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Abstract: In the paper the theoretical framework for cooperation and competition of coevolved population members 
working toward a common goal is presented. We use a formal model of Evolutionary Turing Machine and 
its extensions to justify that in general evolutionary algorithms belong to the class of super-recursive 
algorithms. Parallel and Parallel Weighted Evolutionary Turing Machine models have been proposed to 
capture properly cooperation and competition of the whole population expressed as an instance of 
multiobjective optimization. 

1 INTRODUCTION 

In this paper, we study the following problems for 
the finite types of evolutionary computations: 
completeness, optimality, search optimality, total 
optimality and decidability for single and multiple 
cooperating or competing individuals. In particular, 
we concentrate our attention on the problem of 
cooperation and competition of coevolved 
individuals in population expressed in a natural way 
as an instance of multiobjective optimization. 

The paper is organized as follows. In section 2 
we give a short primer on problem solving. Section 
3 presents Evolutionary Algorithms and an 
Evolutionary Turing Machine as a formal model of 
evolutionary computation. A formal model for 
cooperating and competitive population agents 
trying to achieve a common goal is developed in 
Section 4. Section 5 contains conclusions.  

 
 
 

2 EVOLUTION AND PROBLEM 
SOVING 

All algorithms are divided into three big classes 
(Burgin, 2005): subrecursive, recursive, and super-
recursive.  

Algorithms and automata that have the same 
computing/accepting power (cf., (Burgin, 2005a)) as 
Turing machines are called recursive. Examples are 
partial recursive functions or random access 
machines. 

Algorithms and automata that are weaker than 
Turing machines are called subrecursive. Examples 
are finite automata, context free grammars or push-
down automata. 

Algorithms and automata that are more 
powerful than Turing machines are called super-
recursive. Examples are inductive Turing machines, 
Turing machines with oracles or finite-dimensional 
machines over the field of real numbers. 

The performance of search algorithms can be 
evaluated in four ways (see, e.g., (Russell and 
Norvig, 1995) capturing three criteria: whether a 
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solution has been found, its quality and the amount 
of resources used to find it. 

Definition 2.1. (Completeness, optimality, 
search optimality, and total optimality) We say that 
the search algorithm is 
• Complete if it guarantees reaching a terminal 

state/solution if there is one. 
• Optimal if it finds the solution with the optimal 

value of its objective function. 
• Search Optimal if it finds the solution with the 

minimal amount of resources used (e.g., 
minimal time or space complexity). 

• Totally Optimal if it finds the solution both with 
the optimal value of its objective function and 
with the minimal amount of resources used. 
Let R be the set of all real numbers and R+ be 

the set of all non-negative real numbers. 
Definition 2.2. (Problem solving as a 

multiobjective optimization problem) 

Given an objective function f: A × X → R+, 
problem-solving can be considered as a 
multiobjective minimization problem to find A* ∈ 
AF and x* ∈ XF such that  

f(A*, x*)= min{f1(f2(A), f3(x)), A ∈ A, x ∈ X } 

where f3 is a problem-specific objective function, f2 
is a search algorithm objective function, and f1 is an 
aggregating function combining f2 and f3.  

3 EVOLUTIONARY TURING 
MACHINES 

Definition 3.1. A generic evolutionary algorithm 
(EA) can be described in the form of the functional 
equation (recurrence relation) working in a simple 
iterative loop in discrete time t, called generations, t 
= 0, 1, 2,... (Fogel, 1995, Michalewicz and Fogel, 
2004):  

X[t+1] = s (v (X[t])), where 
- X[t]  ⊆ X is a  population under a representation 

consisting of one or more individuals from the 
set X (e.g., fixed binary strings for genetic 
algorithms (GAs), Finite State Machines for 
evolutionary programming (EP), parse trees for 
genetic programming (GP), vector of reals for 
evolution strategies (ES)),   

- s is a selection operator (e.g., truncation, 
proportional, tournament),  

- v  is a variation operator (e.g., variants of 
mutation and crossover), 

- X[0] is an initial population, 
- F ⊆ X is the set of final populations satisfying 

the termination condition (goal of evolution). 
The desirable termination condition is the 
optimum in X of the fitness function f: X → R, 
which is extended to the fitness function f(X[t]) 
of the best individual in the population X[t] ∈ F, 
where f is defined typically in the domain of 
nonnegative real numbers. In many cases, it is 
impossible to achieve or verify this optimum. 
Thus, another stopping criterion is used (e.g., 
the maximum number of generations, the lack 
of progress through several generations.). 

Definition 3.1 is applicable to all typical EAs, 
including GA, EP, ES, GP.  

Formally, an evolutionary algorithm looking 
for the optimum of the fitness function violates 
some classical requirements of recursive algorithms. 
If its termination condition is set to the optimum of 
the fitness function, it may not terminate after a 
finite number of steps. To fit it to the old 
“algorithmic” approach, an artificial (or somebody 
can call it pragmatic) stop criterion has had to be 
added (see e.g., (Michalewicz, 1996; Koza, 1992)).  
The evolutionary algorithm, to remain recursive, has 
to be stopped after a finite number of generations or 
when no visible progress is observable. Naturally, in 
a general case, Evolutionary Algorithms are 
instances of super-recursive algorithms. 

Now, we define a formal algorithmic model of 
Evolutionary Computation - an Evolutionary Turing 
Machine (Eberbach, 2005).  

Definition 3.2. An evolutionary Turing 
machine (ETM) E = { TM[t]; t = 0, 1, 2, 3, ... }  is a 
series of (possibly infinite) Turing machines TM[t] 
each working on population X[t] in generations t = 
0, 1, 2, 3, ...  where 
- each δ[t] transition function (rules) of the 

Turing Machine TM[t] represents (encodes) an 
evolutionary algorithm that works with the 
population X[t], and evolved in generations 0, 1, 
2, ... , t, 

- only generation 0 is given in advance, and any 
other generation depends on its predecessor 
only, i.e., the outcome of the generation t = 0, 1, 
2, 3, ...  is the population X[t + 1] obtained by 
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applying the recursive variation v and selection 
s operators working on  population X[t],  

- (TM[0], X[0]) is the initial Turing Machine 
operating on its input - an initial population 
X[0], 

- the goal (or halting) state of ETM E is 
represented by any population X[t] satisfying 
the termination condition. The desirable 
termination condition is the optimum of the 
fitness performance measure f(x[t]) of the best 
individual from the population X[t].  

- When the termination condition is satisfied, 
then the ETM E halts (t stops to be 
incremented), otherwise a new input population 
X[t + 1] is generated by TM[t + 1].  
In this model, both variation v and selection s 

operators are realized by Turing machines. So, it is 
natural that the same Turing machine computes 
values of the fitness function f. This brings us to the 
concept of a weighted Turing machine. 

Definition 3.3. A weighted Turing machine (T 
, f) computes a pair ( x, f(x) ) where x is a word in 
the alphabet of T and f(x) is the value of the 
evaluation function f of the machine (T , f). 

It is necessary to remark that only in some 
cases it is easy to compute values of the fitness 
function f. Examples of such situations are such 
fitness functions as the length of a program or the 
number of parts in some simple system. However, in 
many other cases, computation of the values of the 
fitness function f can be based on a complex 
algorithm and demand many operations. For 
instance, when the optimized species are programs 
and the fitness function f is time necessary to 
achieve the program goal, then computation of the 
values of the fitness function f can demand 
functioning or simulation of programs generated in 
the evolutionary process. We encounter similar 
situations when optimized species are computer 
chips or parts of plane or cars. In this case, 
computation of the values of the fitness function f 
involves simulation. 

Weighted computation realized by weighted 
Turing machines allows us to extend the formal 
algorithmic model of Evolutionary Computation 
defining a Weighted Evolutionary Turing Machine.  

Definition 3.4. A weighted evolutionary 
Turing machine (WETM) E = { TM[t]; t = 0, 1, 2, 3, 
... }  is a series of (possibly infinite) weighted 
Turing machines TM[t] each working on population 
X[t] in generations t = 0, 1, 2, 3, ...  where 

- each δ[t] transition function (rules) of the 
weighted Turing machine TM[t] represents 
(encodes) an evolutionary algorithm that works 
with the population X[t], and evolved in 
generations 0, 1, 2, ... , t, 

- only generation 0 is given in advance, and any 
other generation depends on its predecessor 
only, i.e., the outcome of the generation t = 0, 1, 
2, 3, ...  is the population X[t + 1] obtained by 
applying the recursive variation v and selection 
s operators working on  population X[t] and 
computing the fitness function f,  

- (TM[0], X[0]) is the initial weighted Turing 
Machine operating on its input - an initial 
population X[0], 

- the goal (or halting) state of WETM E is 
represented by any population X[t]) satisfying 
the termination condition. The desirable 
termination condition is the optimum of the 
fitness performance measure f(x[t]) of the best 
individual from the population X[t].  

- When the termination condition is satisfied, 
then the WETM E halts (t stops to be 
incremented), otherwise a new input population 
X[t + 1] is generated by TM[t + 1].  

The concept of a universal automaton/algorithm 
plays an important role in computing and is useful 
for different purposes. The construction of universal 
automata and algorithms is usually based on some 
codification (symbolic description) c: K → X of all 
automata/algorithms in K.  

Definition 3.5. An automaton/algorithm U is 
universal for the class K if given a description c(A) 
of an automaton/algorithm A from K and some input 
data x for it, U gives the same result as A for the 
input x or gives no result when A gives no result for 
the input x. 

This leads us immediately, following Turing's 
ideas, to the concept of the universal Turing 
machine and its extensions - a Universal 
Evolutionary Turing Machine and Weighted 
Evolutionary Turing Machine. We can define a 
Universal Evolutionary Turing Machine as an 
abstraction of all possible ETMs, in the similar way, 
as a universal Turing machine has been defined, as 
an abstraction of all possible Turing machines. 

Definition 3.6.  A universal evolutionary 
Turing machine (UETM) is an ETM EU with the 
optimization space Z = X × I . Given a pair ( c(E), 
X[0]) where E = { TM[t]; t = 0, 1, 2, 3, ... } is an 
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ETM and X[0] is the start population, the machine 
EU takes this pair as its input and produces the same 
population X[1] as the Turing machine TM[0] 
working with the same population X[0]. Then EU 
takes the pair ( c(E), X[1]) as its input and produces 
the same population X[2] as the Turing machine 
TM[1] working with the population X[1]. In general, 
EU takes the pair ( c(E), X[t]) as its input and 
produces the same population X[t + 1] as the Turing 
machine TM[t] working with the population X[t] 
where t = 0, 1, 2, 3, ... . 

In other words, by a Universal Evolutionary 
Turing Machine (UETM) we mean such ETM U that 
on each step takes as the input a pair ( c(TM[t]), 
X[t]) and behaves like ETM E with input X[t] for t = 
0, 1, 2, .... UETM U stops when ETM E stops. 

Definition 3.6 gives properties of but does not 
imply its existence. However, as in the case of 
Turing machines, we have the following result. 

Theorem 3.1. (Eberbach, 2005). In the class of 
all evolutionary Turing machines, there is a 
universal evolutionary Turing machine. 

Definition 3.7.  A universal weighted 
evolutionary Turing machine (UWETM) is an 
WETM EU with the optimization space Z = X × I . 
Given a pair ( c(E), X[0]) where E = { TM[t]; t = 0, 
1, 2, 3, ... } is an WETM and X[0] is the start 
population, the machine EU takes this pair as its 
input and produces the same population X[1] as the 
weighted Turing machine TM[0] working with the 
same population X[0]. Then EU takes the pair ( c(E), 
X[1]) as its input and produces the same population 
X[2] as the weighted Turing machine TM[1] 
working with the population X[1]. In general, EU 
takes the pair ( c(E), X[t]) as its input and produces 
the same population X[t + 1] as the weighted Turing 
machine TM[t] working with the population X[t] 
where t = 0, 1, 2, 3, ... . 

This definition gives properties of but does not 
imply its existence.  

Theorem 3.2. In the class of all weighted 
evolutionary Turing machines with a given 
recursively computable weight (fitness) function f, 
there is a universal weighted evolutionary Turing 
machine. 

 
 
 
 

4 COOPERATION AND 
COMPETITION IN 
EVOLUTIONARY 
COMPUTATION 

Popular models of distributed intelligent 
performance (e.g., optimization) are coevolutionary 
systems (Michalewicz and Fogel, 2004), Particle 
Swarm Optimization (PSO, also called Swarm 
Intelligence) (Kennedy et al, 1995), and Ant Colony 
Optimization (ACO also known as Ant Colony 
System (ACS)) (Bonabeau et al, 1999).  

Coevolution, ant colony optimization and 
particle swarm optimization seem be potentially the 
most useful subareas of evolutionary computation 
for expressing interaction of multiple agents (in 
particular, to express their cooperation and 
competition). However, paradoxically in most 
current applications, these techniques are used to 
obtain optimal solutions for optimization of single 
agent behavior (in presence of other agents – 
members of population), and not for the 
optimization of group of agents trying to achieve a 
common goal (represented by joint fitness function). 
This is primarily because fitness function is 
optimized for a single individual from the 
population, and not for the population as a whole. 

Now, we define a formal algorithmic model of 
Evolutionary Computation with cooperation and 
competition – a Parallel Evolutionary Turing 
Machine. 

Definition 4.1. A parallel evolutionary Turing 
machine (PETM) E = { TMi[t]; t = 0, 1, 2, 3, ...; i ∈ I 
}  consists of a collection of series of (possibly 
infinite) Turing machines TMi[t] each working on 
population X[t] in generations t = 0, 1, 2, 3, ...  
where 
- each δi[t] transition function (rules) of the 

Turing machine TMi[t] represents (encodes) an 
evolutionary algorithm that works with the 
whole generation X[t] based on its own fitness 
performance measure fi(x[t]), and evolved in 
generations 0, 1, 2, ... , t, 

- the whole generation X[t] is the union of all 
subgenerations Xi[t] obtained by all Turing 
machines TMi[t - 1] that collaborate in 
generating X[t], 

- only the zero generation X[0] is given in 
advance, and any other generation depends on 
its predecessor only, i.e., the outcome of the 
generation t = 0, 1, 2, 3, ...  is the subgeneration 
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Xi[t + 1] obtained by applying the recursive 
variation v and selection s operators working on 
the whole generation X[t] and realized by the 
Turing machine TMi[t],  

- TMi[0] are the initial Turing machines operating 
on its input - an initial population X[0], 

- the goal (or halting) state of PETM E is 
represented by any population X[t]) satisfying 
the termination condition. The desirable 
termination condition is the optimum of the 
unified fitness performance measure f(X[t]) of 
the whole population X[t].  

- when the termination condition is satisfied, then 
the PETM E halts (t stops to be incremented), 
otherwise a new input population X[t + 1] is 
generated by machines TMi[t + 1].  
In a similar way, we define a Parallel 

Weighted Evolutionary Turing Machine. 
Definition 4.2. A parallel weighted evolutionary 

Turing machine (PWETM) E = E = { TMi[t]; t = 0, 
1, 2, 3, ...; i ∈ I }  consists of a collection of series of 
(possibly infinite) Turing machines TMi[t] each 
working on population X[t] in generations t = 0, 1, 2, 
3, ...  where 
- each δi[t] transition function (rules) of the 

Turing machine TMi[t] represents (encodes) an 
evolutionary algorithm that works with the 
whole generation X[t] based on its own fitness 
performance measure fi(x[t]), and evolved in 
generations 0, 1, 2, ... , t, 

- the whole generation X[t] is the union of all 
subgenerations Xi[t] obtained by all Turing 
machines TMi[t - 1] that collaborate in 
generating X[t], 

- only the zero generation X[0] is given in 
advance, and any other generation depends on 
its predecessor only, i.e., the outcome of the 
generation t = 0, 1, 2, 3, ...  is the subgeneration 
Xi[t + 1] obtained by applying the recursive 
variation v and selection s operators working on 
the whole generation X[t] and computing the 
fitness function fi , and realized by the Turing 
machine TMi[t],  

- TMi[0] are the initial Turing machines operating 
on its input - an initial population X[0], 

- the goal (or halting) state of PETM E is 
represented by any population X[t]) satisfying 
the termination condition. The desirable 
termination condition is the optimum of the 

unified fitness performance measure f(X[t]) of 
the whole population X[t].  
when the termination condition is satisfied, 

then the PETM E halts (t stops to be 
incremented), otherwise a new input population 
X[t + 1] is generated by machines TMi[t + 1].  
 

Our models (of PETM and PWETM) are already 
prepared to handle such situation. It is enough to 
assume that fitness functions f, f1, f2, and f3 are 
computed for the whole population (perhaps, 
consisting of subpopulations), and not for separate 
individuals from the population only.  Let’s assume 
that our population | x | = p, i.e., it consists of p 
individuals or subpopulations. For simplicity, let’s 
consider only individuals (by adding multiple 
indices, we can consider subpopulations without 
losing the generality of the approach). 

Let f(M[t],X[t])=f1(f2(M[t]),f3(X[t])), where M[t]= 
{M1[t],…,Mp[t]}, X[t]={X1[t],…,Xp[t]}. We define a 
problem-specific fitness function f3 for the whole 
population f3(X[t])=f13(f31(X1[t]),…,f3p(Xp[t])), where 
f13 is an aggregating function for f31,…,f3p, and f3j is 
a fitness function of the j-th individual xj, j =1,…,p, 
and an evolutionary algorithm fitness function f2 for 
the whole population 
f2(M[t])=f12(f21(M1[t]),…,f2p(Mp[t])), where f12 is an 
aggregating function for f21,…,f2p, and f2j is a fitness 
function of the j-th evolutionary algorithm Mj , j = 1, 
…, p, and evolutionary algorithm Mj is responsible 
for evolution of Xj. 

We will present definition for cooperation and 
competition for generic fitness function f. Similar 
definitions can be provided for fitness functions 
f2and f3. 

Definition 4.3. (Cooperation of single individual 
with population) We will say that j-th individual xj 
cooperates in time t with the whole population with 
respect to a fitness function f iff f[t] > f[t + 1] and 
other’s individuals fitness functions are fixed  fi[t] = 
fi[t + 1] for i ≠ j. 

Definition 4.4. (Cooperation of the whole 
population) We will say that all population 
cooperates as the whole in time t with respect to a 
fitness function f  iff  f[t] > f[t + 1]. 

Definition 4.5. (Competition of single individual 
with population) We will say that j-th individual xj 
competes in time t with the whole population with 
respect to a fitness function f iff f[t] < f[t+1] and 
other’s individuals fitness functions are fixed fi[t] = 
fi[t + 1] for i ≠ j. 

Definition 4.6. (Competition of the whole 
population) We will say that all population 
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competes as the whole in time t with respect to a 
fitness function f  iff  f[t] < f[t+1]. 

In other words, if individual decreases 
(increases) fitness function of the whole population 
then it cooperates (competes) with it. If fitness 
function of the whole population decreases 
(increases) then the population exhibits cooperation 
(competition) as the whole (independently what its 
individuals are doing). If individual (population) 
cooperates (competes) for all moments of time, then 
it is always cooperative (competitive). Otherwise, it 
may sometimes cooperate, sometimes compete. 

Let us consider some problems. 
Analysis problem for f3 : Given  f1[0],…,fp[0] for 

individuals x1[0],…,xp[0] from the population X[0] 
and aggregating function is given. What will be the 
behavior (emerging, limit behavior) of  f[t] for X[t]? 

Synthesis/design problem for f3 : Given f[0]  for 
the population X[0]. Find corresponding individuals 
x1[0],…,xp[0] with f1[0],…,fp[0] and aggregating 
function that f[t] will converge to optimum. 

Theorem 4.1. (Optimality of evolutionary 
computation with cooperating population – 
sufficient conditions to solve the synthesis problem 
for f) For a given evolutionary algorithm UT[0] with 
population X[0], if UETM EU = { UT[t]; t = 0, 1, 2, 
3, ... } satisfies three conditions  

1. the termination condition is set to the 
optimum of the  fitness function f(X[t]) 
with the optimum f*,  

2. search is complete, and  
3. population is cooperative all time t = 0, 

1, 2, … , 
then UETM EU is guaranteed to find the optimum 
X* of f(X[t]) in an unbounded number of generations 
t = 0, 1, 2, ... , and that optimum will be maintained 
thereafter. 
Note that cooperation replaces elitism in sufficient 
condition for convergence of cooperating members 
of population looking for the optimum of fitness of 
the whole population and not of the separate 
individual. There is no surprise: if the whole 
population competes all the time, then the optimum 
will not be found and maintained despite 
completeness.  

Theorem 4.2. (Optimality of evolutionary 
computation with competing population – inability 
to solve the synthesis problem for f) For a given 
evolutionary algorithm UT[0] with population X[0],  
if UETM EU = { UT[t]; t = 0, 1, 2, 3, ... } satisfies 
three conditions  

1. the termination condition is set to the optimum 
of the fitness function  f(X[t]) with the optimum 
f*,  

2. search is complete, and  
3. population is competing all time t=0,1,2,…, 
then UETM EU is not guaranteed to find and 
maintain the optimum X* of f(X[t]) even in an 
unbounded number of generations t = 0, 1, 2, .... 

If population is sometimes competing, sometimes 
cooperating, then the optimum sometimes will be 
found, sometimes not, but the convergence and its 
maintenance is not guaranteed. 

5 CONCLUSIONS 

In this paper, we presented a formal model of 
cooperation and competition for evolutionary 
computation. We believe that our model constitutes 
the first formal, much more precise and more 
generic approach trying to capture the essence of 
cooperation and competition for evolutionary 
algorithms. This was possible because of precise 
formulation on notions of cooperation, competition, 
completeness, various types of optimization, an 
extension of the notion of decidability – all of them 
used in the context of several extensions of the 
Evolutionary Turing Machine model. 
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