
A FRAMEWORK FOR THE DEVELOPMENT AND
DEPLOYMENT OF EVOLVING APPLICATIONS

The Domain Model

Georgios Voulalas and Georgios Evangelidis
Department of Applied Informatics, University of Macedonia, 156 Egnatia St., Thessaloniki, Greece

Keywords: Model-driven Development, Meta-Models, Evolving Business Applications, Application Generators,
Application Deployment Platforms, Reflectional Programming.

Abstract: Software development is an R&D intensive activity, dominated by human creativity and diseconomies of
scale. Model-driven architecture improves productivity, portability, interoperability, maintenance, and
documentation by introducing formal models that can be understood by computers. However, the problem
of evolving requirements, which is more prevalent within the context of business applications, additionally
calls for efficient mechanisms that ensure consistency between models and code and enable seamless and
rapid accommodation of changes, without interrupting severely the operation of the deployed application.
Having presented a framework that supports rapid development and deployment of evolving web-based
applications, this paper elaborates on the Domain Model that is the cornerstone of the overall infrastructure.

1 INTRODUCTION

Software development has to deal with many
important problems (Kleppe & Warmer & Bast,
2003): (a) the productivity, documentation and
maintenance problem, (b) the portability problem,
(c) the interoperability problem, and, (d) the
evolution problem.

Model Driven Architecture (MDA) has come to
cope with all these difficulties through the
introduction of formal models that can be
understood and processed by computers.
Transformations between the models are executed
by tools. However, MDA cannot ensure consistency
between the produced code and the preceding
models, while also fails to manage efficiently the
problem of evolving requirements.

Motivated by the above-mentioned deficiencies,
we introduced (Voulalas & Evangelidis, 2006) an
innovative extension of MDA for the realization of a
development and deployment framework that targets
web-based business applications. The framework is
structured on the basis of a universal database
schema (meta-model). Development is supported by
modelling tools that elicit functional specifications
from users and transform them in formal definitions,
and by data structures (part of the meta-model) that
are utilized for the storage of the definitions.

Deployment is supported by generic components
(meta-components) that are dynamically configured
at run-time according to the functional specifications
provided during development, and by application-
independent data structures (part of the meta-model)
that hold all application-specific data. No code
(SQL, Java, C++, JSP, ASP, etc.) is generated for
the produced applications, and there always exists
one deployed application, independently of the
actual number of running applications.

The proposed framework includes three models:
 the Domain model that maps to the MDA

Platform Independent Model and defines the
structure of the data that the application is
working on (objects, attributes, and
associations), along with their behavioural
aspect (methods) and business rules,

 the Application model that maps to the MDA
Platform Specific Model and focuses on the
targeted platform, and,

 the Operation model that maps to the MDA
code layer, and consists of run-time instances of
the meta-model and the meta-components.

 The proposed framework copes with the
weaknesses of the MDA model as follows:

(a) We can easily achieve evolution
management by applying standard data
versioning techniques. In case the

160

Voulalas G. and Evangelidis G. (2007).
A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING APPLICATIONS - The Domain Model.
In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 160-165
Copyright c© SciTePress

definition of a business object is modified
this results in modifications to the
underlying data instances, i.e., we can deal
with changes at deployment time without
recompiling and redeploying the
application. Additionally, we can refer to a
previous version of an application at
anytime and examine old data in its real
context by retrieving the corresponding
data instances from the database, without
the need of maintaining multiple
installations.

(b) Since no code is generated and the middle
model is generated automatically, all
changes are realized through the Domain
Model. Thus, there is consistency between
the produced code and the preceding
models.

This paper elaborates on the Domain Model that
is the heart of the overall infrastructure. In Section 2,
we present an example of a web-based business
application that we will use as a case-study
throughout the paper. In section 3 we present a
conceptual view of the Domain Model. In section 4
we present a view of the Domain Model that realizes
our example application. The last section concludes
the paper and identifies our future steps.

2 CASE STUDY

Suppose that we have to develop a real estate portal,
through which agents will be able to post property
ads and potential buyers / renters to search for
properties. The following statements outline the
business operations of the proposed system:
 A realtor is able to post an unlimited number of

property ads.
 Three types of properties ads are identified:

residencies, business properties, and
development land.

 A property can be available for sale or rent, or
for both sale and rent.

 A potential buyer / renter that is interested in a
specific property can submit a Viewing Request
in order to arrange a viewing.

 A property owner can assign a property to a
realtor in order to have it listed in the site, by
submitting an Assignment Request.

In Figure 1, a conceptual diagram of the
proposed system is illustrated.

Figure 1: Conceptual Diagram of the Real Estate Portal.

3 THE DOMAIN MODEL

The Domain Model is structured on the basis of the
O-O paradigm, augmented with the extensions
introduced by the Object Constraint Language
(OMG, 2003; Coronato & Cinquegrani & Giuseppe,
2002) for the description of constraints that govern
the objects. It maps to the MDA Platform
Independent Model, and adds functionality related to
the deployment of the applications. More
specifically, it models the information aspect (i.e.
object attributes and associations between objects)
and the behaviour aspect of the developed
application (i.e. business rules and operations
implemented by the objects). Finally, it stores the
run-time instances of the deployed application, (i.e.
the values that the object attributes take at run-time).

The main entities of the domain model are:
 OBJECT: Concept in the problem domain that

constitutes a software entity. OBJECTS carry
the information that is necessary for the
execution of a process and implement
operations that are executed at the different
process steps. Its main attribute is the Name, i.e.
a short, meaningful title.

Examples: Property, Residency, Business
Property, Transaction Type, Realtor, Viewing
Request, and End User.

 ATTRIBUTE: Defines the static aspect
(information) of an OBJECT. Its main
attributes are:

o Name: A short, meaningful title.

A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING APPLICATIONS - The Domain
Model

161

o Type: Integer, real, string, date, or
boolean.

o Initial_value: It can be an integer number,
a real number, a string, a date or a
boolean, depending on the type of the
ATTRIBUTE. Null in case the
ATTRIBUTE should not be initialized.

Examples: Brand name, phone number, and
email for the Realtor OBJECT; size, location,
and type for the Property OBJECT.

 ATTRIBUTE_LIST_VALUE: A candidate
value of an ATTRIBUTE. It is used for
specifying a list of values that are used in insert
/ update operations. Its main attributes are:

o Value: It can be an integer number, a real
number, a string, a date or a boolean,
depending on the type of the associated
ATTRIBUTE.

o Order: Specifies the order in which the
values are displayed in the list for
selection.

Examples: Central / Individual for the
ATTRIBUTE ‘heating’ of the Business Property
OBJECT; sea / mountain / panoramic for the
ATTRIBUTE ‘view’ of the Residency OBJECT.

 OPERATION: Operations define the dynamic
aspect (behaviour) of an OBJECT. Its main
attributes are:

o Name: A short, meaningful title.
o Return_value: It can be an integer, a real

number, a string, a date or a boolean,
depending on the return type. Null in case
the OPERATION returns nothing.

Examples: Reject (OPERATION of an
Assignment Request OBJECT), process
(OPERATION of a Viewing Request OBJECT).

 ARGUMENT: A parameter required for the
execution of an operation. Its main attributes
are:

o Name: A short, meaningful title.
o Type: Integer, real, string, date, or

boolean.
Examples: notes (argument of the submit
OPERATION), rejection reason (argument of the
reject OPERATION).

 RELATIONSHIP: Represents structural
relationship between OBJECTS that exist for
some duration (in contrast with transient links
that, for example, exist only for the duration of
an operation). Its main attributes are:

o Name: A short, meaningful title.
o Association_type: Association,

aggregation or generalization.
Examples: Property – Transaction Type, Realtor
– Property, End User – Assignment Request,
Viewing Request – Property.

 ROLE: Identifies a specific behaviour in a
particular context at a specific time. Its main
attributes are:

o Name: A short, meaningful title.
o Multiplicity: Specifies how many

instances of the object may be associated
with a single instance of the other object.

o Is_navigable: Indicates in what direction
the role is navigating.

Examples: A Property is available for one or
more Transaction Types; a Viewing request
refers to a specific Property; a Realtor manages
zero to many Propertiesr.

 OBJECT_INSTANCE: A realization of an
OBJECT. The main attribute of an
OBJECT_INSTANCE is the Identifier, i.e. a
string or number that uniquely identifies the
OBJECT_INSTANCE.

Examples: A residency located at Athens,
available for sale; the real estate agent that is
responsible for the specific property; the end-user
that is interested in buying the specific property;
the viewing request that the end-user submitted in
order to arrange a viewing of the property;

 ATTRIBUTE_VALUE: The value of an
ATTRIBUTE that a specific
OBJECT_INSTANCE holds. Its main attribute
is:

o Value: It can be an integer number, a real
number, a string, a date or a boolean,
depending on the type of the associated
ATTRIBUTE.

Examples: ‘Athens Properties’ is the brand name
of a real estate agency, ‘Athens, Glyfada’ is the
location of the property, and ‘300.000’ is the
purchase cost of the property in euros.

 PRECONDITION: A condition that must hold
before executing an OPERATION. It typically
evaluates one or more ATTRIBUTES. Its main
attributes are:

o Operator: Equal, not equal, less than or
equal, less than, greater than or equal,
greater than.

ICSOFT 2007 - International Conference on Software and Data Technologies

162

o Operand_value: It can be an integer
number, a real number, a string, a date or
a boolean, depending on the type of the
associated ATTRIBUTE.

o Logical_operator: Logical NOT, logical
AND, logical OR, logical XOR. Logical
operators may be coupled with
parentheses for preconditions sequencing
and grouping.

Examples: The ‘reject’ OPERATION can only
be executed on Assignment Request instances
that have ‘pending’ value on the ‘status’
ATTRIBUTE; the ‘submit’ OPERATION can
only be invoked on Viewing Request instances
that have ‘un-submitted’ value on the ‘status’
ATTRIBUTE;

 INVARIANT_CONSTRAINT: A condition
that must always hold as long as the system
operates. It typically constraints the value of an
ATTRIBUTE. Its main attributes are:

o Operator: Equal, not equal, less than or
equal, less than, greater than or equal,
greater than.

o Operand_value: It can be an integer
number, a real number, a string, a date or
a boolean, depending on the type of the
associated ATTRIBUTE.

Examples: The value of the ‘price’ ATTRIBUTE
should be always greater than zero; the value of
the ‘number of floors’ ATTRIBUTE should be
always greater than zero.

 POST-CONDITION: Defines either the return
value of an OPERATION or modifications on
the value of component ATTRIBUTES that
must be performed. Examples of POST-
CONDITIONS are: The value of the ‘status’
ATTRIBUTE changes to rejected, once the
‘reject’ OPERATION is executed on an
Assignment Request instance; the value of the
‘status’ ATTRIBUTE changes to submitted,
once the ‘submit’ OPERATION is executed on
an Viewing Request instance.

 GUARD: Force the execution of
OPERATIONS anytime triggers (i.e. all
ATTRIBUTES involved in the guard
condition) get a specific state.

Example: Once the value of the ‘status’
ATTRIBUTE of an Assignment Request instance
changes to ‘processed’, the value of the ‘status’
ATTRIBUTE of the associated Property
instance, changes to ‘published’.

Having presented the main entities and their
attributes, let’s now examine the way those entities
are associated.
 OBJECT – ATTRIBUTE: An OBJECT

includes one or more ATTRIBUTES, while an
ATTRIBUTE is included in exactly one
OBJECT. Even ATTRIBUTES with exactly
the same characteristics (e.g. notes) belonging
to different OBJECTS (Viewing Request and
Assignment Request), are distinct realizations of
the ATTRIBUTE entity.

 OBJECT – OPERATION: An OBJECT
implements optionally one or more
OPERATIONS, while an OPERATION is
implemented by exactly one OBJECT.

 OBJECT – RELATIONSHIP: An OBJECT
participates optionally in one or more
RELATIONSHIPS, and a RELATIONSHIP
links exactly two OBJECTS.

 OPERATION – ARGUMENT: An
OPERATION optionally takes as input one or
more ARGUMENTS, while each
ARGUMENT is used by exactly one
OPERATION. Even ARGUMENTS with
exactly the same characteristics (e.g. notes) used
by different OPERATIONS (submit
OPERATION of the Assignment Request
OBJECT, submit OPERATION of the
Viewing Request OBJECT), are distinct
realizations of the ARGUMENT entity.

 OBJECT - OBJECT_INSTANCE: An
OBJECT has optionally one or more
INSTANCES, while an
OBJECT_INSTANCE belongs to exactly one
OBJECT. An INSTANCE is a run-time
realization of an OBJECT.

 ATTRIBUTE – ATTRIBUTE_VALUE: An
ATTRIBUTE takes optionally one or more
VALUES, one for each OBJECT INSTANCE.
A VALUE is associated with exactly one
ATTRIBUTE. An ATTRIBUTE VALUE is
the value that an ATTRIBUTE takes at run-
time.

 OBJECT_INSTANCE –
ATTRIBUTE_VALUE: An OBJECT
INSTANCE has one or more ATTRIBUTE
VALUES, one for each ATTRIBUTE. An
ATTRIBUTE VALUE is associated with
exactly one OBJECT INSTANCE. The static
aspect of an OBJECT INSTANCE is at any
time defined by the values of its
ATTRIBUTES.

A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING APPLICATIONS - The Domain
Model

163

 OPERATION – ATTRIBUTE –
ARGUMENT: An OPERATION manages
optionally one or more ATTRIBUTES using as
input its ARGUMENTS. An ATTRIBUTE
can be optionally managed by one or more
OPERATIONS.

 PRECONDITION – ATTRIBUTE: A
PRECONDITION evaluates exactly one
ATTRIBUTE. An ATTRIBUTE can be
optionally evaluated by one or more
PRECONDITIONS.

 PRECONDITION – PRECONDITION: Two
or more PRE-CONDITIONS can be optionally
associated in order to form complex
PRECONDITIONS, i.e. sequence of
PRECONDITIONS each one evaluating
different ATTRIBUTES or the same
ATTRIBUTE in a different way.

 INVARIANT_CONSTRAINT –
ATTRIBUTE: An
INVARIANT_CONSTRAINT restricts
exactly one ATTRIBUTE. An ATTRIBUTE
can be optionally constrained by one or more
INVARIANTS_CONSTRAINTS.

Figure 2: Conceptual Diagram of the Domain Model.

In Figure 2, a conceptual diagram of the Domain
Model is illustrated.

4 APPLYING THE DOMAIN
MODEL

The following tables present an instance of the
Domain Model that covers part of the functional

specifications of the example application as
prescribed in Chapter 2.

OBJECTS

id name
1 Property
2 Residency
3 Realtor
4 Transaction Type
5 Assignment Request
6 Viewing Request

ATTRIBUTES

id name type initial_
value

object_i
d

1 property_id Integer 1
2 code String 1
3 size Real 1
4 location String 1
5 number_of_floors Integer 1 2
6 number_of_bedrooms Integer 2
7 heating String 2
8 view String 2
9 brand_name String 3
10 status String 5

ATTRIBUTE LIST VALUES

id value order attribute_id
1 Central 1 7
2 Individual 2 7
3 Sea 1 8
4 Mountain 2 8
5 Panoramic 3 8

OPERATIONS

id Name return_value object_
id

1 reject 5
2 process 6
3 submit 5
4 submit 6

ARGUMENTS

id name type operation_id
1 notes String 2
2 agreed_viewing_date Date 2
3 agreed_contact_date Date 2

RELATIONSHIPS

id name association_type
1 Property-Residency Generalization
2 Property-Realtor Association

ICSOFT 2007 - International Conference on Software and Data Technologies

164

ROLES
id name multipl is_navigable rel_

id
obj_i
d

1 1 1
2 1 2
3 manages 0..n TRUE 2 1
4 is_managed

_by
1 FALSE 2 3

OBJECT INSTANCES

id object_id
1 2
2 3
3 4
4 6

ATTRIBUTE VALUES

id value attr_i
d

object_instance
_id

list_value_id

1 Athens,
Glyfada

4 1

2 Athens
Properties

9 2

3 7 1 1
4 8 1 3

PRECONDITIONS

id operator op_value log_operator attr_
id

op_id

1 = pending 10 1

INVARIANT CONSTRAINT
id operator operand_value attribute_id
1 >= 1 5
2 >= 0 6

Modifications in the application data (e.g.

insertion of a new property) result in modifications
of the instances of the OBJECT_INSTANCES and
ATTRIBUTE_VALUES entities, while
modifications in the application logic require
modifications of the instances of the other entities.
Modifications of the structure of any entity are not
required.

5 CONCLUSIONS

In this paper we elaborate on the Domain Model that
is the cornerstone of our framework. The framework
will facilitate the development and deployment of
web-based business applications, while on parallel
limit the side-effects that are induced by the
continuously changing requirements. The framework

conforms to the principles of MDA, however it is
based on a different principle: developed
applications will consist of run-time instances of
generic components, and not of code packages.

Having identified the core elements of the
Domain Model our next research steps will focus on:
 Elaborating on the elements that specify the

dynamic aspect of the modelled applications.
Specifically, the Post-condition and Guard
entities should be further analyzed, while new
entities that will model the body of operations
should be specified.

 Introduce elements from an acceptable
business rules classification scheme (Business
Rules Forum 2004 Practitioners' Panel, 2005;
Butleris & Kapocius, 2002; Herbst, 2002), with
the Ross method (Business Rules Forum 2004
Practitioners' Panel, 2005) being the prevalent.

 Isolate all entities and mechanisms related to
enterprise modelling, business relationships
establishment, role assignment, and personnel
administration, and handle them through a
separate model, called Enterprise Model.

REFERENCES

Business Rules Forum 2004 Practitioners' Panel, 2005.
The DOs and DON'Ts of Business Rules. Business
Rules Journal, Vol. 6, No. 4,
http://www.BRCommunity.com/a2005/b230.html

Butleris, R., Kapocius, K., 2002. The Business Rules
Repository for Information Systems Design. ADBIS
Research Communications: 64-77

Coronato, A., Cinquegrani, M., Giuseppe, D.P., 2002.
Adding Business Rules and Constraints in Component
Based Applications. CoopIS/DOA/ODBASE: 948-964

Herbst, H., 1996. Business Rules in Systems Analysis: a
Meta-Model and Repository System. Inf. Syst. 21(2)
147-166

Kleppe, A., Warmer, S., Bast, W., 1996. MDA Explained.
The Model Driven Architecture: Practice and Promise
(Chapter One). Addison-Wesley.

OMG, 2003. Object Constraint Language Specification.
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

Voulalas, G., Evangelidis, G., 2006. A framework for the
development and deployment of evolving applications:
Elaborating on the Model Driven Architecture towards
a change-resistant development framework, ICSOFT
2006, 22-29

A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING APPLICATIONS - The Domain
Model

165

