
Using Temporal Business Rules to Synthesize Service
Composition Process Models

Jian Yu
1
, Jun Han

2
, Paolo Falcarin

1
 and Maurizio Morisio

1

1
Department of Automation and Information, Politecnico di Torino, 10129 Turin, Italy

2

Faculty of ICT, Swinburne University of Technology, 3122 Hawthorn, Australia

Abstract. Based on our previous work on the conformance verification of ser-
vice compositions, in this paper we present a framework and associated tech-
niques to generate the process models of a service composition from a set of
temporal business rules. Dedicated techniques including path-finding, branch
structure introduction, and parallel structure introduction are used to semi-
automatically synthesize the process models from the semantics-equivalent Fi-
nite State Automata of the rules. These process models naturally satisfy the pre-
scribed behavioral constraints of the rules. With the domain knowledge en-
coded in the temporal business rules, an executable service composition pro-
gram, e.g. a BPEL program, can be further generated from the process models.

1 Introduction

The service-oriented computing paradigm, which is currently highlighted by Web
services technologies and standards, provides an effective means of application ab-
straction, integration and reuse with its loosely-coupled architecture [1]. It prompts
the use of self-describing and platform-independent services as the fundamental com-
putational elements to compose cross organizational business processes. Executable
Service composition languages including BPEL [2] and BPMN [3] have been created
as effective tools for developing applications in this paradigm.

In the process of developing service-oriented applications, it is essential to ensure
that the service composition being developed possesses the desired behavioral proper-
ties specified in the requirements. Unexpected application behaviors may not only
lead to mission failure, but also may bring negative impact on all the participants of
this process.

One of the typical solutions to this problem is through verification: by formally
specifying the behavioral properties and then applying the model checking technique
to ensure the conformance of the application to these properties. A bunch of research
works have been published on the verification of service compositions in BPEL
BPEL [4, 5, 6]. We also have proposed a pattern based specification language
PROPOLS and used it on verifying BPEL programs [7]. One of the significant fea-

Yu J., Han J., Falcarin P. and Morisio M. (2007).
Using Temporal Business Rules to Synthesize Service Composition Process Models.
In Proceedings of the 1st International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 85-94
DOI: 10.5220/0001346600850094
Copyright c© SciTePress

tures of our approach is that PROPOLS is an intuitive, software practitioner accessi-
ble language that can be used by business experts to express temporal business rules.

Synthesis is the process of generating one specification from another at an appro-
priate level of abstraction, while some properties of the source specification are kept
in the target one. Comparing with verification, the synthesis approach gives further
benefits to the developers: Except for ensuring the property conformance, part of the
application design and programming work is done automatically.

In this paper, we propose a synthesis framework and associated techniques to gen-
erate service composition process models from a set of PROPOLS temporal business
rules. The PROPOLS rules prescribe the occurrences or sequence patterns of business
activities in a business domain. The behavioral model of a set of rules can be
achieved by translating each rule in the set into a semantics-equivalent Finite State
Automaton and then composing them into another FSA with the logical operators
defined upon FSA. A set of process models of the targeting service composition can
be synthesized by analyzing the acyclic acceptable paths of the resulting FSA. Dedi-
cated techniques include path-finding, branch structure introduction, and parallel
structure introduction. Because of the “looseness” of the temporal business rules
specification, which means the specification is incomplete, some of the generated
process models are either trivial or meaningless to the developer. At this time, the
developer can introduce new pertinent business rules to get a more precise result of
the process models. When a satisfactory process model is generated, it can be further
transformed into a BPEL program by discovering reusable Web services based on the
ontology information encoded in the business activities. In a word, our synthesis
framework offers an “intuitive specification” and then “correct by auto-construction”
solution bring benefits to either a novice or an expert software developers.

The rest of the paper is organized as follows. Section 2 presents an overview of
our synthesis framework. Section 3 explains the synthesis process and techniques in
detail by an example from the e-business domain. Section 4 discusses the related
work and we conclude the paper in Section 5.

2 Overview of the Synthesis Framework

Fig. 1 summarizes the main components of our synthesis framework. The shadowed
ovals indicate the three major phases, specification, synthesis, and transformation,
where iterations between specification and synthesis are usually necessary to get a
precise process model.

Ontology of
Business
Activities

1. Specification Temporal
Business Rules

2. SynthesisProcess
Models3.TransformationBPEL Program

Business
Requirements/

Policies

Fig. 1. Overview of the Synthesis Framework.

87

The focus of this paper is on the synthesis phase.

Specification

Temporal business rules state the occurrence or sequencing orders between business
activities prescribed by some business requirements or policies. Business activities
represent reusable services in a business domain, either coarse-grain services exposed
beyond organization boundary or fine-grain services extracted from function libraries.
A taxonomy or ontology can be used to organize business activities for effective
browsing and searching.

We use PROPOLS [7] to specify temporal business rules. PROPOLS is a high-
level temporal constraints specification language. The main constructs of PROPOLS
are property patterns [8, 9] abstracted from frequently used temporal logic formulas.
A logical composition mechanism allows the combination of patterns to express com-
plex requirements. Below we briefly describe the key constructs and semantics of
PROPOLS.

PROPOLS has two main constructs: basic patterns and composite patterns. Fig. 2
shows the form of basic patterns. The constructs on the left are temporal patterns and
those on the right are scopes. A temporal pattern specifies what must occur and a
scope specifies when the pattern must hold. The P, Q, R, and S in the figure denote
events parameters (or business activities in this work) and n is a natural number.

Every temporal pattern has the intuitive meaning by its name, e.g. “precedes”
means precondition relationship, “leads to” means cause-effect relationship, “p is
absent” means p can not occur, “p is universal” means only p can occur, and “exists”
defines the occurrence time of an event. Scope “globally” refers to the whole execu-
tion period of an application. Scope “before S” refers to the portion before the first
occurrence of S, and so on.

Temporal Patterns Scopes
P precedes Q
P leads to Q
P is absent
P is universal

P exists[n times] ⎥
⎦

⎤
⎢
⎣

⎡
leastat
mostat

⎪
⎭

⎪
⎬

⎫

× ⎪

⎪
⎨

⎧

⎩

globally
before S
after R
between R and S
after R until S

Fig. 2. Basic Patterns.

Every basic pattern has a one-to-one relationship with a predefined FSA which
precisely expresses its semantics. E.g. Fig. 3 illustrated the corresponding FSA of
basic patterns “precedes”, “leads to”, and “exists” with “globally” scope, where the
symbol O denotes any other events than the named events. Fig. 3(a) says that before P
occurs, an occurrence of Q is not accepted. Fig. 3(b) says that if P has occurred, an
occurrence of Q is necessary to drive the FSA to a final state. And Fig. 3(c) says that
only the occurrence of P can make the FSA reach a final state.

88

(a) P precedes Q globally (b) P leads to Q globally (c) P exists globally

Fig. 3. FSA Semantics of Basic Patterns.

Composite patterns are constructed by the logical composition of basic patterns.
The syntax of composite patterns in BNF is:

 Pattern = basic pattern | composite pattern
 Composite pattern = not Pattern | Pattern and Pattern | Pattern or Pattern | Pattern xor Pattern

The semantics of composite patterns can be expressed by the logical composition
defined upon FSA [10]. E.g. Fig 4 describes the logical composition between two
basic patterns: “P1 exists globally” and “P2 exists globally”. The states are the Carte-
sian production of the two FSA and the final states are determined by the logical
operator used.

Fig. 4. FSA Semantics of Basic Patterns.

Synthesis
Fig. 5 describes the steps of synthesis.

Temporal
Business Rules

Temporal
Business Rules

(group1)

Temporal
Business Rules

(group2)

FSA
(group1)

FSA
(group2)

Acyclic
Accepting Paths

(group1)

Process Model
grouping

Composition

Composition Acyclic
Accepting Paths

(group2)

Pathfinding

Pathfinding

synthesis

adjusting

adjusting
Fig. 5. Synthesis Process.

The main purpose of grouping is to separate concerns. One grouping strategy is by
the goals/sub-goals of the business activities involved. E.g. if a set of business activi-
ties is classified under “ProcessOrder” goal, then all the temporal rules defined upon
these business activities are in one group. Grouping can reduce the number of tempo-

89

ral rules that should be considered at a time, which reduces the complexity of the total
synthesis process.

Based on a group of temporal rules, we get the corresponding semantic-equivalent
FSA of each rule and then compose them into one FSA based on the logical composi-
tion operators defined upon FSA [10]. Usually, the “and” operator is used because we
want all the rules be satisfied, in this situation, the resulting FSA precisely describe
the all-satisfying semantics of this group of rules. Every string in the accepting lan-
guage of the resulting FSA is a justified execution path of the related business activi-
ties, which conforms to all the rules in the group (Yu et al., 2006b).

In fact Many accepting paths are infinite because of the loop in the resulting FSA.
We just find all the acyclic accepting paths (AAPs in short), because a loop can’t
introduce new final state to the path.

Every AAP is a sequence of business activities satisfying the group of rules. If the
generated AAPs can’t satisfy the user’s expectation, e.g. the number is too big or only
contains trivial solutions, the user can refine his requirements by introducing addi-
tional temporal rules between business activities to get more precise AAPs.

The last step is to synthesis all the generated AAPs into a process model. First the
user should pick one AAP from each group and connect them manually. Then tech-
niques that automatically introduce branch and parallel structures will be used to
generate a process model. Temporal rules defined between groups also will be used to
check the validity of the process model.
Transformation
The resulting process model is transformed into the control flow constructs, e.g. “se-
quence”, “switch”, and “flow”, in BPEL. The ontology of business activities will be
used to discover reusable Web services and transformed into the “invoke” action in
BPEL.

3 The Synthesis Process

In this section we describe our synthesis method and techniques in detail by an exam-
ple. This example is adapted from a frequently appeared online purchasing scenario
in the e-business domain. Our scenario accepts online orders and then processes them
by the “Hard-Credit” business rule. To accept an order, this order must be checked
for validity, the customer who places the order will receive either a confirmation or
cancellation of the order based on the checking result. The purpose of the “Hard-
Credit” rule is to protect the benefits of both the customer and the business provider.
This rule states that the customer MUST pay when the order is fulfilled, and the pay-
ment is made only after the customer has received the goods and invoice. A third-
party trustee, e.g. a bank, is necessary to implement this rule, first the customer de-
posit the payment to the bank, then the payment is transferred to the provider if the
customer received the desired goods.

Specification
Fig. 6 shows the business activities solicited from the above-stated scenario and the
temporal business rules defined upon them. Business activities and temporal rules are

90

classified by two sub-goals: “AcceptOrder” and “HardCreditRule”. Note that there is
also one temporal rule, AH.1, defined between groups.

OnlinePurchasing
AcceptOrder
PlaceOrder
CheckOrder
ConfirmOrder
CancelOrder
HardCreditRule
ConfirmDeposit
FulfilOrder

ConfirmPayment
IssueInvoice

A.1 PlaceOrder leadsto CheckOrder globally
A.2 CheckOrder precedes ConfirmOrder globally
A.3 CheckOrder precedes CancelOrder globally
A.4 (ConfirmOrder exists Globally) xor
 (CancelOrder exists Globally)

H.1 ConfirmDeposit precedes FulfilOrder globally
H.2 FulfilOrder precedes IssueInvoice globally
H.3 IssueInvoice precedes ConfirmPayment globally

AH.1 ConfirmOrder precedes FulfilOrder globally

Fig. 6. Business Activities of the Online Purchase Example.

Fig. 7 shows the FSA generated by the and-composition of A.1~A.4 using the
verification tool introduced in [7]. Every path from the initial state (0) to the final
states (12 and 15) is a valid run that satisfies rule A.1 to rule A.4.

0:CheckOrder
1:CancelOrder
2:ConfirmOrder
3:ReceiveConfirm
Deposit
4:FulfilOrder
5:ConfirmPayment
6:IssueInvoice
7:PlaceOrder

Fig. 7. FSA Composed from A.1~A.4.

Path-Finding
The algorithm of finding all the acyclic paths in a FSA is described in Fig. 8. This is a
variation of the Depth-First-Search algorithm [11]. The most significant modification
is that a state can be visited N times if it has N non-loop input edges (is on N different
non-loop paths starting with the initial state). For example, state 9 in Fig. 7 has 2 non-
loop input edges, so it will be visited 2 times when searching.

 Global var: int counter, int[] order;
 Procedure fsaAcyclicPath(FSA G) {
 counter = 0;
 order = new int[G.numberOfStates];
 for (int t = 0; t < G.numberOfStates; t++){
 order[t] = NotVisited;}
 //search all the paths start with the initial state

91

 searchC(0);
 }
 Procedure searchC(int v) {
 order[v] = Visited;
 AdjacentList A = G.getAdjacentList(v);
 for (Node t = A.begin(); !A.end(); t = A.next()){
 if (order[t.v] == NotVisited){
 addEdge2Tree(v,t);
 searchC(t.v);
 //mark the state as not-visited when move to a new path
 order[t.v] = NotVisited;}}}

Fig. 8. Algorithm for FSA Acyclic Path-Finding.

Using the above path-finding algorithm to the FSA in Fig. 7, we can get all the
acyclic paths starting from the initial state. Fig. 9 is an excerpt of the path-tree where
the concentric circles are the final states.

From the generated path-tree, we can totally get 8 AAPs: 1.(Place, Check, Can-
cel)1 , 2.(Place, Check, Confirm), 3.(Place, Check, Place, Cancel, Check), 4.(Place,
Check, Place, Confirm, Check), 5.(Check, Place, Cancel, Check) , 6.(Check, Place,
Confirm, Check) , 7.(Check, Cancel), 8.(Check, Confirm). Clearly not every AAP fits
the user’s need. At this time, the user can add rules to get more precise AAPs. E.g. if
one extra rule, “A.5 PlaceOrder precedes CheckOrder globally”, is introduced, the
number of the above AAPs will be reduced to 4, only 1~4 are left.

Fig. 9. Excerpt of the Path-Tree.

Synthesis
After all the satisfying AAPs are generated, the user can pick one AAP from each
group and connect them manually to build the initial process model which only con-

1 “PlaceOrder” is shorten as “Place” if no ambiguity is introduced. The same rule applied to

other business activities.

92

tains sequence structures. Temporal rules defined between groups will be used to
check the validity of such connections.

A heuristic method is used to introduce branch structures into the initial process
model: If a rule has the form like “P exists globally xor Q exist globally”, e.g. rule
A.4, we introduce a branch between P and Q. The justification of this method is that
the process model with the branch will be verified correct against the temporal rule.

The introduction of parallel structures is based on interleaving assumption, which
states that two events are concurrent if their occurring order does not change the con-
sequence (Milner, 1989). Based on this assumption, if we have two business activities
P and Q, P next to Q in one AAP and Q next to P in another AAP, which means the
occurring order of P and Q has nothing to do with the execution consequence, we are
sure that P and Q can be put in a parallel structure. E.g. if we compose all the rules in
Fig. 6, we can find that “ConfirmOrder” and ConfirmDeposit” can go in parallel.

Using the above-stated methods and techniques, a possible synthesized process
model is shown in Fig. 10.

PlaceOrder CheckOrder ConfirmOrder

CancelOrder

ConfirmDeposit

FulfilOrder ConfirPaymentIssueInvoice

Fig. 10. A Possible Synthesized Process Model.

4 Related Work

A body of work has been reported on generating process models in the area of service
oriented computing. Berardi et. al. use situation calculus to model the actions of Web
services, and generate a tree of execution paths [13], they also use FSA to model the
actions of individual services and then synthesis the service composition FSA [14]. In
[15], Wu et. al. discuss how to synthesis Web service compositions based on DAML-
S using an AI planning system SHOP2. Duan et. al. synthesis a BPEL abstract proc-
ess from the precondition and post-condition of individual tasks [16]. Most of the
above works are based on AI planning. One problem with AI planning synthesis is
that planning focuses on generating a sequential path for conjunctive goals and does
not consider generating process constructs like conditional branching and parallel
execution.

More generally, there are also some approaches on generating formal behavioral
models from another formalism. E.g. Beeck et. al. use Semantic Linear-time Tempo-
ral Logic to synthesis state charts [17]. Uchitel et. al. use Message Sequence Charts to
synthesis Finite Sequential Processes[18]. The most significant difference between
our approach and theirs is that our process model is more close to the final program,

93

while their models are more abstract and suitable for reasoning the general properties
of the system.

5 Conclusion

In this paper, we have presented a framework and associated techniques to semi-
automatically synthesis service composition process models from temporal business
rules. This framework is supposed to give much help to common software practitio-
ners, the rule specification language PROPOLS is intuitive and works at the business
level, a “correct” process model can be generated semi-automatically, which facili-
tates daily programming work and finally brings benefits to both the novice and the
expert software developers.

Currently, we are working on the transformation phase of the framework. In the
future, we plan to integrate this framework with some graphical service composition
editors, e.g. ActiveBPEL Designer [19].

References

1. Alonso, G., Casati, F., Grigori, Kuno H., Machiraju, V.: Web Services Concepts, Architec-
tures and Applications. Springer-Verlag (2004).

2. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K., Thatte, S.,
Yendluri, P., Yiu, A.: Web Services Business Process Execution Language Version 2.0
Workgraft. http://www.oasisopen.org/committees/download.php/10347/wsbpelspecification-
draft-120204.htm (2004)

3. BPMI: Business Process Modeling Language. http://www.bpmi.org/ (2002).
4. Foster, H.: A Rigorous Approach to Engineering Web Services Compositions. PhD thesis,

Imperial College London. http://www.doc.ict.ac.uk/~hf1 (2006).
5. Stahl C.: A Petri Net Semantics for BPEL. Informatik-Berichte 188, Humboldt-Universitat

zu Berlin, June 2005 (2005).
6. Fu, X., Bultan T., Su J.: Analysis of Interacting BPEL Web Services. In Proc. 13th World

Wide Web Conf. New York, NY, USA (2004) 621-630.
7. Yu, J., Phan, T., Han, J., Jin, Y., et al: Pattern Based Property Specification and Verifica-

tion for Service Composition. In Proc. 7th Int. Conf. on Web Information Systems Engi-
neering. Springer-Verlag, LNCS 4255. Wuhan, China (2006) 156-168.

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite
state Verification. In Proc. 21th Int. Conf. on Software Engineering. Los Angeles, CA,
USA (1999) 411-420.

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: A System of Specification Patterns.
http://www.cis.ksu.edu/santos/spec-patterns (1997).

10. Yu, J., Phan, T., Han, J., Jin, Y.: Pattern based Property Specification and Verification for
Service Composition. Technical Report SUT.CeCSES-TR010. CeCSES, Swinburne Uni-
versity of Technology, http://www.it.swin.edu.au/centres/cecses/trs.htm (2006).

11. Sedgewick, R.: Algorithms in Java, Thrid Edition, Part 5: Graph Algorithms. Addison
Wesley (2003).

12. Milner, R.: Communication and Concurrency. Prentice-Hall (1989).

94

13. Berardi, D., Calvanese, D., Giuseppe, G., Lenzerini, M., Mecella, M.: Automatic composi-
tion of e-services that export their behavior. In Proc. 1st Int. Conf. on Service Oriented
Computing. Trento, Italy (2003).

14. Berardi, D., Glancomo, G., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis of Under-
specified Composite e-Services based on Automated Reasoning. In Proc. 2st Int. Conf. on
Service Oriented Computing. . New York, USA (2004).

15. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S web services
composition using SHOP2. In Proc. 2nd Int. Semantic Web Conf. Florida (2003).

16. Duan, Z., Bernstein, A., Lewis, P., Lu, S.: A Model for Abstract Process Specification,
Verification and Composition. In proc. of the 2nd Int. Conf. on Service Oriented Comput-
ing. New York, USA (2004).

17. Beeck, M., Margaria, T., Steffen, B.: A Formal Requirements Engineering Method for
Specification, Synthesis, and Verification. In Proc. 8th Int. Conf. on Software Engineering
Environment. Washington, DC, USA (1997).

18. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Trans. On Software Engineering Vol.29 2 (2003) 99-115.

19. ActiveBPEL Designer. http://www.activenedpoints.com/products/activebpeldes/ (2007).

95

