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Abstract: An XML parser is the fundamental software for analyzing and processing XML documents. This paper 
presents the optimized validation algorithms in OnceXMLParser, a full-validating XML Parser. 
OnceXMLParser adopts a lightweight architecture and implements several efficient algorithms for 
validating. Since the element validating is a great challenge to the performance of a validating XML parser, 
this paper focused on two key algorithms to resolve it. The first one involves in an optimized automaton 
used to build these element validating rules efficiently. The second one is a statistical predictive algorithm 
to reduce the name string recognizing process. For a valid document, this algorithm could make precise 
prediction when the child elements are sequentially defined, and could fulfil the least cost prediction 
according to the cost function when the child elements are optionally defined. Performance testing shows 
OnceXMLParser after performance tuning has outstanding parsing efficiency. 

1 INTRODUCTION 

The Extensible Markup Language (XML) (W3C, 
1998) has been widely used in electronic businesses, 
web services and enterprise data exchanges and 
integrations; it actually becomes a standard for data 
representation and exchange over network. In 
addition, as a meta-language, XML can be used to 
define a wide range of markup languages, such as 
Web Service Definition Language, Resource 
Description Framework and Mathematical Markup 
Language. However, text-based format of XML 
sometimes leads to a large document. Moreover, 
XML-based data exchange happens much frequently 
in some scenarios, for example, in Web service 
applications. Thus, XML parsing in those 
applications will become a system bottleneck which 
demands to improve the performance of XML 
parsers. 

This paper gives the optimization techniques of 
validity checking in OnceXMLParser which is a 
high-performance full-validating XML Parser 
supporting Simple API for XML (SAX), Document 
Object Model (DOM) and Streaming API for XML 
(StAX). The paper is organized as follows. Section 2 
introduces some popular XML parsers; section 3 
gives the system architecture of OnceXMLParser; 

section 4 presents key validity checking algorithms; 
section 5 shows our test results, mainly in StAX, and 
at last is the summary. 

2 RELATED WORK 

There are many popular XML parsers for Java, such 
as Xerces (Apache, 2004), Crimson (Apache, 2001), 
Piccolo (Oren, 2002), etc. Among these parsers, 
Xerces is the most popular validating XML parser 
supporting DOM and SAX, and it is also the default 
parser since JDK 5.0. Crimson supports XML1.0, 
SAX2, DOM Core 2 and JAXP1.1. Piccolo is a 
validating SAX parser which is generated by parser 
generator tools JFlex and BYACC/J. However, 
Crimson is not perfect in parsing; for example, it 
cannot recognize byte order mark in UTF-8 coding, 
and invalid character references in attribute values. 
Similarly, Piccolo also has defects in parsing and 
validating, for instance, it cannot resolve relative 
paths in entity references correctly, and does not 
check the validity constraint (VC): Proper 
Conditional Section/PE Nesting. In brief, Xerces is 
excellent in SAX and DOM although it enters loop 
after reading 10M-size comment or PI. 
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Recently, StAX, a promising pull API for XML 
processing, is implemented by some XML parsers, 
for example BEA StAX RI (BEA, 2003), Sun Java 
Streaming XML Parser (Sun, 2005), Oracle StAX 
Pull Parser (Oracle, 2003) and Woodstox (Codehaus, 
2006). But all of them have some fatal defects. For 
example, BEA StAX RI cannot recognize invalid 
characters in character data part of the document, 
cannot parse entity references in the default attribute 
values and cannot get the correct character text when 
it reports a characters event; Sun Java Streaming 
XML Parser cannot correctly deal with the external 
parameter entity references in Document Type 
Definition (DTD), cannot recognize legal characters 
ranged from #x10000 to #x10FFFF and surrogate 
pairs, and it doesn’t read attribute-list declarations in 
the external subset; Oracle StAX Pull Parser is based 
on the SAX Parser of Oracle XDK which leads to its 
inefficient; Woodstox cannot fully support UTF-8, 
especially the surrogate pairs, and it cannot 
recognize some invalid names. As the only 
validating parser among those StAX parsers, 
Woodstox doesn’t report errors when it meets 
invalid XML documents; instead it reports 
exceptions and stops parsing. 

Besides these common XML parsers, some 
researches also focus on automatically generating 
XML parsers from an XML Schema. XML 
Screamer (Kostoulas et al, 2006) is such an 
experimental system. Its parsing is integrated with 
Schema-based validation and deserialization to 
achieve high performance. But these automatically 
generated parsers are not common XML parsers. 
Each generated parser only fits those Schema-based 
valid documents under a particular XML Schema. 

OnceXMLParser is a common XML parser and 
fully implements XML1.0/1.1 and Namespaces in 
XML (W3C, 1999). It passes all the API tests for 
StAX (Tatu, 2004), DOM (W3C, 2004) and SAX 
(David, 2001) and all the XML conformance tests 
(W3C, 2003), it also shows outstanding parsing 
performance after adopting some efficient 
performance tuning algorithms. 

3 SYSTEM ARCHITECTURE 

OnceXMLParser adopts a lightweight architecture 
and consists of the following components shown in 
Figure 1. 

Like common lexical analysis used for traditional 
programming language, Scanner is implemented as a 
Deterministic Finite Automaton (DFA) to recognize 
terminals from the input streams. Some well-

formedness constraints (WFCs), such as checking 
valid name characters and valid attribute values, are 
checked while recognizing those tokens. But before 

regular lexical analysis, Scanner has to decode 
characters denoted by encoding signature in the 
scanning buffer and then put the decoded characters 
into a pre-allocated character buffer. Considering 
that the smaller size of character buffer needs more 
filling buffer operations and more saving actions for 
unparsed tokens at the end of character buffer, but 
the larger size of character buffer increases costs for 
normalization operations, we adjust the proper size 
of character buffer in order to improve performance. 

CoreParser is the core syntax processor, which 
uses tokens got from Scanner and returns interested 
information to applications through some standard 
APIs. In addition, CoreParser checks most WFCs. 
For example, in order to conform to WFC: Element 
Type Match (W3C, 1998), CoreParser must check 
whether these element names in start tags and 
corresponding end tags are equal. CoreParser 
resolves markups and characters according to their 
statistical frequencies of occurrences, first for the 
highest frequency. 

DTDParser is a syntax analyzer for processing 
declarations in DTD. It is also responsible for 
building VC rules. In order to make the building 
process efficiently, especially for those VC rules 
about elements’ relations, DTDParser needs efficient 
algorithms which will be discussed in the next 
section. In addition, in order to facilitate the building 
and checking processes of VC rules, efficient data 
structures, such as light-weighed hash map, are 
implemented. 

Validation module checks VC rules collected by 
DTDParser. The design of validation module is 
crucial for performance, because these checking are 
always burdensome tasks, for example, VC rules of 
elements usually concern with the relationships 
among elements and the content’s format of a 
particular element; rules of attributes always concern 
with the type and the default value of this attribute. 
Moreover the efficient checking of VC: Element 
Valid (W3C, 1998) is the largest challenge as we 
will discuss soon, so we present some key 
algorithms to solve it in the next section. 

Figure 1: Architechture of OnceXMLParser. 
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NSUtility resolves namespace declarations and 
manages namespace scopes and mappings. It also 
takes charge of namespace constraints (NSC) 
checking. For example, to conform to NSC: Prefix 
Declared (W3C, 1999), NSUtility must check 
whether the prefix xml is bound to 
http://www.w3.org/XML/1998/namespace or not. 
EUtility manages entities referenced in the 
document. It also has to check some WFCs, such as 
WFC: No Recursion (W3C, 1998). 

4 ALGORITHMS FOR 
VALIDATING  

Checking VC: Element Valid (W3C, 1998) means 
examining whether elements occurred in the 
document can match the declarations in DTD. 
Moreover, validity checking contains many 
reiterating processing, such as comparing name 
strings. The following algorithms aim to improve the 
performance of validity checking. 

4.1 Optimized Automaton for 
Element Valid 

According to (W3C, 1998), the element content, 
which defines the relationship of elements, is 
defined by a regular language with ε-operations such 
as * and ?, so it is natural to build a 
Nondeterministic Finite Automaton (NFA) to 
represent and check these definitions. Of course, we 
could build a DFA as Woodstox did. But DFA 
usually has more states than NFA. Moreover, to 
build a DFA must translate these definitions with ε-
operations to the equivalent forms containing no ε-
operations. This will cause additional costs. At last, 
we should notice that the relations of elements 
appeared in the document are usually quite simple, 
though their definitions would be rather complex. 
Each automaton, no matter DFA or NFA, takes 
charge of checking all the child elements of one 
element type declaration. Each automaton starts at 
its initial state, and transforms the state according to 
the state transition function. For a valid document, 
the automaton stops when the last child defined in 
the corresponding declaration is matched. In fact, 
DFA and NFA will traversal element content from 
the initial state to the final state. So an NFA with 
less building costs usually performs better than a 
DFA, while the checking costs of the two are 
approximately equal due to the relatively simple 
structure of an XML document. 

In order to show the performance between 
OnceXMLParser with built-in NFA and Woodstox 
integrated with DFA, we choose dozens of XML 
documents where DTD parts occupy most portions. 
These DTDs only have element type declarations. 
Each declaration contains ten child elements, and 
16% of these child elements are defined to be 
optional. We let the two parsers parse those 
documents for 1000 times, and record the time (for 
building NFA/DFA) they used respectively. We 
tabulate these results in Table 1. The values of the 
Count column denote the number of element type 
declarations in DTD. 

Count  NFA 
(OnceXMLParser) 

DFA 
(Woodstox) 

1000 65188 ms 81141 ms 
2000 124765 ms 163781 ms 
5000 328110 ms 378297 ms 
7000 373735 ms 578438 ms 
10000 579203 ms 750407 ms 
 

These data show that NFA can perform better than 
DFA in those situations for about 32.7% on average 
which supports our NFA solution in 
OnceXMLParser. 

4.2 Statistical Predictive Algorithm  

Names, which are defined by P[5]: Name Product of 
(W3C, 1998), occur much frequently in a normal 
XML document. Moreover, name recognizing is an 
exhaustive process, because parser must check all 
the characters appeared in the name whether they are 
in valid name characters set defined by (W3C, 1998). 
Notice that in valid XML documents, all the element 
names have firstly appeared in the DTD, and they 
will then appear elsewhere in the document many 
times. So a reasonable idea is that we only check 
these names in DTD and cache all the checked 
names in a buffer. Once a name appeared in the 
document, we would look up in the buffer to find the 
corresponding name. If we could find out one then 
we can omit the valid name checking, otherwise the 
document is invalid. This approach will introduce 
new costs in looking each name up in the buffer 
which should be controlled in a reasonable range. So 
we try to reduce the name recognizing by predicting 
the element name which is most likely to appear 
next according to current element name and some 
corresponding element type declarations. If we can 
provide relatively precise prediction, we need not to 

Table 1: Tests of NFA and DFA. 
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look up through the buffer or we could only need to 
look up in a small subset of the buffer. 

Here is an example of element type declaration: 
<!ELEMENT parentEle (seq1,seq2,(opt3|option))> 

This declaration means the parent element 
parentEle has three sequential children; they are 
seq1, seq2 and one of the opt3 and option in order. It 
is easy to know that after the element parentEle, 
there must be an element seq1. Following seq1 there 
must be seq2, because of the sequential definition. 
After seq2 we have two choices, opt3 and option, 
which are defined to appear optionally. We must get 
the best prediction according to our cost function 
(1), which takes the lengths of names as its 
parameters. 

1 1( ) failuresuccessC name C Cn n
= × + ×∑    (1) 

Where n is the number of options in the element 
type declaration which is recorded by DTDParser —
in our example n equals 2. Csuccess and Cfailure stand 
for the costs of a successful prediction and a failed 
prediction respectively. So C(name) is the 
expectation of the cost of the prediction process. 
Then we can evaluate each choice by the cost 
function to decide the one cost least. 

Csuccess is only concerned with the length of the 
predicted name. Considering Scanner will compare 
current characters in the character buffer with those 
in the given predicted name. Csuccess denotes the cost 
of the comparing. In the case of a successful 
prediction, Scanner compares each character in 
character buffer with corresponding characters in the 
predicted name, liking string matching, till the end 
of the predicted name. So the number of characters 
read by Scanner is the length of the given name 
exactly, therefore Csuccess is only concerned with the 
length of the given name without respect to what the 
name is, namely Csuccess = Csuccess(namepredict.length) 
= Csuccess(namereal.length), where namepredict means 
the predicted name and namereal means the real name 
stored in the character buffer. On the other hand, 
Cfailure does not only concern with the predicted name 
only but is also concerns with the real name in the 
character buffer. In the case of failed prediction, 
there must be a character in the character buffer, 
which does not match the corresponding character in 
the predicted name. And this mismatch may happen 
at any position during the comparing, so the cost of 
this process also concerns with the real name, 
namely Cfailure = Cfailure(namereal.length , 
namepredict.length). Notice that the real name must be 
one of the options in the element type declaration, 

since we assumed that the XML document is valid. 
To evaluate the values of Csuccess and Cfailure, we 
compute the comparing costs of vast different name 
strings with various lengths and get the statistical 
values. We can also establish the statistical values of 
the cost of processing a name in the normal way 
(without prediction), that means the cost of reading 
several characters from character buffer and looking 
up them in the valid name character set. Remember 
that, with prediction, Scanner compares each 
character in character buffer with just one 
corresponding character in the predicted name. But 
without prediction, Scanner compares each character 
with delimiters of the valid name character set. 
Obviously, for each character, the later operation 
costs more than the former operation. And it is easy 
to know that the cost is only concerned with the 
length of the name string analogous to Csuccess. We 
denote this as Cnonpredict = Cnonpredict(namereal.length). 

We choose words in Oxford Dictionary as our 
name strings. So we got 34,840 names with lengths 
ranged between 1 and 21, we could put names 
longer than 21 characters to the group of length 21.  

Let Gi be the set of name strings whose length is 
i, i<21, G21 be the set of name strings whose length 
is not less than 21. Let CountTime(process) be the 
function to count the time used by the process, and 
Sizeof(set) be the function to get the number of 
elements of the set. Let getName(namereal) be the 
process of recognizing a name string namereal by the 
normal way (without prediction), skip(namepredict) be 
the process of trying to match a predicted name 
namepredict, this process may be failed when the 
predicted name mismatch the real name in the 
document. Then we can evaluate Cnonpredict(i), Csuccess 
(i) and Cfailure(i,j) as: 

( ( ))

( ) ( )

real
name Greal i

nonpredict i

CountTime getName name

C i Sizeof G
∈

=

∑
  

( ( ))

( ) (2)( )

real
name Greal i

success i

CountTime skip name

C i Sizeof G
∈

=              

∑

 (2) 

,

( , )

( ( ) ( ))

( )

failure

predict real
name G name Gpredict j real i

j

C i j

CountTime skip name getName name

Sizeof G
∈ ∀ ∈

=

+∑

 

Notice that, when computing Cfailure(i,j), we 
randomly select a name string namereal from Gi. If i 
equals to j, we guarantee namereal is different from 
namepredict. We implement this algorithm in Java, and 
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our experiment environment is a Pentium4 2.4GHz 
PC with 512M DDR, Windows XP, and JDK 1.4.2. 
We got the following statistical value tables, the unit 
of cost is10-4 millisecond. In Table 2, len denotes 
namereal.length, and in Table 3 value of the ith row 

 and the jth column denotes the value of Cfailure(i,j). 

Table 2: Parts of the statistical values of Csuccess and 
Cnonpredict. 

L
en 

Csuccess Cnonpredict len Csuccess Cnonpre

dict 
1 0.533 2.284 12 1.486 3.515 
3 0.692 2.378 14 1.666 3.786 
4 0.877 2.609 15 1.720 4.073 
5 0.948 2.692 16 1.802 4.295 
6 1.023 2.766 17 1.886 4.447 
8 1.180 3.121 19 2.003 4.790 
10 1.334 3.323 21 2.171 5.963 

 After the computation of C(name) comes into 
available, we can compute C(opt3) and C(option) in 
the former example respectively, and choose the one 
costs least as the predicted name. In our example, 

1
( 3) ( 3. )2

1
( . , 3. )2

1 ( (4) (6,4)) 2.132
2

C opt C opt lengthsuccess

C option length opt lengthfailure

C Csuccess failure

= ×

                 + ×

               = × + =

 

1
( ) ( . )2

1 ( 3. , . )
2
1 ( (6) (4,6)) 2.0835
2

cuccess

failure

cuccess failure

C option C option length

C opt length option length

C C

= ×

                   + ×

                  = × + =

 

While ( 3. ) (4) 2.609 ( 3)nonpredict nonpredictC opt length C C opt= = >  

and ( . ) (6) 2.766 ( )nonpredict nonpredictC option length C C option= = > . 
So we decide option as the predicted name, as it has 
the least cost according to our cost function ⑴. 

But if the one costing least is still larger than the 
corresponding Cnonpredict, the predicted name should 
be null, which means no prediction is the best way. 

5 PERFORMANCE TESTING 

We use Sun XMLMark (Sun, 2004) as benchmark to 
compare the performance of OnceXMLParser with 
other XML parsers. We modified it to make StAX 
into use. To make the results stable, we repeat each  
test for seven times and get the average results. Our 
experiment environment is a Pentium4 2.8GHz PC 

(with Hyper Thread) and 1G DDR (Duel Channel), 
Window XP (SP2) and JDK 1.4.2_03. Details of 
Test1—Test3 can be found in (Sun, 2004). 
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Figure 2: Results of XMLMark. 
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There are 24 groups of results, including 6 
groups for SAX, 6 for StAX and 12 for DOM. Due 
to the limitation of page number; we only list 6 of 
them concerned with StAX here. 

Testing results are shown in Figure 2. The 
horizon axis means the number of tests and the 
vertical axis means the number of finished 
transactions per second defined by (Sun, 2004). 

In Figure 2, (a)—(c) mean the results without 
VC checking, while (d)—(f) mean the results with 
VC checking. In the figure, (NS) denotes the parsers 
support namespace. 

For StAX, results show that OnceXMLParser 
with VC checking performs 13.32% and 14.10% 
better than Woodstox without and with namespace 
supporting respectively. And OnceXMLParser 
without VC checking performs 11.44% and 16.30% 
better than Woodstox without and with namespace 
supporting respectively. For SAX, results show that 
OnceXMLParser with VC checking performs 
19.08% and 34.56% better than Xerces without and 
with namespace supporting respectively. And 
OnceXMLParser without VC checking performs 
18.62% and 31.47% better than Xerces without and 
with namespace supporting respectively. For DOM, 
results show that OnceXMLParser with VC 
checking performs 38.04% and 31.41% better than 
Xerces without and with namespace supporting 
respectively. And OnceXMLParser without VC 
checking performs 77.44% and 57.08% better than 
Xerces without and with namespace supporting 
respectively. 

6 CONCLUSION 

XML parser is an infrastructure for XML 
processing. This paper studies some kinds of XML 
parser implements DOM, SAX and StAX, and 
provides a lightweight implementation—
OnceXMLParser. Through implementing some key 
algorithms and some efficient optimizing 

techniques, OnceXMLParser gains better 
performance as we expected. 

The future work includes supporting the XML 
Schema. 
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Table 3: Parts of the statistical values of Cfailure(i,j). 

 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 j=12 j=13 j=14 
i=4 3.147 3.120 3.144 3.191 3.232 3.556 3.186 3.090 3.110 3.072 3.073 
i=6 3.387 3.272 3.301 3.354 3.339 3.554 3.341 3.274 3.268 3.232 3.195 
i=8 3.522 3.368 3.586 3.600 3.620 3.707 3.599 3.469 3.374 3.533 3.527 
i=12 4.079 4.011 4.094 4.187 4.158 4.131 4.146 4.050 4.012 3.991 3.948 
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