Efficient Interpretation of Large Quantifications in a
Process Algebra

Bendt Fraikin and Marc Frappier

GRIL, Département d’'informatique, Universitle Sherbrooke,
2500, Boulevard de I'univerdt Sherbrooke, Ggbec, Canada J1K 2R1

Abstract. The process algebra interprets®pal supports the&s® method,

which was developed for the purpose of automating the development of infor-
mation systems througtode generatiorand efficient interpretatiorof abstract
specifications. For general information system pattera$pal executes in linear

time with respect to the number of terms and operators in the process expression
and in logarithmic time with respect to the number of entities in the system. This
paper described three optimization techniquesssfPAl.

1 Introduction

The EB3PAI project is part of thexpis research project [1], whose objective is to de-
velop a case tool that generates executable information systems (IS) from formal spec-
ifications (abstract models). In traditional IS development, the bulk of the design, pro-
gramming and testing is done manually by humans. These three activities consume up
to 70% of the development effort. They are usually not hard to accomplish, but they are
time-consuming and error-prone. The key to reducing development costs and increas-
ing quality clearly resides in eliminating or mechanizing these three tasksedhe
method was developed for the purpose of automating the development of IS through
code generatiomndefficient specification interpretation. Designed by Frappier and St-
Denis [2], theEB? language includes a process algebra to support an event-oriented
specification style. Initial work led to a practical set of rules for an interpretesdf
process expressions [3], called®pal. This paper describes the last step in efficiently
implementing this interpreter.

2 TheEe? Specification Method

The EB® method [2] has been specifically created to specify information systems. It
relies on event-oriented specification notations like CSP, CCS ant& However,
special features have been added to take the specificities of information systems into
account. The input behavior of the system is defined by the process expression

Each execution of an action (an input) generates a response (an output). The denota-
tional semantics ofB? is given by a relation? between the traces acceptedrsi n

and the set of output events. A process expression is recursively defined over a set of

Fraikin B. and Frappier M. (2006).
Efficient Interpretation of Large Quantifications in a Process Algebra.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages

189-192

DOI: 10.5220/0002500101890192
Copyright © SciTePress

190

symbolsY, called theaction set A (an internal action that denotes non-observable ac-
tivity of the system) anda (which denotes a successful termination) in combination
with operators. Operators i8> draw their inspiration from regular expressions, the
sequential composition)(the choice |) and the Kleene closuré) with the addition

of some operators from CSP and LOTOS: synchronization,dyyaocess call, and
synchronization quantification (also callediexingin CSP). The symbd|| denotes the
interleave operator, i.e|[f)]| . EB?PAI also have a guard operator and process call. The
symbolPE& denotes the set of all process expressions.

It is important to note that quantification is a crucial operan IS specification.
This constitutes a major difference from other problem doswahere process algebras
are typically used (protocol specification for example)oftrer difference is thags?
is only concerned by trace equivalence. Since the main aiEBdfs to provide an ex-
ecutable specification, the specification style used tceaetthis goal is also different.
Frappier and St.-Denis in [2] have proposed a set of ruletsgilia EB? its operational
behavior.EB?PAI executes a specification by simply evaluating the inferenies. We
do not generate code per sB3PAI can be considered as a virtual machine and each
specification becomes a high-level program. The implentiemtés the combination of
EB?Pal and the specification.

3 Dynamic Optimization in the EB2PAI Interpretation Process

In [3] we provide some static optimizations. However, tlisnbt sufficient to yield
efficient interpretation. To provide a useful tool, we neeaptimize other aspects of
the interpretation algorithm, primarily to reduce the tiamel space complexity for large
quantifications.

3.1 Optimization of Process Expression Storage in Memory

During an execution, actions and process expressions azopibed several times. Some
execution sequences can require a large amount of memagytwichmain causes are
guantification and choice resulting in the execution of sorme-deterministic specifi-
cations. In order to minimize memory space, process expressan be represented by
a graph which allows them to be shared. For instancg, ifs a sub-expression of both
E5 andE3, thanE; can be instantiated once and referenced by latAnd Fs.

3.2 Optimizing Quantification Execution Time: Direct x-optimization

The EB? language allows the use of quantification operators. A bagjproach to ex-
ecuting quantification operators is too ineffective to beegtable. To optimize these
executions, we determine by static analysis of each queditifkpression which value
of the quantified set must be selected based on the paranoétirs action to exe-
cute. We call these valuasvalues the positions of the values in the action parameters
k-positions and this methodirect x-optimization.

This approach is sufficient to optimize a choice quantifaratsince the quantifica-
tion disappears after the transition. In the case of a giiedhinterleave, the quantifica-
tion remains in the result process expression, since it pawis one interleave process

191

for each value in the quantification set. The interleave efittstantiated process ex-
pressions is represented by a function K — P& such that KII(o)) is the only
process expression that can exectite

3.3 Extending Quantification Optimization: Indirect -optimization

We have found conditions under which a quantification can ftérized when the
algorithm used for the direct-optimization fails to find a single-position for each
action. We can summarize the general idea of indikegptimization, as follows:

During static analysis :

1. Find the quantified choice operators to deduce the peskibkttional depen-
dencies (below we refer to choice quantified variables aowyin the scope
of other quantifications (interleave or choice) as dependent variableand
the enclosing quantified variables as Keg3.

2. For all actions not optimized with the algorithm of th@ptimization: identify
the producer that binds the keyis/ { in the example) to the dependent vari-
able ¢nid in the example) under the condition that the choice andledee

guantifications to optimize are synchronized on these @gtio
At runtime :

1. When a producer is executed, store the value of the furaitidependency
between the set of keys and the dependent variable.

2. Store the value of the new process expression for the npefahe quantified
interleave in a mapping, as for direct:-optimization.

3. When a consumer is executed, delete the stored value ainlbddnal depen-
dency between the keys and the dependent variable.

Completex-optimization is not effective for all specifications thancbe written.
Actually, it is not effective for all IS specifications. Howear, our aim is to optimize
all specifications written with the patterns described ih Y2e have established that
the following patterns satisfy the conditions fooptimization: the producer-modifier-
consumer, the one-to-many association, the multiple (rt@mypany) association, the
n-ary association, the weak entity type, the recursive assog, and the inheritance
association.

4 Implementation and Performance

Complexity analysid_et n denote the sum of aJlX|, whereX is either an entity type
or an association of aps® specification. Let denote the number of nodes in the tree
representing a process expression, excluding the nodes<aipdimized quantifica-
tion (they will be computed with). Note that for most 1Sss is usually small (e.g.,

s < 10%), whereas: can be quite large (e.g, < 10'2). Figure 1 summarizes the al-
gorithmic and the space complexity of the K-optimizatior @mpares them with no
optimization inEB3PAI and with manual implementation (i.e.. outsige’PAl). Thus,
for k-optimizable specificationg3PAI has an overhead 6#(s) compared with man-
ual implementation of an IS. With ne-optimization, the difference is substantial and
EB®PAI becomes impractical as a tool, but it can still be useful facification anima-
tion for validation purposes.

192

Alg. complexity Space complexity

no optimization O(s.n) O(n+s)
directx-optimization O(log(n) + s) O(n+s)
indirect x-optimization O(log(n) + s) O(n+s)
manual implementation O(log(n)) O(n)

Fig. 1: Algorithmic and space complexity &B>PAl.

Performance for direck-optimization Completex-optimization is not implemented,
but directx-optimization is. The performance for indiregtoptimization should be
very close to that of direck-optimization, because it uses the same data structures
plus an additional hash table to store the functional depecids. Performance tests
were conduct with a specification of a library managementesyson a Pentium Il
800MHz with 384Mo of SDRAM, running GNU/Linux. Indireet-optimization has not
been implemented yet; only diregtoptimization. The transaction mean time of valid
actions is 97ms. Invalid actions (for which the executioitet are less expensive in
time (approx. 40 ms per action) than valid actions. The sgraeification implemented
in Java using an Oracle database provides an average ttiansamcessing time of
10 ms, which is 10 times faster thas3PAl. Nevertheless, 100 ms is still acceptable for
many IS systems where the transaction rate is low (e.g.rajilmanagement system).

5 Conclusion

In this paper, we have presented two optimization techrsigoeefficiently execute
quantified process expressions in #& process algebra. Their space and algorithmic
complexities are comparable to those of a manual implertientéor a large number
of IS specifications which are determined by a set of spetificgatterns. Direct k-
optimization was implemented in ttEs3pPAI interpreter. It performs 10 times slower
than a manual implementation of the specification for thealip system, but its aver-
age response time is acceptable for a large class of IS wittrémsaction rates, which
demonstrates that abstract interpretation is a viable Wwaymgementing IS.

References

1. Frappier, M., Fraikin, B., Laleau, R., Richard, M.: Automatic proiibn of information sys-
tems. In: AAAI Symposium on Logic-Based Program Synthesis, Stdrifimiversity, Stan-
ford, CA (2002)

2. Frappier, M., St-Denis, R.: EBan entity-based black-box specification method for informa-
tion systems. Software and System Modelh@003) 134-149

3. Fraikin, B., Frappier, M.: Efficient execution of process exgi@ss using symbolic interpre-
tation. Technical report 8, Univeréitde Sherbrooke, &artement d’Informatique, @bec,
Canada (2005)

