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Abstract. The learning component of a cognitive-based language model 
(LEAP) designed to easily integrate into agent systems is presented. Building 
on the Interlaced Micro-Patterns (IMP) theory and the Alchemy/Goal Mind en-
vironment, the LEAP research improves agent-to-human and agent-to-agent 
communication by incorporating aspects of human language development 
within the framework of general cognition. Using a corpus of child through 
youth fiction, we provide evidence that micro-patterns can be used to simulta-
neously learn a lexicon, syntax, thematic roles and concepts. 

1 Introduction 

To study language use and learning within a reading task, a robust distributed cogni-
tive model called LEAP (Language Extraction from Arbitrary Prose) and a new 
working theory of cognition called IMP (Interlaced Micro-Patterns) have been devel-
oped as part of the current Alchemy/Goal Mind modeling effort. LEAP examines 
how language development (at the lexical, syntactic, semantic and conceptual level) 
occurs within the context of general cognitive development used by all sensory mo-
dalities. LEAP differs from most other cognitive modeling efforts of language in that 
the Alchemy/Goal Mind environment: 

• uses process concurrency to increase the amount of processing power 
available (distributed processing) and simulate the massively parallel 
processing (MPP) aspects of the brain 

• allows models to be built using any number of robust symbolic and non-
symbolic inference engines communicating via a generalized messaging 
structure that simulates neural pathways 

• draws a model’s explanatory depth from the way components are interre-
lated and function, not on the underlying theory of their construction. 

This paper will lay out the theoretical underpinning of LEAP and discuss how the 
current results validate both the IMP theory of cognition and the linguistic theory on 
which it is based. 
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2 Related Work 

This section will address the modeling efforts directly related to LEAP, other general 
modeling and language capture efforts and an extremely brief overview of the lin-
guistic theory being used in LEAP. 

2.1 Directly Related Existing Models 

LEAP directly builds upon the TALLUS (Teacher Assisted Language Learning and 
Use System) model [5], but also draws insight from the STRESS (Stroop Test Re-
sponce Evaluation Sub-System) [6] and FEAR [9] models. TALLUS was a cognitive 
model to study language use and learning in a visual context. It consisted of three 
agents, a teacher and two students. The utterance level of the model was based on 
Government and Binding theory, but much of the model dealt with discourse and 
conceptual processing. The TALLUS model’s inability to learn anything past a rudi-
mentary surface-level language was a driving factor in the creation of both the IMP 
theory and LEAP model. 

STRESS used components of the TALLUS model to build a model of the Stroop 
effect. This model again focused on concept reasoning but did provide some insight 
into the reading task that has been used in LEAP. FEAR explored the use of emotion 
to control attention and arousal in an agent system. Much of what was learned from 
the control structure of this model has been reused in LEAP. 

2.2 Related Language Modeling and Capture Efforts 

A number of on-going research efforts are addressing the cognitive modeling of lan-
guage at some level. Many of these models address language within the context of 
other sensor modalities and are aimed at directly supporting an agent-based applica-
tion. LEAP attempts to; 1) be explanatory, 2) be closely tied to well known cognitive 
mechanisms such as priming, spreading activation and memory consolidation, and 3) 
directly support use of its components within multiagent applications. This makes it 
similar to models built with SOAR [9], ACT-R [1] and ACT-R/PM [3]; but not re-
stricted to monolithic processes controlled by some underlying cognitive mechanism 
such as ACT-R’s symbolic productions and subsymbolic activations. 

In relation to major language capture systems, LEAP’s current understanding of 
language is very small. For example, WordNet contains 144,309 unique words organ-
ized into synonym sets representing underlying lexical concepts [4]. The Cyc knowl-
edge base contains almost 2 million assertions (rule and fact), 118,000 concepts and a 
lexicon of 17,000 English root words [12]. But size does not directly translate to 
making them useful candidates for knowledge components within an adaptive multi-
agent application. LEAP is attempting to capture, for use in an agent system, the way 
humans learn by the slow consolidation of knowledge into a complex and multifac-
eted representation of their surrounding world. 
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2.3 Related Language Theory 

Most symbolic AI work has been based on Generalized Phrase Structure Grammar 
(GPSG), Head-Driven Phrase Structure Grammar (HPSG) or Lexical-Functional 
Grammar (LFG) and relies on one or two pipelines of processing from the incoming 
morphemes to concepts. It assumes that language understanding is built up from syn-
tactic and semantic structures that must be directly mapped to all constituents of the 
received utterance before it can be processed. Connectionist approaches have been 
more pragmatic in what needs  to be part of language processing but have not proven 
to be very extensible. 

Using micro-patterns, LEAP is free to examine a wider range of possible linguistic 
approaches and currently draws some of its ideas from theories as far a field as Rela-
tional Grammars and Principles and Parameter Theory. This is possible because Al-
chemy/Goal Mind provides a distributed AI environment that removes many of the 
sequential limits imposed of traditional NLP systems. 

3 Interlaced Micro-Patterns (IMP) Theory 

The Interlaced Micro-Patterns (IMP) cognitive theory extends the traditional pattern 
matching mechanism by proposing that if a set of simple patterns are interlaced (i.e., 
allowed to overlap), the mechanism can be used to learn, retrieve and recall elements 
of far greater complexity, and thus, could be the driving mechanism of such tasks as 
language use and learning. The support for IMP as a working theory comes from both 
a set of thought problems and the results of cognitive modeling work. 

The TALLUS model failure resulted in the first thought problem. Why do children 
find it much easier to learn a natural language than the proposed grammar rules that 
are suggested to define such a language? Hierarchical syntactic approaches to natural 
language (NL) align well with the way NL grammars are taught in traditional educa-
tional settings, but not with how language development naturally occurs. The teach-
ing of prescriptive grammars seldom controls the complete use of either spoken or 
written language ‘rules’. 

So, is there a way to capture the computational strength of generative grammar 
without it being driven by a hierarchical set of rules? One possible method to do this 
is to use interlaced micro-patterns. While all possible well-formed utterances conform 
to some syntactic, semantic and conceptual pattern, the storage of every possible 
utterance pattern would clearly be too computationally complex to be feasible. How-
ever, if all possible sentence patterns were made up of smaller patterns that relied on 
overlapping elements to ensure correctness, a set of smaller patterns could not only 
generate correct utterances, but also block the creation of malformed utterances. 

3.1 Relationship of IMP to Symbolic AI 

We can define a system’s composite Knowledge Representation and Reasoning 
(KRR) as a set of layered component KRRs with each component’s KRR being any 
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desired type. This composite KRR can be stored in Long Term Memory (LTM) and 
access points within each layer can be activated into Short Term Memory (STM) by a 
pattern input from an external source (either another layer within the agent or an 
interface to the external world). In addition to the actual access points activated, other 
parts of the layer’s Knowledge Representation (KR) can be activated by a temporal-
based spreading activation mechanism when needed and deactivated by removal from 
the STM when the knowledge is ‘timed-out’. Changes to the KRR occur by updating 
the KR stored in LTM as a result of changes that occur in STM during activation. 

A simple formalization of the effect of using IMP to control a layered KRR can be 
given if we simplify the KR of an agent to a uniform set of semantic networks. Each 
of these semantic networks can be viewed as a directed multi-graph,  

Rn = pair (Νn , Αn ), Αn = {(νni , νnj) | νni , νnj ∈ Νn} (1) 

where, n is the level of representation, Νn is a set of nodes, and An is a bag of named 
relationships between these nodes. A sub-representation of this network can be de-
fined as, 

R′n = pair (Ν′n , Α′n ), Ν′n ⊆ Νn , and 
Α′n ⊆ Αn ∧ ((νni , νnj) ∈ Α′n → νni , νnj ∈ Ν′n). 

(2) 

All possible sub-representations at a level n is, of course, the power set of Rn; how-
ever, this set has little meaning in the IMP theory since only the activated subrepre-
sentations are of interest. Given all possible activated sub-representations at a level n, 
defined as,  

Φn = {R′n | R′n ⊂ Rn ∧ active(R′n) → True}, (3) 

connections between representation levels can also be viewed as a directed multi-
graph, 

Κi, j = pair (Φi,j , Γi,j), Φi,j = R′i ∪ R′j, and 
Γi,j = {(R′i , R′j) | R′i , R′j ∈ Φi,j }, 

(4) 

where, i and j are levels of representation being connected and Γi,j is a set of named 
relationships between these levels. 

The number of representation levels (Rn) and number of level connections (Κi,j) 
can vary based on application. A traditional agent-based method for using the overall 
representation structure would be a set of m stacks of representation levels 1 to k with 
the top-level (level 1) of each stack being an interface representation and the kth level 
of each stack being either a common conceptual structure or a set of connected con-
ceptual structures.  

Given a set of available general inference rules at each level (ρn) and between two  
levels (ρi,j), the extent of general inference at each level (ιn) and across levels (ιi,j) can 
be naively described as, 

ιn ≈ | ρn | and ιi,j ≈ | ρi,j |, (5) 
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assuming no serious difference exists in the number of pre and post conditions of 
each rule. The total extent of representation at each level also can be naively de-
scribed as, 

γn ≈ | Νn | • max {νni , νnj}d(νni , νnj), (6) 

which given the amount of accessible (or activated) knowledge at each level being 
βn = ∪Φn, leads to an activated representation extent of, 

αn ≈ | βn | • max {νni , νnj}d(νni , νnj) | νni , νnj ∈ βn and 
αi,j ≈ | Φi,j | • max {R′i , R′j}d(R′i , R′j). 

(7) 

The activation potential at any level can be described as, 

ηn ≈ Σ{i = 1 to k} αi,j • ιi,j , (8) 

and its inference potential as, 

κn ≈ αn • ιn . (9) 

Assuming that pattern matching activation mechanism are only allowed to work be-
tween levels, the extent of cross-layer general inference (ιi,j) can be viewed as ap-
proaching the value one for all levels. Thus, the activation potential of all levels ap-
proximately equals their part of the cross-layer activated representation extent, αi,j, 
which is simply their own activated representation extent αn. A pattern matching 
interface between layers reduces the overall inference potential in each layer to a 
function of the number of activated access points and its own inference extent. To the 
outside world, any results of a layer’s inference engine look like the sum of an Artifi-
cial Neural Network’s (ANN) forward or backward activation potentials. 

4 The LEAP Model Implementation 

A Goal Mind model is driven by both explanatory theory and pragmatic computa-
tional issues. We first use cognitive science data and theories to map out a general 
component structure of the cognitive agent, and then, response methods to intra-agent 
stimuli. This structure is then mapped into Goal Mind processing components called 
Etherons which are built from the environment’s. production system and semantic 
network libraries and its standard PostgreSQL ‘C’ language interface. The ability to 
reuse components between models and subdivide functionality between component 
clones are the two major controls on cognitive correctness of our research. 

As shown in figure 1, the LEAP model is divided into five major subsystems, each 
of which can be made up of as many Goal Mind processing nodes as required. The 
current model uses twenty-four Goal Mind components. Message flow in LEAP is 
done using Goal Mind stimuli allowing components to communicate with each other 
without understanding the model’s complete topology. Control of the model is im-
plemented using Shallow Knowledge Integrated Production System (SKIPS) engines 
described in [8]. 
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Fig. 1. A simplified view of the LEAP model. The model currently uses eight lexical analyzers 
and one each of the other four component types, but since it is built on Alchemy/Goal Mind the 
number of each can be easily changed as needed. All components generate and use micro-
patterns and store LTM information in the database. 

One way that LEAP controls the amount of language information being processed at 
any given time is to divide knowledge along the traditional theoretical boundaries of 
Long Term Memory (LTM) and Short Term Memory (STM) although this is imple-
mented in ways similar to theories (like the one used in ACT-R) that basically reject 
such a theoretical division. In Goal Mind, the LTM store is a distributed PostgreSQL 
database. Using standard database normalization (whenever possible) LTM informa-
tion is stored in compressed form in the database and accessed in small activated 
chunks. For example, parts of the large LTM semantic network used by LEAP can be 
uncompressed into a dynamic memory structure within each of the semantic and 
concept reasoners using spreading activation triggered by input stimuli. This activated 
STM memory is then ‘returned’ to LTM using a concept called temporal garbage 
collection. By using such a STM/LTM knowledge scheme, LEAP can support seman-
tic feedback learning over the level of language knowledge needed for something like 
Information Retrieval or Extraction without experiencing computational explosion. 

The LEAP model tries to process language input from either a teacher agent or a 
web reader input. This processing is highly parallelized, but can be viewed at an ab-
stract level as being made up of three levels; surface structure, deep structure and 
conceptual. At the surface level, words of an incoming utterance (either from the web 
reader or speech emulation interface) are tagged using a set of lexical analyzers and a 
special purpose Stimuli Routing Network (SRN) used to filter some closed categories. 
These tags (or PoS) stimuli are used by the phrase generators to create (xP) stimuli 
containing simple syntactic relationships between words. While the xP stimuli repre-
sent a form of tree parsing, the results are far different than a traditional parse. For 
example, in the noun phrase ‘the brown dog of the happy girl from the grand city of 
Kent’, only the information about the direct relationships between nouns and preposi-
tions is extracted from the embedded prepositional phrases. Further, this information 
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is only used to determine the semantic distance between the verbs and nouns so that 
the right theta grid can be accessed. 

The deep structure processing of an utterance in LEAP does not rely on a single 
surface level input, nor does it necessarily require (or wait for) a complete surface 
level ‘parse’ of the utterance. The semantic reasoners use PoS stimuli to activate the 
deep structure forms (stored as nodes in a semantic network) related to the surface 
forms of the utterance. At the same time, theta analyzers use PoS and xP stimuli to 
propose theta relations (tP stimuli) between words in the utterance. These tP stimuli 
are tested by matching them to the theta grids of the activated deep structure forms 
and then following the relational arcs in the activated part of network to see if all of 
the activated forms can be realized by known relationships. Failure to realize a grid 
relationship between deep structure forms can cause either a rejection of the related 
semantic role in the deep structure or the learning of a new semantic role based on the 
semantic context of the utterance. What happens in each case is determined by the 
conceptual level of the model. 

Like TALLUS, LEAP divides conceptual processing across a number of reasoners. 
These reasoners handle both higher level language processing like symbol grounding 
and discourse and provide the mechanisms for connecting the language processing to 
other cognitive tasks. Since most of our current work with LEAP has been aimed at 
trying to fix language learning problems with TALLUS, LEAP’s set of conceptual 
reasoners is currently limited to those directly related to the language learning task. 

5 Results 

LEAP testing was done on a 16-node Beowulf cluster using a web-based corpus of 
children and young adult stories. This corpus can be found at red.cs.tcu.edu:14321. It 
contains 12,830 distinct sentences, 12,185 distinct words and total of 301,312 total 
words. The mean length of sentence for the complete corpus is 23 words. Since the 
corpus is made up entirely of classic fiction, the grammar is often quite complex. 

5.1 Syntactic Learning 

The testing method for PoS and xP learning consisted of setting up a baseline data-
base of 20 words and 8 patterns per open category. The model was then allowed to 
read the complete corpus three times at four different learning rates of 10, 20, 50 and 
100. Results of these runs include the incorporation of a number of new words and 
patterns for the five open categories being studied (i.e., noun, verb, gerund, adjective 
and adverb). Words learned during a test run were compared against WordNet to 
determine the accuracy of learning. No semantic feedback was used during these test. 

Since the learning of word and patterns are so closely tied (i.e., new pattern gener-
ate new words and new words generate new patterns) we use the same learning rate 
for both words and patterns in each experiment. The percentage of correct nouns 
learned varies little for a learning rate of 20 or above. However, correct verb and 
adjective learning improves by increasing the threshold at which new words and 
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patterns were learned. The current pattern method is not sufficient to learn adverbs. 
Setting the learning rate too high reduces the rate of learning, a well known machine 
learning phenomenon. However, there are dangers to setting the learning rate too low 
if the corpus is not extremely large. At low learning rates, the initial pass through the 
corpus provides limited supporting evidence for misidentified patterns, but rereading 
stories tends to reinforce these incorrect assumptions. This again follows from what 
we know of language development in children where reinforcement of incorrect 
grammar by example leads to the incorporation of incorrect grammar formations. 

The fifth open category learned during the current data selection was that of ger-
unds. Unlike the other categories, the pattern for these words included the ‘–ing’ 
morpheme. Gerunds were identified with 100% accuracy at all learning levels, the 79 
of them being found at a learning level of 10. 

 

(a) (b) 

(c)  (d) 

Fig. 2. Percentage of correct detections after three passes through the corpus for (a) nouns, (b) 
verbs, (c) adjective and (d) adverbs. A pattern learning rate of 10, 20, 50 and 100 is graphed 
against a threshold of word learning rates (0 to 14). 
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5.2 Semantic and Conceptual Learning 

Once PoS and xP stimuli have been generated, the simple tP generator creates possi-
ble theta roles between words in the utterance. If these relationships match existing 
relations in the semantic information stored within LEAP, semantic feedback infor-
mation is used to reinforce the PoS information and a conceptual representation of the 
utterance is activated. If it does not match, then new relationships are proposed in 
much the same way as new PoS patterns are learned. Learning is currently fairly slow 
due to the need to restrict this learning to a single unknown relationship utterance and 
many sentences in the corpus are semantically complex. The theta role learning in 
LEAP is still being refined but the current system is showing about a 75% accuracy in 
learning new noun-verb relationships when a learning rate greater than 20 is used. 

Conceptual learning is one aspect of the TALLUS model that worked fairly well so 
we have not, to date, addressed this aspect in LEAP in any great detail. Early tests are 
showing that concept learning works as well, if not better in LEAP. 

6 Future Work 

Much more work needs to be done at both the semantic and conceptual levels of 
LEAP to get it to the level of discourse and visual context processing of the TALLUS 
model but we expect the improved learning of LEAP at these levels to make up the 
significant portion of the model’s final contribution. The current method of generat-
ing theta roles needs to be more interdependent to be completely correct, but should 
again be fixed with minor improvements to the model. 

The current corpus is too small to completely test LEAP. We are looking for addi-
tional corpora to test against. However, we are in the process of integrating the 
Sphinx speech recognition tool into the system so that it can be driven off direct hu-
man interaction. Such a live data approach is actually a better test of the IMP theory 
since it emulates the actual learning environment of a small child. 

We have also started work on a parallel model to LEAP called REAP (Resource 
Extraction for Arbitrary Prose) that allows reference information from on-line re-
sources like WordNet to be directly accessed by a LEAP-like language processor 
during the learning task. The cognitive justification for this model is the use of refer-
ence material (like dictionaries) by young readers during the reading task. The practi-
cal application of this model is to feed a shared database enough surface level knowl-
edge to allow use to jump-start the deep structure learning of LEAP across more 
meaningful corpora. 

7 Conclusion 

The research being presented here is merely a stepping stone to a more complete 
language learning system, but it is already demonstrating that it is a pretty large stone. 
The data collection effort to date has focused on syntax, and clearly, the semantic 
aspects of LEAP are going to be its most significant final contribution. But the syn-
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tactic data in itself seems be telling us something very important about the way lan-
guage is processed by a human at the surface level. It could be argued that the pat-
terns being learned in the syntax level experiment are merely shallow reflections of 
generative rules underlying the text, but if this is the case, why can a simple pattern 
do such a good job of finding a verb? Again one could argue that the verb may be 
closer to the center of the verb phrase, and thus, components of the verb phrase may 
be more likely to be contained in the pattern, but before you accept this argument you 
might want to carefully examine some of the grammar of the corpus we were using 
(red.cs.tcu.edu:14321). It is not clear to us that such a simple explanation is supported 
by the data. More likely, regardless of the complexity of the utterance, pattern rules 
dictate the range of words that can fit in the next word slot in the text. Remember that 
language learning in humans starts as a very slow process with the infant being im-
mersed in a sea of language for nearly a year before they attempt to add to the flood.  
Could it be that they are not in this time learning a few rules, but whole lot of simple 
patterns? The data presented here at least make this question worth asking. 
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