
FORMALISATION OF A FUNCTIONAL RISK MANAGEMENT
SYSTEM

Vı́ctor M. Gulı́as, Carlos Abalde, Laura M. Castro and Carlos Varela
MADS Group. Computer Science Department

University of A Coruña (Spain)

Keywords: Risk management, functional programming, business process modelling.

Abstract: This article shows a first approximation to the formalisation of a risk management information system. It is
based on our experience in the development of a large, scalable and reliable client/server risk management
information system.

1 INTRODUCTION

In this paper, we present our first attempt to formalise
the model of a large, scalable and reliable client/ser-
ver risk management application called ARMISTICE
(Advanced Risk Management Information System:
Tracking Insurances, Claims and Exposures (Gulı́as
et al., 2005) http://mads.lfcia.org/armistice).

The main novelty of this system, in the field of
risk management information systems (RMISs), is the
new approach used to manage the different kind of
heterogeneous business objects. ARMISTICE pro-
vides an abstract framework that can be easily adapted
to any organisation. It represents a step forward
compared with other popular RMIS products like
(STARS, 2005) or (AON, 2005).

The paper is structured as follows. First, a few ba-
sic knowledge about the whole system architecture is
presented. Then, section 3 provides the non-technical
formalisation of the system internals. Finally, section
4 shows some conclusions.

2 SYSTEM ARCHITECTURE

ARMISTICE has a client/server architecture, struc-
tured in layers using two well-known architectural
patterns: Layers and Model-View-Controller (Mari-
nescu, 2002). Figure 1 provides an overview. The
user side is a lightweight Swing/Java client which
performs remote procedure calls to the server (XML-
RPC) and has no associated logic. The server side,

completely developed in the distributed functional
declarative language Erlang (Wadler, 1998; Arm-
strong et al., 1996), supports the model and all the
business logic. In (Cabrero et al., 2003), some addi-
tional technical information can be found.

Figure 1: ARMISTICE three tier architecture.

3 INSURANCE POLICY MODEL

Our system is split into three large subsystems: risks,
policies and claims.

3.1 Risks Subsystem

3.1.1 Risks Situations and Their Attributes

The key concept in this subsystem is the risk situation
(RS). A RS models the state of any element that can
be included on the coverage of a policy (e.g. a shop
or a vehicle). Every RS is an instance of a risks group

516
M. Gulías V., Abalde C., M. Castro L. and Varela C. (2006).
FORMALISATION OF A FUNCTIONAL RISK MANAGEMENT SYSTEM.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 516-519
DOI: 10.5220/0002496205160519
Copyright c© SciTePress

(RG). A RG is a template, that is, a meta-description
of all the important attributes (e.g. address, vehicle
registration number, warehouse area or cubic capac-
ity) which describe the state of any element that can
be insured (e.g. commercial locals or vehicles).

We denote the set of attributes as A, each of them
defined as Attribute = (name, type) where

name ∈ String

type ∈ Types = {String, Boolean, . . .}

Over these elements, the set of RGs RG is de-
fined. Each member RG i ∈ RG is a set like RGi =
{a0, a1, . . . an−1} ∀x ∈ [0, n − 1] ax ∈ A.

Therefore a RG is a set of attributes which provides
a meta-description of any property that can be impor-
tant from the insurance’s point of view.

Finally, using the RG set, the set of RSs (that is,
insurable elements) RS is defined. A RS RS j is an
instance of a RG RG i (RSj : RGi −→ ∪ Types).
Every attribute in the RG has a concrete value
assigned in the RS.

RSj = {p0, p1, . . . pn−1} ∀x ∈ [0, n − 1] px ≡ (a, v)
∧ a ∈ RGi ∧ v ∈ Type(a)

Then, a RS represents the state of any element that
can be insured. For short, we will use RS j .a to de-
note the value of attribute a of the RS RS j .

3.1.2 Versions and Revisions of RSs

Using the previous abstraction, it is possible to
model the state of every insurable element (i.e. RSs).
However, business requirements demand a temporal
representation of the RSs. Based on Fowler’s pat-
terns (Fowler, 2005), a temporal tracking of the RS
set is performed. The evolution of a RS is modelled
since its creation as a set of versions and revisions
(two-dimensional temporal modelling). A version
represents a new state of a RS as a result of a business
event. However, a revision represents a new state of
a RS as a result of a mistake or any other business
external event. This behaviour is provided modifying
the original definition of a RS as follows:
RSj = {RSv0

j , . . .RSvα−1
j }

∀x ∈ [0, α − 1] vx ∈ T imestamp∧
vx < vx+1∧

RSvx

j = {RSvx,r0
j , . . .RSvx,rβ−1

j }∧
∀y ∈ [0, β − 1] ry ∈ T imestamp∧

r0 = vx ≤ ry < ry+1∧
RSvx,ry

j = {p0, p1, . . . pn−1}∧
∀z ∈ [0, n − 1] pz ≡ (a, v)∧

a ∈ RGi∧
v ∈ Type(a)

Figure 2: Versions and revisions of a RS.

So the elements belonging to the RS set can be
defined as a collection of items representing different
states from different RSs:

RS ≡ {RSv0,r0
0 , . . . ,RSvx,ry

j , . . . }
∀j ∈ [0, |RS| − 1]∧

x ∈ [0, αj − 1]∧
y ∈ [0, βj,x − 1]

where |RS| are the actual different modelled RSs.
Therefore, the expression RS j .a must be changed

by RSj .a[vDate][rDate]. With this new model
questions like “At the moment in time rDate ∈
T imestamp, what was the value we thought attribute
a (of RS RSj) had at date vDate ∈ T imestamp,
and which one we do know it is now?” can be an-
swered. Figure 2 shows a schematic view of the
evolution of the versions and revisions of a RS RS j

through time.

3.1.3 Hazards that Affect RSs

The risks subsystem is not only a tool for modelling
the state on any insurable element. There is an ad-
ditional and very important concept: the hazards. A
hazard can act over a RS causing a damage or ac-
cident. The system has to manage a set of hazards
H (e.g. fire, explosion or terrorism). Each business
model must state a standard list of hazards adapting it
to its domain, to ease policy modelling.

Thus, ARMISTICE allows the user to handle the
sets A, GR, RS and H. By doing so, our application
can be adapted to a broad variety of business models:
the first step would be the definition of attributes and
RGs. Then, not only the RSs would be created over
these abstractions, but any relevant change in their
states, too. These modelling and tracking activities
are the fundamental working basis for the rest of the
system.

FORMALISATION OF A FUNCTIONAL RISK MANAGEMENT SYSTEM

517

3.2 Policies Subsystem

Policies are the most complex element in the sys-
tem. They group and link every business object.
ARMISTICE works over a set of policies P , where
each policy Pi is modelled as a set of renewals P rj

i .
A renewal represents a new policy created to provide
coverage to a new set of RSs in a new temporal
interval. At the same time, a renewal is composed by
a set of supplements P rj ,sk

i . A supplement represents
a revision of the policy to change its coverage, to
change its contractual clauses, to change its relevant
dates, etc. A supplement represents the minimal
element that can be used to give coverage to a claim.
Here, a temporal modelling is applied, like in section
3.1.2, but with three dimensions or temporal axis:
each supplement P rj,sk

i is parametrised by starting
and ending validity dates, an activation date and a
timestamp.

Pi ≡ (Number, {Pr0
i , . . .Prα−1

i })
Prj

i ≡ (Receipts, {Prj,s0
i , . . .Prj,sβ−1

i })
Prj ,sk

i ≡ (Start, End, Activation, T imestamp,

Coverage, Conditional) ∧ Coverage ⊆ RS
where Start, End, Activation, T imestamp ∈

T imestamp are the dates used to determine the lo-
cation of the validity period of the policy in the axis
of the three dimensions temporal modelling. As far
as the Coverage is concerned, it represents the col-
lection of RSs states building the insurance of the
policy. Of course, this means that every RS rx,sy

j
inside the Coverage set is different, Coverage ⊆
RS ∀RSvx1 ,ry1

j1
,RSvx2 ,ry2

j2
/j1
= j2.

Each policy renewal P rj

i is related to an element
we have called Receipts. This component is in fact
a receipt model (ReceiptModel), and a set of re-
ceipts that appear as a result of some hazard affecting
one or more of our RSs ({R1, . . . Rn}), Receipts ≡
(ReceiptModel, {R1, . . . Rn}).

When an accident happens to a RS (e.g. a shop),
and we have a particular policy P

rj,sk

i to cover all the
arrangements and repairs to be done, all those pay-
ments can be broken down into several items. That
is what the ReceiptModel is intended for: using
formulas-based models (see 3.2.2), it is possible to
express the calculation for each item, and so it is pos-
sible to foresee the amount of all the receipts, even
before they arrive (R1 . . . Rn).

3.2.1 Conditional Clauses

A conditional is the key object to implement the
ARMISTICE help decision support system. It is
used when a user is looking for coverage to any
claim. The supplement conditional is a model of
the contractual clauses of a specific policy. Thus,

it is linked to a supplement P rj,sk

i . In particular,
the system is only interested in the model of the
policy coverage, that is to say, in the model of the
policy warranties (e.g. the warranty against natu-
ral risks, its application preconditions, its franchise
and its limits). Then, a conditional Ci can be repre-
sented as, Ci = {g0, . . . gn}, ∀x ∈ [0, n − 1], each
gx ≡ (Res, Fra, GrlL, PSinL, PSitL, AgrL)
containing an applicability precondition Res ∈ Res
(see section 3.2.3), and several formulas Fra, GrlL,
PSinL, PSitL, AgrL ∈ For (see section 3.2.2),
used to calculate the franchise and limits (general, per
sinister, per RS and aggregated). These expressions
can access to the context where they are evaluated and
they can use temporal information about RSs, policies
and other claims.

3.2.2 Formulas

The set of formulas, together with the RSs meta-
description (i.e. RGs) and the set of hazards H, are
key elements to build a flexible and adaptable RMIS
framework.

Each element Fori ∈ For is a formula which has
been built using an ad-hoc language (which is not
within the scope of this paper) and models a receipt,
franchise or limits calculation.
Fori : {RSvx,ry

j /RSvx,ry

j ∈ RS} ×
Puser × Psys −→ ∪ Types

wherePuser and Psys are sets of pairs label/value
which can be accessed using specific constructors of
the modelling language. The Puser set, also known
as user parameters set, are input values provided by
the user in the process of evaluation of a formula. The
Psys set, also known as system parameters, are val-
ues calculated by the system, whether it be calculated
when the formula is evaluated or through time as in-
ternal counters.

3.2.3 Restrictions

Restrictions are the conditions to be hold by a war-
ranty in order to be activated. Every warranty (i.e.
contractual clause) inside a conditional of a policy
has an applicability restriction which models its be-
haviour.

Each element Resi ∈ Res is a restriction
which has been build using a language that is a
super-set of the formulas language, where logical
operators and the concept of nuance have been added.

Resi : {RSvx,ry

j /RSvx,ry

j ∈ RS} ×
Puser × Psys× {Hj/Hj ∈ H} −→

(Integer, Boolean ∪ String)
Once a restriction is evaluated, it can be true or

false (i.e. the associated warranty can be applied
or not). However, sometimes it is not possible to

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

518

Figure 3: Restriction tree.

state directly whether the restriction is true or not.
In this case, the truthfulness of a restriction may de-
pend on the answer of the user to a question expressed
in natural language (i.e. a combination of nuances,
String ∈ Types). Therefore, it could only be eval-
uated to a boolean value by means of human user in-
tervention.

The evaluation process of a restriction can be seen,
then, as a simplification of the tree which represents
the contractual clause: the system, using the context
information, removes as many nuances as possible.
The result is a tree with a logical combination of nu-
ances that must be evaluated by a human user.

Figure 3 illustrates the appearance of the internal
structure of a restriction Resi. This could be the ap-
plicability precondition of a contractual clause.

3.3 Claims Subsystem

The risks and policies subsystems provide us with a
full set of tools to model the business framework. The
claims subsystem takes that modelling as a basis to
carry on its own task: performing registrations of each
day’s incidents, checking their coverage and tracking
their whole life cycle, from opening to closing, man-
aging related tasks depending on the kind of claiming,
receipts and relevant documentation, and, of course,
remarkable calculations to be done.

Thus, in a formal way, we can describe the set of
claims in the system, CM, as a set of elements,

CMi ≡ (HDate, {H1, . . . Hh},
AffectedRSs, P

rj,sk

i , gn)
HDate ∈ T imestamp ∧

AffectedRSs ⊆ RS
∀RS

vx1 ,ry1
j1

, RS
vx2 ,ry2
j2

/j1
= j2 ∧
gn ∈ (Conditional ∈ P

rj ,sk

i)

that represent the relationship between the RSs
affected by one or more hazards on date HDate.
HDate is also the one used to find the most suit-
able warranty to cover a claim, that is to say, the one
that will be used to locate a supplement with a ear-
lier effective date and a later expiration date. Once

the appropriate-by-date P
rj ,sk

i supplements are iden-
tified, their warranties must be examined, and the
most accurate one (gn) is chosen by the user to be
charged with all the expenses.

As can be seen in this definition, the same com-
ment we made when talking about the policies cov-
erage is applicable here: each RS rx,sy

j inside the
AffectedRSs set must be different. As both sets
will be checked for total/partial matches, this makes
all sense.

4 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented a formalisation of
the ARMISTICE kernel, pointing out the extensibil-
ity and adaptability properties that the model has. We
have left out both technical information and low-level
details.

Nowadays, ARMISTICE is being successfully de-
ployed in the risk management department of a large
holding enterprise for about a year. Its adaptability
has been proved as it has been possible to model eas-
ily all the insurable elements, policies and hazards.
Moreover, the formalism introduced by the need of
that modelling has made possible to detect small mis-
takes in the original composition of the policy clauses.
To sum up, the ARMISTICE adaptability and mod-
elling tasks are a differential factor regarding other
RMIS systems.

REFERENCES

AON (2005). Aon. http://www.aon.com.

Armstrong, J., Virding, R., Wikström, C., and Williams, M.
(1996). Concurrent Programming in Erlang, Second
Edition. Prentice-Hall.

Cabrero, D., Abalde, C., Varela, C., and Castro, L. (2003).
Armistice: An experience developing management
software with erlang. PLI’03. 2nd ACM SIGPLAN Er-
lang Workshop, pages 23–28.

Fowler, M. (2005). Design patterns.
http://www.martinfowler.com.

Gulı́as, V. M., Abalde, C., Castro, L., and Varela, C.
(2005). A new risk management approach deployed
over a client/server distributed functional architecture.
18th International Conference on Systems Engineer-
ing (ICSEng’05).

Marinescu, F. (2002). EJB Design Patterns. Advanced Pat-
terns, Processes, and Idioms. John Wiley & Sons, Inc.

STARS (2005). Stars. http://www.starsinfo.com.

Wadler, P. (1998). Functional programming: An angry half
dozen. SIGPLAN Notices, 33(2):25–30.

FORMALISATION OF A FUNCTIONAL RISK MANAGEMENT SYSTEM

519

