
Toward a Pi-Calculus Based Verification Tool for Web
Services Orchestrations

Faisal Abouzaid

Ecole Polytechnique de Montreal,
2500-chemin de Polytechnique,

Montreal (Quebec) H3T 1J4 , Canada

Abstract. Web services constitute a dynamic field of research about technolo-
gies of the Internet. WS-BPEL 2.0, is in the way for becoming a standard for
defining Web services orchestration. To check the good behaviour of the pro-
duced compositions, but also to check equivalence between services, formaliza-
tion is necessary. In this paper a contribution to the field of Formal Verification
of Web services composition is presented using aπcalculus-based approach for
the verification of composite Web services by applying model checking methods.
We adopt the possibility of exploiting benefits from existing works by translating
a Business Process Language such as BPEL to a system model of theπ-calculus
for which analysis and verification techniques have already been well established
and there are existing tools for model checking systems. We therefore present
the basis of a framework aimed to specification and verification, related to some
temporal logic, of Web services composition. . . .

1 Introduction

Web services are a typical example of technologies supporting Service Oriented Ar-
chitectures (SOA). They allow to develop applications taking advantage of the Internet
infrastructure. These distributed applications communicate by messages and use stan-
dardized protocols all based on XML. These Web services can be composed to form
more complex applications. Such a composition is called an orchestration, if there is
a coordinator between interacting services, and a choreography if not. These new con-
cepts raise some challenges: How to be sure that a composite Web service works cor-
rectly? How to make sure that two or several Web service interact correctly and that
the result of the interaction is acceptable in comparison with the initial specification?
How to make sure that two services are compatible so that one can substitute them one
for the other, where necessary? To answer these question a formal specification of the
compositions is needed and justified by the need for developing reliable services which
fulfill the requirements of the users.

These problems are not recent, nor specific to Web services. Techniques and many
tools exist which make it possible to specify formally and to check properties on var-
ious systems. However, Web services have particular characteristics which require to
be studied specifically. For example, concerning the composition of Web services, a
service can dynamically establish a transaction with a service whose behavior is not

Abouzaid F. (2006).
Toward a Pi-Calculus Based Verification Tool for Web Services Orchestrations.
In Proceedings of the 3rd International Workshop on Computer Supported Activity Coordination, pages 23-34
DOI: 10.5220/0002501900230034
Copyright c© SciTePress

known in advance. An abstract representation of the behaviors of all the participants,
in an adequate formalism, can help to reason in an automatic way. In the same way the
formalism can help to design a reliable automatic composition of services. On another
side, mobility is essential in the world of Web services : a service can communicate with
customers whose address is not known in advance, but discovered during the execution.
Some formalisms do not make it possible to express it correctly, theπ-calculus does.

In this work we study the problem of formally design Web Services compositions
expressed by means of a BPM language such as BPEL, usingπ-calculus. We compare
different formalism and show that process algebras and in particularπ-calculus, are well
suited for the purpose of formally specifying such compositions. We aim to provide a
thoerotical and concrete framework to design and formally verify Web Services compo-
sitions. Our purpose is to develop a framework dedicated to verification and design of
robust and complex Web services that is based onπ-calculus formalism. The first step in
this way is to provide aπ-based semantics for Web services orchestrations expressed by
the means of BPEL, which seems to be the most popular BPM language. Based on this
semantics, we propose a mapping between main BPEL constructs andπ-calculus. We
present theπ-logic, an extension of theµ-logic, associated withπ-calculus that allows
us to express properties we want to verify. We illustrate ourmethod by a significative
example. Finally we present a basic architecture for our verification framework based
on model-checking of this formalism.

In this paper, we will proceed in the following way: after having introduced Web
services and their compositions in section two, we justify the need for formalization in
section three, and we briefly discuss various formalisms used for this purpose. We then
highlight the fact that process algebras are well suited forWeb services formalization. In
Section four, a brief presentation of the syntax and semantics of theπ-calculus is given.
Theπ-logic is also presented. In section five we present a mappingguide from BPEL
to π-calculus and we show its relevance with a concrete example.In section six we
discuss fundamental basis for a framework dedicated to formalization and verification
of composite Web services. In section seven we conclude our presentation by reporting
some conclusive remarks and a summary of the works. We also give and some hints for
future works.

2 Web Services

A Web service is an application provided by a service provider running on the internet
and accessible to the customers through standard internet protocols. The W3C consor-
tium defines a Web service as an application or a component that is identified by an
URI and whose interfaces and links are described in WSDL, an XML-based language.
Definitions of Web services can be discovered by other services by means of the UDDI
protocol and they can interact directly with other servicesby using XML language and
SOAP protocol.

2.1 Orchestration and Choreography Languages

Because each service provides a limited functionnality, itis then necessary to compose
these basic Web services in order to build a more complex composite service, providing

24

a fonctionnality of higher level of abstraction in order to reduce development costs, to
provide strong reactivity to customers requests, and scaleeconomies.

Several communities act in production of standard languages to describe specifi-
cations of orchestration but we focus our work on the language which seems to join
together around him greater unanimity, namely BPEL (in the past BPEL4WS) [1]. This
language supported by IBM and Microsoft, is in the way to become a standard. It is
a programming language for implementing the execution logic of a business process
based on interactions between the process and its partners.A BPEL process defines
how multiple service interactions with partners are coordinated internally to achieve a
business goal (orchestration).

While orchestration depends on a coordinating service, choreography is concerned
with global, multiparty peer-to-peer collaborations interoperable between any type of
components. WS-CDL is a language in which a choreography description is speci-
fied[2]. A WS-CDL specification describes the observable behavior of collaborations
between services. WS-CDL is not a programming language; it isnot executable.

3 Formalization of Web Services Orchestrations

3.1 Formalization

Formalization of composite Web services is justified by the need for the checking prop-
erties which attest the correct behavior of the whole system. Many works are devoted to
the field of modeling and verifying Web services and their composition. An approach
to process behaviour analysis and modelling of these software architectures can be con-
structed to provide tools for verification and validation ofspecified properties of the
model against design specifications and implementations.,

Various researches concerning Web services composition and based on various for-
malisms were proposed among such as Petri Nets [3], ASM (Abstract State Machines)
[4], Automata with guards [5] or CCS [6].

3.2 Formalisms

Abstract State Machines. The interest of the ASM lies in their expressivity and their
simplicity. They make it possible to conceive achievable specifications that makes it
possible to check directly on the model. However, this technique is not adapted to ap-
plications that process lot of data and it is the case of Web service which can exchange
very significant volumes of information.

Petri Nets. Petri nets make it possible to model events and states in a distributed sys-
tem. They make it possible to simply express sequentiality,concurency and asynchro-
nous control based on events. They present some advantages for worflow modeling such
as offering a formal semantics, though graphic. Other advantages are that their seman-
tics is based on states and not only on events and there exist lot of tools for analysis.

However, Petri nets are not free from problems [7]. Thus certain difficulties ap-
pear with usage such as difficult to represent multiple instances of a sub-process or to
represent some complex synchronization patterns (cancellation pattern (cleaner)).

25

Process Algebras.Most of the problems raised by the previous techniques find their
solution by using process algebras. They are used in variousdomains, thanks to their
great capacity of modeling and to their relative simplicityof writing. They make it
possible to describe the evolution and the behavior of realizable interactions within
concurrent systems and they often are represented by programming languages reduced
to a simple expression. [8]

They are suitable to describe Web services, because they offer a formal description
of dynamic processes, which facilitates their automatic verification. They allow a great
expressivity and provide constructions that are adapted tocomposition because they
have compositional properties, Finally their textual notation is adapted to the descrip-
tion of real size problems , although it is less readable thantransitions systems.

Process algebras are useful both at the time of design and for’reverse engineering’.
They offer the possibility of automatically generating skeletons of code thanks to a
translation from the algebra to an executable language.

CCS. The Calculus of Communicating Systems [9] is a calculus for describing sta-
tic networks of processes that synchronize via channels. CCS doesn’t allow to pass
channel-names as arguments while the main advantage ofπ-calculus is that it does.

4 Theπ-calculus

4.1 Introduction

Theπ-calculus [10], is a process algebra that can describe mobile concurrent compu-
tation in an abstract way. It provides a way to define labelledtransition systems which
can exchange communication channels as messages. Name communication, together
with the possibility of declaring and exporting local names(scope extrusion), gives this
calculus a great expressive power.

4.2 Theπ-calculus Syntax

We refer to [10] for a detailed description of theπ-calculus, but we will give here a brief
introduction to its syntax.

Theπ-calculus consists of a setN of names (for actions) andaction prefixesα that
are a generalization of actions. An action prefix representseither sending or receiving
a message (a name), or making a silent transition (τ). Actions syntax and the set of
π-calculus process expressions are given in Table 1.

The meaning of each process defined above is as follows :
Null: 0 is the deadlocked process which cannot involve with any transition.
Prefixed sum:

∑
i∈I πiPi can proceed toPi by taking the transition of the action prefix

πi: Transitions and nondeterministic choices are described as prefixed sums.
Parallel composition: P1 | P2 is a process consisting ofP1 andP2 which will operate
concurrently, but may interact with each other through actions/co-actions.
Restriction: (νa)P means that the action/co-actiona or a in P can neither be observed
outside, nor react with a ora outside the scope ofP .

26

Table 1.π-calculus Actions and Process syntax.

Action syntax Process syntax
P ::= x(y) receive y along xP := 0 (null)

x〈y〉 send y along x |
P

i∈I πiPi (Prefixed sum)
τ silent action | P1 | P2 (Parallel composition)

| (νa)P (Restriction)
| [x = y]P (Match)
| !P (Replication)

Match: [x = y]P behaves likeP if namesx andy are identical, and otherwise like0.
Replication: !P means that the behavior ofP can be arbitrarily replicated.

Structural operational semantics of theπ-calculus is given by reaction and transition
rules as shown in Table 2.

Table 2. reaction and transition rules of theπ-calculus.

TAU : τ.P + M −→ P REACT :
x.〈y〉.P | x(z).Q −→ P | {y/z}Q

PAR :
P −→ P ′

P |Q −→ P ′|Q
RES :

P −→ P ′

(νx)P −→ (νx)P ′

STRUCT :
P ≡ P ′P ′ −→ Q′Q ≡ Q′

P −→ P ′

4.3 Model Checking in theπ-µ-Calculus

Some logics have been proposed [11], [12] to express properties ofπ-calculus processes.
These logics are extensions, withπ-calculus actions, name quantifications and parame-
terizations, of standard action based logics [13]. Theπ-logic [14] extends the modal
logic introduced in [11] with some expressive modalities. Its syntax is given by :

Φ ::= true | ∼ Φ | Φ & Φ′ | EX{µ}Φ | < µ > Φ | EFΦ

The interpretation of the logic formulae is as follows :

– P |= true holds always;
– P |= ∼ Φ if and only if notP |= Φ;
– P |= Φ & Φ′ if and only if P|= Φ andP |= Φ′ ;
– P |= EX{µ}Φ if and only if there existsP ′ such thatP

µ
−→ P ′ andP ′ |= Φ ; This is the

next operator.

27

– P |=< µ > Φ if and only if there existP0, ..., Pn, n ≥ 1, such thatP = P0

τ
−→ P1...

τ
−→

Pn−1

µ
−→ Pn andPn |= Φ; This is theweak nextoperator.

– P |= EFΦ if and only if there existP0, ..., Pn and µ1, ..., µn, with n 6= 0, such that
P = P0

µ
−→ P1...

µn
−−→ Pn andPn |= Φ.

Derived operators can be defined like this :

– Φ|Φ′ stands for∼ (∼ Φ& ∼ Φ′). It is the OR operator;
– AX{µ}Φ stands for∼ EX{µ} ∼ Φ. This is the dual version of the strong next operator;
– [µ]Φ stands for∼< µ >∼ Φ. This is the dual version of the weak next operator;
– AGΦ stands for∼ EF ∼ Φ. This is thealwaysoperator, whose meaning is thatΦ is true

now and always in the future.

Example of formula: For instance, deadlock freeness can be specified as follows:

NoDeadLock = AG(< in?∗ > true | < out!∗ > true)

It asserts that every time (always) it is possible to performan input (on channelin) or
an output (on channelout), insuring that the system will never block. Note that we use
the HAL syntax (see Section 5.3) which is slightly differentfrom the previous one.

4.4 π-calculus Tools

The main existing tools for model-checking theπ-calculus are the ”Mobility Work-
bench (MWB)” [15] and the HAL toolset [14].

MWB is a model-checker for the polyadicπ-calculus which allows handling and
analyzis of concurrent mobile systems. It allows checking of bisimulation which can be
very useful for verifying Web services comptability.

HAL is apromising tool which exploits a novel automata-likemodel which allows
finite state verification of systems specified in theπ-calculus. The HAL environment in-
cludes modules which support verification of behavioral properties ofπ-calculus agents
expressed as formulae of suitable temporal logics.

For our example, we will use the HAL tool, which provides a Webbased interface.

5 Mapping BPEL Constructs to π-calculus

5.1 Web Service Composition Operators

Among basic constructions common to the majority of the Web service composition
languages, one finds the following operations : service invocation (invoke), messages re-
ception (receive), answer (reply), sequenciality (sequence) or parallelism (flow). Mech-
anisms for compensation (compensate), and errors handling (fault handler), are also
used.

28

Table 3.Mapping BPEL activities toπ-calculus.

BPEL π-calculus
Basic Activity
invoke invoke = xs〈ĩ〉 | y〈ũ〉
< invoke partner=” ” operation=” ”> The channelxs identifies

a specific operation of a service.
receive
< receive partner=”” operation=””> receive(xs, ĩ = xs(r, ĩ).y〈ũ〉

reply
< reply partner=”” operation””> reply = xs〈õ〉 | y〈ũ〉

empty
<empty> empty = y〈ũ〉

Concurrent Activities

<flow> flow(A1, A2) = (νy′)(νy”)(A1.y′〈ũ′〉 | A2.y”〈ũ”〉

< ...activity1... > | y′(ũ′).y”(ũ”).y〈ũ〉
< ...activity2... >

</flow>

< sequence ...> sequence(A1, A2) = (νy′)(A1.y′〈ũ〉 | y′(ũ).A2)
< ...activity1... >

< ...activity2... >

</sequence>

5.2 Formalization

The first step in the formalization process is to map BPEL specifications intoπ-calculus
processes. The mapping is required to provide explicit process representation behind
that of the BPEL constructs activities and other process definitions. The semantics used
here is based on the work presented in [16].

Note thatũ denotes a set of values a process sends or receives. Theπ-process core-
sponding to a BPEL process executes an activity and flags outy!ũ to signal its termina-
tion in order to support sequential composition.

It is very natural to map basic construct from BPEL toπ-calculus. Thereby, an
invoke or areply statement will be translated using an output action while a
receive statement will be translated to an input action. Aflow activity will be trans-
lated using a parallel composition operator. Asequence activity can be translated
using a parallel or a prefixed operator (see Table 3 for the mapping).

Note thatũ denotes a set of values a process sends or receives. Theπ-process core-
sponding to a BPEL process executes an activity and flags outy!ũ to signal its termina-
tion in order to support sequential composition.

A while construct can be expressed by means of a replication action,or by using
recursion and aswitch construct is mapped using a Match action. Apick construct
is mapped by means of a prefixed sum action (see Table 4)..

The mapping presented here is limited to some usual constructs. We refer to [16] for
a detailed specification offault handling andscope specification. More com-
plex patterns from the world of workflow have been translatedbut not presented here.

5.3 An Example

In order to illustrate the use of theπ - calculus and the HAL tool on a concrete way, we
present the simple example of a company which receives from acustomer information
about an order. The company treats the order and then transmits it to the supplier who
in his turn reply by sending information on the delivery. thecompany will retransmit

29

Table 4.mapping BPEL structured activities toπ-calculus.

<while condition =”exp = ’yes’”> while(cond, A1) = (νy)(y(ṽ)
<sequence> | [cond].y〈ṽ〉.while()

< ...activityi... > | y〈ṽ〉.y′〈ũ〉)
</sequence>
</while>

<switch>
<case condition=” ”> switch(x, A1, ..., An) = [x = a1]A1.y〈ũ〉
< ...activity1... > | [x = a2]A2.y〈ũ〉
</case> | An.y〈ũ〉
<otherwise>
< ...activityn... >

</otherwise>
</switch>
<pick > pick((x1, i1, A), (x2, i2, A)) =
standard-elements x1(i1)A1.y〈ũ〉
<onMessage partnerLink=” ”>+ + x2(i2)A2.y〈ũ〉
operation=” ”>+
<correlations>?
<correlation set=” ”>+ xi : channel for a specific service
</correlations>
activity
</onMessage>
</pick>
<compensationHandler> compensate = z!o | y〈ũ〉
< ...activity1... >

</compensationHandler>

these information to its customer. This company must thus define and document the
trade process which it must implement.

We thus have 3 services that interact : Abuyerwho sends a purchase order number
and a credit card number to the company. He receives in response a delivery date at
his address. Aseller (the company) receives the purchase order and the credit card
number. He sends the parcel weight and the customer address to the supplier. Finally a
shipperreceives a parcel weight and a customer address. He returns adelivery date to
the received address.

The BPEL specification and the mapping toπ -calculus. In this example, we give the
BPEL specification of the Seller which plays the role of a coordinator between the three
processes. The corresponding translation toπ-calculus is also given. The verification of
the correcteness of the example was made using the HAL Tool. The syntax used in this
tool is different from the standard one. The tool usesx?(y) to denote an input,x!y to
denote an output,‖ for the composition operator and(x)P to denote restriction. The
syntax of the other operators is standard. The correspondigπ-calculus translation of
each BPEL component of our example is given by Table 5.

Finally the complete translation (simplified and optimizedfor verification reasons)
is as follows :

The seller receivespo, cc andMyChan on the channelc1, from the customer. He
sends the parcel weightw and a customer channel namez on the channelc2 to the
shipper, or a fault namesf to the fault handler.

Seller(c1, c2, f) = (w)(z)(sf)
(c1?(po, cc, z).(c2!(w, z).y!ũ + f !sf))

In order to verify the correctness of the whole system, we need to specify the other
processes involved in the intercation. We abstract from details of the translation from
BPEL toπ-calculus.

30

Table 5.Example of a mapping.

BPEL π-calculus
<faultHandlers>
<catch faultName="NoDelivery">
<invoke partner="customer" F H(f) = f?sr.y!u
portType="deliverPT"
operation="sendRefusal" fault handling
inputContainer="refusal"/>
</catch>
</faultHandlers>

The shipper receives a request from Buyer
<receive partner="customer", A1 = (y)o?(po, cc, mc).y!u
portType="OrderPT",
operation="Order", o : channel for reception
variable="PurchaseOrder" po : Purchase Order
variable="CreditCardNumber" cc Credit card number
variable="MyChannel" mc Channel for response
He refers to shipper to get a Delivery date :
<invoke partnerLink="Shipper" A2 = (to)(y)to!(w, rc) ‖ rc?dd.y!u
operation="TransfertOrder"
inputVariable="DeliveryDate" to: operation
outputVariable="requestDelivery" rc : response channel
portType="requestDeliveryPT" /> w, dd: weigth and delivery date
He then sends the response to the customer :
<reply partner="customer", A3 = (sd)(y)sd!dd ‖ y!u
portType="delivrerPT",
operation="sendDeliveryDate", sd:operation
variable="DeliveryDate"/> dd:delivery date
<process name="ProcessOrder" P rocessOrder =
<faultHandlers /> (y1)(y2)(y3)(A1.y1!u ‖ y1?u.A2.y2!u

‖y2?u.A3.y3!u.y!u
<sequence>
<flow></flow>
</sequence>

π-calculus specification of the entire system
The buyer sends a purchase order numberpo, a credit card numbercc and a chan-

nel nameMyChan to the company. He receives in response a delivery dated on the
channelMyChan. He can also send a fault name,bf , to the fault handler

Buyer(c1, MyChan, f) = (po)(cc)(MyChan)(bf)
(c1!(po, cc, MyChan).(MyChan!d.y!(ũ) + f !bf))

The shipper receives a parcel weight and channel name He returns a delivery date
on the received channel. In case of error he sends a message ’delivery fail’, df , to the
fault handler.

Shipper(c2, z, f) = (d)(df)(c2?(w, z).(z!d.y!ũ + f !df))

The fault Handler receives a fault name and processes it. It also need to cancel all
pending activities. To do this it sends a cancel message to the scope.

FaultHandler(n) = f?n.y!ũ

The whole system is represented as follows :

ProcessOrder() = (c1)(c2)(MyChan)
Buyer(c1, MyChan) ‖ Seller(c1, c2) ‖ Shipper(c2, z) ‖ FaultHandler(n)

This example is an illustration of mobility and of the need for managing it since the
shipper does not know in advance the delivery address for theparcel.

From the formal specification and by using an adequate model-checker, we can
check some properties of the system that prove its correctness.

31

5.4 Properties inπ-logic

Here are for example, some temporal properties that assert of correct behavior of the
system described previously :

Let P1 be the property : ”will the date of delivery be always sent to the customer
after he requests it?”.

We can express it as follows :

P1 = AG([MyChan?d] ∧ EF ([MyChan!d]true))

And using the In HAL syntax :

P1 = AG([mc?d]EF<mc!d>true)

In the second example, letP2 be the property : ”will the number of the credit card
never be revealed to other people but the salesman?”. We translate it in HAL syntax by :

P2 = AG([c1?cc]EF<c1!cc>true & <c2!cc>false)

6 A Framework for the Verification of Web Services Compositions

We are actually working on the specification and design of an environment for devel-
opping complex reliable composite Web services for which verification tools will be
integral part. This platform should also be able to propose tools for ’reverse engineer-
ing’ i.e. the possibility of creating specifications in BPELstarting from formal models
expressed inπ-calculus.

We briefly present, here, the architecture of the system being implemented and
which should enable us to check the relevance of the suggested concepts. An ambi-
tious objective is to design an integrated platform for composition of Web services.
This one will consist of:

– An editor for generic specifications (nonrelated to a particular language),
– A module for mapping of WSDL and BPEL (and other) specifications toπ-calculus,
– A verification tool : an interface with exisitng tools , MWB or HAL for instance,
– A tool for ’reverse engineering’ that allows designing realspecifications from for-

mal definitions,
– A runtime environment.

Figure 1 shows the basic architecture of the verification framework. Such an ap-
plication receives as input a specification expressed in oneof several BPM languages
(BPML, BPEL...) and rules (properties) that will be verified. The tool will make it pos-
sible to automatically translate these specifications intoπ-calculus processes. Properties
will be then checked, using an appropriate model-checker and in case of fault, a trace
of the faulty executions would be generated.

We are also interested in the study of equivalences between Web services. We are
developping and working on a complete theory of equivalence: definition, comparison
with bisimulation and algorithms. It is very important to check such equivalence that
decide of compatibilty between Web services, in order to substitute a service to another,
in case of fault or any other problem. Our environment aims toprovide such tools.

32

Fig. 1.A Platform for Formal Verification of Web Services Orchestrations.

7 Conclusion

Web services offer a remarkable potential of development. The problems are numerous,
in particular for the verification of composite services behavior or equivalence between
services. The existing techniques can be adapted and used here. Petri nets or ASM
were studied and used abundantly in this context. However, because it allows specifying
mobility in an easy manner (it is possible to transmit channel names that then can be
used by any process receiving them) , and because compositional properties of process
are fundamental, theπ-calculus is clearly shown to be a very suitable tool for Web
services formalization. We have shown with some examples that this aspect is essential
in formalization of orchestrations.

We have shown how a business process modelling language for Web services or-
chestrations can be modelled to a specification language. Weused BPEL as our BPM
language and theπ-calculus as our target specification language and therefore, we have
translated a program written in BPEL to a system model in theπ-calculus. Once the
system model is achieved, it is possible to apply model checking techniques within
existing tools, thus, allowing an automatic verification ofBPEL specifications. Tech-
niques we have applied here for translating a BPEL specification can be applied for any
BPM language for gaining a model in theπ-calculus. We have also shown that the use
of analysis methods and tools based on this formal model (π-calculus) in some real life
setting, is not an evident task.

The goal of this paper has been to provide theroritical and concrete basis for the ar-
chitecture of an environment for analyzing Web services composition.This framework
integrates a tool for model-checking of specifications expressed in various languages
and a tool for ’ reverse engineering’ making it possible to conceive formal orchestra-
tions starting from formal specification, expressed in theπ-calculus. For its durability,
a significant asset of such a tool is that it will have to be independant from any speci-
fication languages for orchestrations which are in perpetual evolution. For this purpose
we introduced a pi-based semantics for BPEL, inspired from [16] to express the main
construct of compositions languages. We have adapted the semantics to fit the HAL

33

tool. This semantics allows us to specify systems from the real world and thus to verify
them, using model-checking techniques.

We consider this paper as the first step towards the definitionof a formal framework
for reasoning on orchestrations and choreographies. Several research directions open in
front of us. We are continuing our work by working on algorithm for mapping business
process specifications ontoπ-calculus instructions. We are also exploring ways to de-
fine some behavioural equivalences on Web services that could be used to study their
compatibility. Finally and to complete this work, we have totake into consideration data
mapping.

References

1. Curbera, F., al.: Business process execution language for web services, version 1.0. Stan-
dards proposal, BEA Systems, International Business Machines Corporation, and Microsoft
Corporation, http://www-106.ibm.com/developerworks/library/ws-bpel/(2003)

2. Kavantzas., N.: Aggregating web services: Choreography and ws-cdl. Technical re-
port, http://lists.w3.org/Archives/Public/www-archive/2004Jun/att-0008/WSCDL- April200
4.pdf (2004)

3. Hamadi, R., Benattallah, B.: A petri net based model for ws composition. In: In Proc.
Fourteenth Australasian Database Conference (ADC2003), Adelaide,Australia (2003)

4. Fahland, D.: Translate the informal bpel-semantics to a mathematical model: Abstract state
machines. Technical report, www.informatik.hu-berlin.de (2004)

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web services. In: Proceedings of the
WWW2004, New-York, NY, USA (2004)

6. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service choreographies.
In Elsevier, ed.: Proceedings of First International Workshop on Web Services and Formal
Methods, Pisa, Italy (2004)

7. Van-Der-Aalst, W.: Pi calculus versus petri nets: Let us eat humble pie rather than further
inflate the pi hype. Technical report, Twente University, Nederland (2004)

8. Ferrara, A.: Web services: a process algebra approach,. In:Proceedings of the 2nd interna-
tional conference on Service oriented computing, New York, NY, USA (2004) 242–251

9. Milner, R.: Communication and Concurrency. Series in Computer Science. Prentice Hall
(1989)

10. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, Cambridge, UK (1999)

11. Milner, R., Parrow, J., D.Walker: Modal logics for mobile processes. Theoretical Computer
Science, (1993)

12. Dam, M.: Model checking mobile processes. In: In Proc. CONCUR’93, LNCS 715,
Springer-Verlag, Berlin (1993)

13. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of
ACM (1985)

14. Ferrari, G., Gnesi, S., Montanari, U., Pistore, M.: A model checking verification environ-
ment for mobile processes,. Technical report, Consiglio Nazionale delle Ricerche, Istituto di
Scienza e Tecnologie dell’Informazione ’A. Faedo’ (2003.)

15. Victor, B., Moller, F.: The mobility workbench - a tool for theπ-calculus. In Springer-Verlag,
ed.: Proceedings of CAV’94. (1994)

16. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. Journal of Logic and
Algebraic Programming, Elsevier press (2005)

34

