and other differ-
entials, texture, and so forth. Middle-level features
are also selected, since voxel classification can benefit
from more accurate clues, specific of the problem at
hand. In particular, the knowledge of the deformable
structure orientation, obtained as a byproduct in Sec-
tion 3.1, can be used to individuate an Intrinsic Ref-
erence System (IRS) suitable to describe the structure
shape. If, in addition, a priori information about the
structure shape is available, a reliable clue for detect-
ing edges in the images is given by the gradient along
the normal direction to the expected edge orientation.
Moreover, a multiscale approach is adopted: the fea-
tures are computed on blurred images, supplying in-
formation about the behavior of the voxel neighbor-
hood, which results in a more robust classification.

3.2.2 MANN-based Voxel Classification

The set of selected features are processed to accom-
plish the voxel classification by means of a Multilevel
Artificial Neural Network (MANN), which assures
several computational advantages (Di Bona et al.,
2003).

For each voxelx, its computed features vector
F t(x) is divided into vectorsF i

t (x), each one contain-
ing features of the same typology and/or correlated.
Then eachF i

t (x) is processed by a dedicated classi-
fier based on an unsupervised Self Organizing Maps
(SOM) architecture. The set of parallel SOM modules
constitutes the first level of the MANN which aims at
clustering each portion of the feature vector into crisp
classes, thus reducing the computational complexity.

Cluster indexes, in turn, are the input of the final de-
cisional level, operated by a single EBP network. The
output of this last module consists in a vector of mem-
bership grade of the voxelx to the various surfaces
Vα (1 ≤ α ≤ k). The SOM modules are trained ac-
cording to Kohonen algorithm (Kohonen, 1997). For
the EBP module, a set of 3D scans should be pre-
classified by an expert observer and used for super-
vised training, performed according to the Resilient
Back-Propagation algorithm (Riedmiller and Braun,
1993).

4 STUDY CASE: LEFT
VENTRICLE SEGMENTATION

Accurate segmentation of cardiac cavities is funda-
mental in assessing cardiac function and determin-
ing quantitative parameters. Magnetic Resonance
Imaging (MRI) is a high quality and well-established
imaging modality in analyzing heart diseases and has
proved to be more reliable than other techniques,
both in supplying accurate and reproducible morpho-
logical information and in assessing heart functions
(ACC\AHA Task Force, 2005). However, due to
noise or acquisition artifacts, visual information can
be corrupted or ill defined: in a usual edge map
of a cardiac MR slice, boundaries belonging to the
LV appear broken or, even worse, close to stronger
edges of other structures. In such cases, only expert
knowledge may help: the exact location of the con-
tours cannot be based only on image evidence, but
should be learned from examples provided by expert
observers. Usually, researchers have tried to design
ad hocalgorithms able to incorporate a priori infor-
mation about the LV shape. Model based surface
detector have been widely used: for example, (De-
clerck et al., 1997) employed a Canny-Deriche edge
detector in a 3D polar map to segment endocardial
and epicardial surfaces, while (Faber et al., 1991) de-
fined a hybrid spherical-cylindrical coordinate sys-
tem. Snakes, since their introduction in the semi-
nal paper by (Kass et al., 1988), have been a pow-
erful tool in cardiac images analysis for segmenta-
tion and motion tracking. Recent improvements in
this field include works by (Jolly et al., 2001), who
reduced sensitivity to initial contour through Dijk-
stra algorithm, and by (Paragios, 2002) and (Huang
et al., 2004) who introduced deformable models influ-
enced by forces derived from image region informa-
tion. (Mitchell et al., 2002;̈Uzümc̈u et al., 2003) used
the concept of active appearance model (AAM). An
AAM is a technique of analysis by synthesis, which,
in principle, could describe any heart through a set
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of learned 3D shapes and a set of allowed variations.
Although AAMs mitigate the segmentation problem
exploiting a shape prior, they are however very sensi-
tive to initialization and intensity variations occurring
at random locations. Aiming at solving this two is-
sues, in (de Bruijne and Nielsen, 2004) a particle fil-
tering scheme is introduced in the AAM framework to
get relatively initialization-independent results, while
a shape model inference on the basis of pixel classifi-
cation is used to cope with local intensity variations.
Finally, also neural networks approaches have been
proposed. In (Stalidis et al., 1999) a Generating-
Shrinking Neural Classifier is used to distinguish
among lung, blood and myocardium points. This
classification allows to extract a set of points on my-
ocardial surfaces and, then, to assess parameters for
a wavelets-based model. Two dedicated neural net-
works are presented instead in (Coppini et al., 1995).
The first is used to select from an edge map bound-
aries belonging to the ventricle. To get a meaning-
ful and unbroken surface, these edges are further pro-
cessed: a thin plate model for the left ventricle is in-
troduced and a stable configuration of minimum po-
tential is found by means of an analog neural net-
work implementation. The methods reported above
depend tightly from the choice of model parameters
and initial conditions. The last problem has tradition-
ally been solved with a manual intervention by an ex-
pert observer, but this contrasts the need of a fully
automatic segmentation.

4.1 Data

The two-stage method described in the previous sec-
tion has been applied to short axis gradient echo
MR images, acquired with the FIESTA, GENESIS
SIGNA MRI device (GE medical system), 1.5 Tesla,
TR = 4.9 ms, TE= 2.1 ms, flip angle 45◦ and reso-
lution rx × ry × rz = (1.48× 1.48× 8) mm. Sets of
T = 30 3D scans, consisting ofh = 11 2D slices,
were acquired at the rate of 30 ms for cardiac cy-
cles [diastole-systole-diastole]. Various clinical cases
were considered, for a total of 360 scans, correspond-
ing to 12 cardiac cycles.

4.2 Experimental Results

The LV segmentation can be viewed as a bi-modal
problem (Paragios et al., 2002): the structure of in-
terest is the myocardium, which can be identified
and extracted seeking the separation among the en-
docardium and the epicardium surfaces.

 frame 0  frame 1  frame 2  frame 3  frame 4

 frame 5  frame 6  frame 7  frame 8  frame 9

 frame 10  frame 11  frame 12  frame 13  frame 14

 frame 15  frame 16  frame 17  frame 18  frame 19

 frame 20  frame 21  frame 22  frame 23  frame 24

 frame 25  frame 26  frame 27  frame 28  frame 29

Figure 1: Visualization of the results of clusterization and
tracking algorithm (slice number 6).

4.2.1 LV Localization

FCM was applied separately to each scan to produce
two cluster using 2 as fuzziness parameter; we con-
sidered as a feature vector(I0, I1, . . . , Ir) whereId =
Gd∗St andGd is a gaussian kernel of standard devia-
tion d times the inslice resolutionrx:

Gd(x) =
1

(2π)3/2(d · rx)1/2
exp

(

−||x||2

(d · rx)2

)

Experimental testing showed that settingr = 2 is
sufficient to get a good partition of the image domain.
The result of the tracking procedure on a middle slice
is shown in Figure 1. The convex-hull volume and
the inertia moments were considered as geometric
properties. The use of convex volume (instead of
the simpler volume) reduces the effect of papillary
muscles that sometimes move towards the boundary
of the region corresponding to the LV. Processing was
performed only on middle slices, thus eliminating
the apical cap and the basal segments of the LV.
Analysis of various clinical cases has been used to
introduce the Mahalanobis distanceD; for simplicity,
the covariance matrixΣ has been assumed to be
diagonal.

4.2.2 LV Boundary Extraction

The previously found region corresponds roughly to
the LV cavity (LVC) and may be used to introduce
an IRS. Since LV is essentially bullet shaped, a hy-
brid sphrical/cylindrical reference system is suitable
to characterize its geometry and extract salient edge
information. To describe more in detail the IRS, sup-
pose, without loss of generality, that thez-axis of
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Ω ⊂ R
3 coincides with the long axis of the LV com-

puted in the previous section and that it is oriented
from the apex to the base of the LV. A pointO =
(0,0,z0) on the long axis is selected as the switching
point between cylindrical and spherical coordinates.
Cylindrical coordinates(r,θ,h) are assigned to points
x = (x,y,z) ∈ R

3 satisfyingz−z0 ≥ 0:

r(x,y,z) =
√

x2 +y2 (1)

θ(x,y,z) = tan−1(
y
x
) (2)

h(x,y,z) = z−z0 (3)

whereas spherical coordinates(r,θ,φ) are given to
points satisfyingz−z0 ≤ 0:

r(x,y,z) =
√

x2 +y2 +(z−z0)2 (4)

θ(x,y,z) = tan−1(
y
x
) (5)

φ(x,y,z) = cos−1(
z−z0

r(x,y,z)
) (6)

(Inverse tangent must be suitable defined to take the
correct quadrant into account)
Note thatr andθ are defined consistently everywhere.
The unit vector field ˆr(x) = ∂

∂r x/|| ∂
∂r x|| (pointing in

direction of increasing radial coordinater) is then
given in cartesian coordinates by:

r̂(x)=

{

(cosθ,sinθ,0) if z−z0 ≥ 0
(cosθsinφ,sinθsinφ,cosφ) if z−z0 ≤ 0

(7)
Note that the field ˆr is almost orthogonal to cardiac
surfaces and, therefore, the derivative∂St

∂r along the
radial direction may be used as a clue for edge detec-
tion. Indeed for a point on a cardiac surface, the mod-
ulus of radial derivative is likely to be a high fraction
of total gradient magnitude (see Figure 2). Moreover
the degree of freedom in the choice of the switching
point O may be used to tune the IRS to the peculiar
cardiac geometry under exam. An automatic proce-
dure for the selection of the switching point is de-
scribed in the Appendix. The hybrid reference system
is used to associate to each pointx = (x,y,z) ∈ Ω, a
vector consisting of the following features extracted
from the data :

• Position: The position of a pointx w.r.t. the
IRS is expressed as a quadruple(r,θ,φ,h). If
z− z0 ≤ 0 the entriesr,θ,φ represent its spheri-
cal coordinates, whereash is set to 0. Similarly,
for z−z0 ≥ 0, the entriesr,θ,h represent its cylin-
drical coordinates whereasφ is set toπ/2. No-
tice that with this choice both definitions agree for
points in the planez= z0.

• Intensity: The intensity valueSt(x) as well as its
smoothed analoguesGd∗St(x).

(a) Slice 3 (b) Slice 5

(c) Slice 7 (d) Slice 9

Figure 2: Example of computed features: radial derivative.

• Gradient norm : Gradient norm
||∇(Gd∗St(x))(x)|| of the smoothed images
Gd∗St .

• Radial derivative: The radial derivative of the
smoothed images∂Gd∗St (x)

∂r (x) = ∇(Gd∗St(x)) · r̂.

Using the 2-level ANN, voxels are classified on
the basis of their features vector as belonging or not to
epi- and endocardial surfaces. More in detail, the set
of extracted features is divided into two vectorsF1,
F2 containing respectively 1) position and intensity
and 2) position, gradient norm and radial derivative.
The position w.r.t. IRS is replicated in both vectors
because it reveals salient for clustering both features
subsets. Then, the first level of the MANN consists of
two SOM modules, which have been defined as 2D
lattice of neurons and dimensioned experimentally,
controlling the asymptotic behavior of the number of
excited neurons versus the non-excited ones, when
increasing the number of total neurons (Di Bono
et al., 2004).

A 8×8 lattice SOM was then trained for cluster-
ing the features vectorF1, whileF2 was processed by
a 10×10 lattice SOM.

A single EBP module has been trained to com-
bine the results of the first level and supply the final
response of the MANN. The output layer of this final
module consists in two nodes, which are used sepa-
rately for reconstructing the epicardium and the endo-
cardium. Since each cardiac surface divides the space
into two connected regions (one of which is bounded),
each output node can be trained using the signed dis-
tance function with respect to the relative cardiac sur-
face. In this way, points inside the surface are given
negative values, whereas positive values are given to
points in the outside. Henceforth the surface of in-
terest correspond to the zero-level set of the output

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

220



function.
Different architectures have been tested, finding

the best performance for a network with only one
hidden layer of 15 units. A manual segmentation
was performed with expert assistance on the available
data. A set of 240 scans was used for network train-
ing, while the remaining ones were used for network
performance test.

The voxel classification, supplied by the MANN,
may be directly used for visualization purposes by us-
ing an isosurface extraction method, as shown in Fig-
ure 3. Figure 4 shows the intersection of the two car-
diac surfaces with a slice plane.

Figure 3: Different views of the rendered left ventricle at
end diastole. The surfaces are obtained applying march-
ing cubes on the two output functions of the network. To
eliminate satellites, a standard island removing procedure
is applied.

5 CONCLUSIONS

In this paper we presented a general approach to
the localization and reconstruction of periodically de-
formable structures, based on fuzzy-clustering and
multilevel artificial neural networks.
The elective case studies are represented by the anal-
ysis of heart deformable anatomical structures. Ac-
tually, for demonstrating the effectiveness of the pro-
posed framework, we have shown the preliminary re-
sults in the reconstruction of the heart left ventricle.

(a) Endocardium (b) Epicardium

Figure 4: Intersection of cardiac surfaces with a slice plane.

The next step will be to employ the obtained results
for defining a method to characterize the state of the
deformable structure (a task already started in (Colan-
tonio et al., 2006; Moroni et al., 2006)) with the
goal of building up a reference database for similar-
ity searches or data mining procedures.
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APPENDIX: IRS SWITCHING
POINT SELECTION

An automatic procedure that tune the IRS to the pe-
culiar cardiac geometry under exams may be devised

Figure 5: The meanz-profile of the LVC is plotted, together
with outer normals to the curve (green) and radial vector ˆrO
(red) in selected points.

exploiting our knowledge of LVC.
Let O = (0,0,z0) be a point on the LVC long axis and
let r̂O be the unit vector field given by eq. 7. A natural
objective function that estimates orthogonality of the
field r̂0 w.r.t. endocardial surface is given by:

J(O) =
Z

Endocardium
(1− r̂O · n̂)2 (8)

wheren̂ is the outer normal to the endocardial surface.
In the previous equation, it is possible to approximate
the (unknown) endocardial surface with the boundary
of the LVC:

J(O) =
Z

∂(LVC)
(1− r̂O · n̂)2 (9)

Note that, in the spirit of Section 3.2.1, suitability of
IRS to the cardiac geometry means in particular that
r̂O should be orthogonal to cardiac surfaces. There-
fore selection of the switching point may be translated
into the optimization problem:

Ô = argmin
O

J(O) (10)

However, for our purposes, it is not necessary to solve
the optimization problem in eq. 10; indeed it is not
meaningful to compute a so fine estimation of the
switching point on the base of the rough data pro-
vided by LVC boundary. Instead, we prefer to con-
vert this 2D fitting problem (integration on a surface)
to a 1D problem (integration on a curve), by taking
into account thez-axis mean profile of the LVC. This
consists in the curve obtained considering the mean
radius of the sections of LVC with a pencil of parallel
planes{z= cost} (see figure 5).
In this new setting the orthogonality criterion 10 may
be restated with obvious modification.
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