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Abstract. The purpose of this paper is to present a novel approach to the problem
of autonomous robot navigation in a partially structured environment. The pro-
posed solution is based on the ability of recognizing digital images that have been
artificially obtained by applying a sensor fusion algorithm to ultrasonic sensor
readings. Such images are classified in different categories using the well known
Case-Based Reasoning (CBR) technique, as defined in the Atrtificial Intelligence
domain. The architecture takes advantage of fuzzy theory for the construction of
digital images, and wavelet functions for their analysis.

1 Introduction

In recent years, the problem of indoor robot navigation has been largely considered for
the challenges that issues in several technological fields. From the motion control sub-
strate to the artificial reasoning layer, many researchers have worked out solutions able
to perform complex navigation tasks in many application fields ranging from industry to
service robotics. In particular, a still open problem is the devising of efficient strategies
able to cope with the problem eélf localization in unstructured environments, i.e., the
ability of estimating the position of the mobile platform when no artificial landmarks
can be used to precisely indicate to the robot its position. Now, suppose to restrict the
problem and choose the environmentin a particular class, still very wide: an office-like
environment with corridors, corners and other similar features. Suppose also that only
low cost sonar sensors can be used: all localization information, that at this point have
a topological character, should be easily extracted from sensory data and used to guide
the platform along the path. Unfortunately, in a dynamic environment, those features
(natural landmarks) can vary and some unknown configurations could be found leav-
ing to the robot the choice on several strategies: one could consist in finding the nearest
matching topological elementin a static library; an other one could include a supervised
learning stage in which the new pattern is used to increase the base library itself. This
second approach is often referredGese-Based Reasoning (CBR) [1, 5], and tries to

catch all the learning opportunities offered both by the environment and, in an initial
phase, by an external supervisor, to improve robot skill in analyzing its exteroceptive
sensorial view.
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Fig. 1. Map of a corridor. Fig. 2. Worldmark.

2 A Case-Based Approach

Autonomous navigation usually implies a recognition pHas@ach step taken by the
robot to estimate its position, or better, to understandptiréicular shape of the envi-
ronment (the topological feature) inside its actual ranfyei@w. In our case, this can
be done comparing the actual sonar output with a set of meersignals associated
with particular topological features. In most cases, d@ssion is done by comparing
the actual view with a static list of models obtained wéthpriori considerations on
the environment itself [4]. However, following a CBR phi@ghy, a learning approach
can be devised in which real-world cases obtained from arsigeel navigation are
used to build and update a dynamic library. In this paper, \@atwo show how such
a method can be successfully applied to help the robot durdwggation in dynamic
environments containing features that only partially espond to previously known
cases. In particular, the problem we intend to address cosdbe recognition of a
sonar-based digital image and its classification under ategory belonging to a set of
predetermined topological situations (Corridor, Cori@mssing, End Corridor, Open
Space).

Basically, the surrounding of the robot is representedrimssof Fuzzy Local Maps
(FLM), i.e., Fuzzy Maps [7, 8], that turned out to be extremely useful in many sensor
fusion problems, obtained from a preprocessing stageeptulithe sonar signals. Each
FLM consists of 40 x 40 cells and, for each cell of an FLM, twdues specifying
the degree of membership to the set of empty cells and to thef secupied cells are
computed. An FLM, usually derived at each step merging teerlasets of collected
data, is thereafter represented by two fuzzy sets: the eoafis/set®, and the occupied
cells setO. As an example, in Fig. 1 thé set of a FLM obtained in a corridor is
reported. Different gray levels in the image represenedéfiit fuzzy values. Pixels with
darker gray levels correspond to lower values of membeishipe empty cells sef,
white pixels are unexplored regions, with a fuzzy value ofmbership ta€ equal to 0.

Now, with reference to the scheme depicted in Fig. 3, let sarag that the robot
has acquired a new FLM. As first step, a feature-based rapetim of the new FLM
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Fig. 3. Navigation architecture with Case-Based Reasoning.

is evaluated by the feature extraction module. This repmtasien constitutes the “new
case” of the proposed CBR system. The retrieval module shmttre figure will effect

a search in the case library containing the old cases, basagproblem representa-
tion, solution> structure, which in this specific case will ke=LM based representa-
tion, topological category index>. The solution given in the old case can therefore be
seen as a pointer to the “Library of Objects”, containingdhtegories (i.e., “topolog-
ical features”) that could appear in the maps to be analykeé.“recognized object”
is at this point taken into consideration by the robot natitgasystem to plan its mo-
tion. This object, which constitutes the old solution of taese retrieved from the Case
Library, will also be considered as a candidate solution aewa problem (basically,
there is no need for an adaptation of the old solution to keitiew case) and if the hu-
man supervisor accepts it, the painew FLM based feature representation, recognized
object index> can be inserted as a new case in the Case Library.

3 Image Recognition

For sake of clarity, the pseudo-code of a rather simplifiedivae of the classification
algorithm is reported in Table 1. The complete solution, leyygd for the experimental
performance assessment, was implemented in C language tivedeinux operative
system, for reasons of porting and efficiency. To handle botmew case and any of
those cases dwelling in th@ase Library, the use of a record structure comprising the
three fields below was adopted:
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— aone-dimensional fuzayorldmark summarizing the content of the FLM;

— object, designed to store the label associated to the recognijedtpb

— time, reserved to the storage of information regarding thetytdf the case of
reference.

As indicated above, the first field is dedicated to the repragi®n of the FLM. Specifi-
cally, in order to guarantee the applicability of the cutmpproach to real-time control,
a simplification has been introduced: the bi-dimensionatyunap of Fig. 1 is replaced
with a one-dimensional fuzzy signal, namedrldmark. The worldmark is computed
by determining, for each direction around the robot, theealf the cell with the high-
est matching score to the set of empty cells, or, in other wdfte cell for which the
risk of belonging to a possible obstacle is minimum (see EjgTherefore the “new
case” that appears in Fig. 2 consists of a vector of N elen{gmpgally N=360) with
values in the interval [0,1].

Before launching into the detailed description of the repngéation modalities of
the aforementioned three fields, we believe it useful to i@ general overview of
the entire algorithm. The domain expert’s possibility tteivene in the decision task is
possible both in the initial training phase of the system el & during the verification
phase for the retrieved solutions. Another aspect wortkagtehtion is the one related to
the adoption of a double similarity test. It is manifest taatthe pertinence of the case
library increases, so does the probability of retrievingaadidate with a good value
of similarity to the case under examination and, therefthrat, the associated solution
to will prove to be valid even in a contingent situation. O thther hand, a rather
voluminous library presents the two following inconverdes:

— more time necessary for the retrieval of the required inftram;
— adepletion in terms of available space.

In order to avoid, at least partially, this state of affatte proposed architecture uses
two different tests, respectively, namestiability test andidentity test. The former pro-
vides indications on the possibility of successfully apihlg solution of the retrieved
case to the new situation, the latter controls the inserdfahe new case into the sys-
tem memory. The reason for the introduction of the idengtst parameter is owed to
circumstances where it is useless to include a new caseg"aiimilar to a case stored
in the library in the system memory. The reliability test erfformed by comparing the
current similarity metric valug; with the reliability thresholdS,, while the identity
test is performed by comparing the same vaiyawith an identity thresholds,. In
Tables 2 and 3 the threshold values determined by a heupisiecedure are reported
together with the percentage of coincidence between tip®nses given by the system
and those furnished by a domain expert. Specifically, forsétep ofS, andS,, the
available memory space, the amount of resources necesdagp in memory the pair
<representation of signal, represented object> and the statistics of the similarity index
were considered.

Keeping in mind an “intelligent” management of the resosraeailable to the sys-
tem, a third test has been introduced. The idea that hastetehg lead to its introduc-
tion, stems from the need to keep track, for all cases storeteimory, of thdrequency
of their appearance and tleffectiveness of the solution associated to them. The record



Table 1. Pseudo-code for CBR.

Function REC(Newlmagejeturns RecObject
inputs : Newlmage; the input image
variables : CaseLib; the case library
C;; the generic old case
Thouse; the inactivity time
Sa; the reliability threshold
Sp; the identity threshold
local variables: D.image; the image representation
D.object; the recognized object
s, the metric value
tempvalue; the temporary metric value
tempind; the temporary case index

D.image<— WAVELET(Newlmage)
D.object— 0
tempvalue— 0
tempind<— 0
for eachold caseC'; in CaseLibdo
begin
s; < COMPARE.CASE(D.image(;.image )
if (tempvalue< s;) then
begin
tempvalue— s;
tempind«— j
end
end
if (tempvalue< S, ) then
begin
D.object<— HumanExpertSolution
C,+1.image— D.image
C'p +1.0bject— D.object
Cp41.time—0
end
else
begin
if (Ctempind-Object = HumanExpertSolutiotiien
begin
D.object— Cempina-Object
Ciempind-time« 0
end
else
D.object— HumanExpertSolution
if (tempvalue< Sp) then
begin
Cy,+1.image«<— D.image
C'p +1.0bject— D.object
Cp41.time—0
end
end
CLEAN_LIB(CaseLibT}, ouse)
RecObject— D.object
returns RecObject

101
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field time was specifically introduced in consideration of these ai@rsce more, the
clean library test compares this value with a thresh@lg,, s.. If time exceeds},,use
the case is removed from the dictionary. For the deternanadf the optimal value to
assign to the indicatdf,,,.s., the same considerations expressed above for the param-
etersS, and.s, still apply.

However, for a full understanding of the architecture pisgabin this article there
are still two major aspects that, as always, in any systeradas cases, constitute the
heart around which all the rest revolves, that is,

— the signal representation;
— the similarity metric.

These aspects are, furthermore, strongly interrelated.

3.1 The Signal Representation

Choosing the most efficient representation for a currerttlpra constitutes the crucial
moment of any application of signal processing. Here, werted to awavelet repre-
sentation of the worldmark. The wavelet representation expressesigimal of interest
as superimposed elementary waves and, therefore, in #iecedoes not introduce any
innovation compared to traditional methods, such as Foseiges expansion. However,
the innovative aspect offered by wavelet functions coasisthe possibility of subdi-
viding the available data in components with differing baidths and time durations.
Each of these components is subsequently analyzed by aitiesohassociated to its
scale. The advantages offered by this procedure are tangibbve all, in respect to
the analysis of physical situations where typical signhtsasdiscontinuity and sudden
peaks, exactly as happens with worldmarks. The advantdgadopting representa-
tions in similar situations through wavelet functionsjéssl of traditional methods, are
extensively expounded in the literature [3, 6, 2].

3.2 The Similarity Metric

The last aspect to be examined concerns the choice of thécmetessary for the
evaluation of thesimilarity existing between casgin input and the generic cagebe-
longing to theCase Library. Regardless of the application context, a good metric must
anyhow be able to guarantee an efficient compromise betveemwb main requisites,
which are thequality of the recognition and theomputational complexity. Accordingly,
during the experimental activity several different metricere tested. Among them, the
relatively best results were obtained by using thass-correlation factor as metric,
whose expression is:

Ve @9z —0))
oc027) \/(f(2), f(x)) (9(x), 9())
This quantity was calculated both in the time and frequermyans, respectively, ob-

taining in both cases significant results with moderategssing time, through compu-
tation resources available on the market today.
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4 Experimental Results

For our tests, we used the simulator of Nomad200 by Nomadibri@ogies, a mo-
bile robot equipped with a ring of 16 equally spaced ultréssansors. The procedure
consists of tracing a number of global maps of hypothetiffadelike environments,
simulating the robot dynamics and, finally, collecting théput data. For these op-
erations we used the real time navigation software A.N.ARH [9] which, together
with the aforementioned simulator, made the robot virtaaigation inside the mapped
environment possible producing the sequence of FLMs anmésponding worldmark,
each pair related to a different position taken during tHiedeed path. Each sequence,
therefore, includes hundreds of FLMs and worldmarks, wieimhstitute the input for
the tests that we performed on our classifier. The valuestegbelow were obtained
by using a machine equipped with a Pentium M processor, 1768@,Mnd 512 MB
RAM. During the testing phase, we initialized the systenotigh representations re-
lated to four different configurations:

corridor
crossing

end of corridor
— angle

providing, for each of these, three different standard s&® in practice as it appears
in the initial phase, at its basic level, and in the final phase

Tables 2 and 3 show, in particular, the results recordechduwo different series of
tests of the system. The firstillustrates the results obthby performing the similarity
evaluation between the input signal and the generic ondertkie case library directly
in the temporal domain. Instead, for the second one, the speration was effected in
the wavelet domain, i.e., the matching evaluation of thedigoals was not made by es-
timating the cross-correlation between sequences of teahpamples, but between the
corresponding residual low-frequency components, obthihrough Discrete Wavelet
Transform (DWT). Consequently, it is possible to appreciata more tangible way
the extent of the possible advantages granted by the exgaatsignals in series of
waveform, perfectly located in time and in frequency.

To perform this experimentation, we simulated the robofigetion in an environ-
ment that Fig. 4 illustrates as a global map. In the same figrerbave also traced the
path followed by the robot, planned on the basis of specifithous for which further
explanation is out of the scope of this paper. A sequence 6fF83Ms is thus gen-
erated, as well as a corresponding number of worldmarksrdardo streamline the
experimental procedure, without, however, penalizingfticiency, since the variation
between one FLM and the subsequent one was practicallynifisant, we decided to
consider only one over three samples and to discard thesotAera result, the map
effectively input to the system consists of only 212 FLMs.

Initially, we shall examine the values reported in Table 2. aticipated earlier,
the tests were performed by running the system beforehaadgh the same training
session, for each test series. This fact becomes appardobking at the data in the
6" column, since the same value recurs systematically in éaelil2 cases). Actually,
the coincidence does not only concern the number of casels Imsealso the samples
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Fig. 4. Global map.

themselves. In this way, we attempted to guarantee the saitieé condition in each
test series.

A reading of the data discloses the consistency of the recbildctuations, in re-
spect to the varying values assigned to the two similaritggsholds. For example, it
is noticeable that when the reliability threshdlgd decreases, there is a proportional
decrease in the number of interventions required of the doeert by the system.
Similarly, there is a clear increase in the number of casseriad in the relative library
matching an increase in the identity thresh8ld However, the phenomenon of major
importance and interest relates to the trend recorded bfattter indicated in the ta-
ble ascoincidence percentage. This factor was gathered by a comparison between the
system responses and those that would have been given bgrieexpert who per-
formed the training, when examining the corresponding Fl¢arly, such a strategy
is inevitably damaged by the loss of information that ocdunsng the passage from a
bi-dimensional fuzzy map (FLM) to the corresponding polamworldmark). How-
ever, notwithstanding this additional source of uncetiaie results obtained may be
considered more than satisfactory.

Proceeding with the analysis of the data reported in Tablt8¢ch refer to the
same experimental tests, but performed on the wavelet ciegifs and not on their
corresponding original signals, the gain is noteworthythba terms of coincidence
percentage as well as computational complexity. In padicit can be observed how
the first factor is affected to a significant lesser degreehleyvariation of the values
assigned to the two thresholds and.S;.

Although we do not wish to dwell upon too many details of thperkmentation, it
should be noted, however, that to obtain the wavelet coeffisirelating to sequences
of 360 temporal samples we used a simple DWT with four levetsanalysis filters of
the type belonging to the Daubechies family (specificalig, tersion with four coeffi-
cients).

Another observation should be made on the processing timweder to finalize this
experimentation, for sake of clarity, we decided to opeoat¢the group of worldmarks
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Table 2. First experimental set.

Sa | Sy |Input]  Expert |CoincidenceCasesCasegProcessing
casegnterventions percentagebeforg after| Time (s)
0.900.93 212 14 84.0% (178) 12 51 10.31
0.880.93 212 12 84.0% (178) 12 | 51 10.16
0.850.93 212 5 81.6% (173) 12 | 51 9.46

0.910.93 212 23 94.3% (200) 12 | 51 10.46
0.910.95 212 19 94.3% (200) 12 | 74 13.86
0.890.91 212 14 88.7% (188) 12 | 37 8.21

Table 3.Second experimental set.

Sa | Sy |Input]  Expert |CoincidenceCasesCasegProcessing
casefinterventions percentagebefore after| Time (s)
0.900.93 212 12 94.3% (200) 12 | 43 0.47
0.880.93 212 7 93.9% (199) 12 | 43 0.53
0.850.93 212 5 92.4% (196) 12 | 43 0.43
0.910.93 212 15 94.3% (200) 12 | 43 0.48
0.910.95 212 13 94.3% (200) 12 | 64 0.59
0.890.91 212 12 94.8% (201) 12 | 51 0.38

generated during the course of the overall navigation énié simulated environment.
Consequently, the time necessary to operate in real-tintedtdedly less than that
reported as the sum over all input cases in the table andeaddbsignificantly lower
than the time allowed during the robot actual navigation.

5 Conclusions

Generally, the normal pattern recognition techniquesirequodels of the objects that
must be recognized and classified. The collection of modelgadble to the classifier
clearly reflects the original knowledge of the situation ¢camalyzed. However, in most
cases, as for the robot autonomous navigation, there gxiatsically no prior infor-
mation whatsoever. Our proposed architecture includestarfe extraction algorithm
incorporated into a CBR shell, which allows a constant iasecin the knowledge of
the surrounding environment. We remark, however, that dssipility of updating the
Object Library as well as the Case Library, although leftropad in principle with no
limit to the number and complexity of information that maydedlected, is constrained
to real-time restrictions linked to the technology thatiaikable on the market today.

Future developments will be focused on introducing the ibdig of fusing more
information coming from different kind of sensors (e.gsdascanners or cameras) into
a more detailed worldmark to provide the classifier with ddyetnd more robust input
data.
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