
A DISCRETE PARTICLE SWARM ALGORITHM
FOR OLAP DATA CUBE SELECTION

Jorge Loureiro
Departamento de Informática, Instituto Superior Politécnico de Viseu,

Escola Superior de Tecnologia de Viseu, Campus Politécnico de Repeses, 3505-510 Viseu, PORTUGAL

Orlando Belo
Departamento de Informática, Escola de Engenharia,

Universidade do Minho, Campus de Gualtar, 4710-057 Braga, PORTUGAL

Keywords: Data Cube Selection, Data Warehousing, Discrete Particle Swarm Algorithm, OLAP, Multidimensional
databases.

Abstract: Multidimensional analysis supported by Online Analytical Processing (OLAP) systems demands for many
aggregation functions over enormous data volumes. In order to achieve query answering times compatible
with the OLAP systems’ users, and allowing all the business analytical views required, OLAP data is
organized as a multidimensional model, known as data cube. The materialization of all the data cubes
required for decision makers would allow fast and consistent answering times to OLAP queries. However,
this also imply intolerable costs, concerning to storage space and time, even when a data warehouse had a
medium size and dimensionality - this will be critical on refreshing operations. On the other hand, given a
query profile, only a part of all subcubes are really interesting. Thus, cube selection must be made aiming to
minimize query (and maintenance) costs, keeping as a constraint the materializing space. That is a complex
problem: its solution is NP-hard. Many algorithms and several heuristics, especially of greedy nature and
evolutionary approaches, have been used to provide an approximate solution. To this problem, a new
algorithm is proposed in this paper: particle swarm optimization (PSO). According to our experimental
results, the solution achieved by the PSO algorithm showed a speed of execution, convergence capacity and
consistence that allow electing it to use in data warehouse systems of medium dimensionalities.

1 INTRODUCTION

Today’s business environments are very dynamic,
changing so fast that brings new opportunities for
everybody at all times. However, as we know, they
also bring new threats. It is crucial for the
enterprises to be able to answer to ones and others,
making timely, interrelated and adjusted decisions in
useful time. Moving in an uncertain environment,
decision makers expect for something that guide and
help them in their daily activities. This reality turned
information into the new Grail, in which search all
organizations are involved, leading them to the
building of data warehouses (DW). The availability
of reliable data for analysis made it possible for the
decision makers to acknowledge what the data really
says about their businesses. This imposed the

emergence of new systems, with new abilities,
capable of allowing decision makers to investigate
their data resources according to different business
perspectives, and surf through them according to the
result of previous observations. The systems that
enable this kind of analysis were coined in (Codd et
al., 1993) as OLAP systems. These systems, in
which data is organized in a multidimensional and
hierarchical way, known as data cube or multicube
(Chaudhuri & Dayal, 1997), allow sophisticated
OLAP operations such as drill-down, roll-up,
pivoting or slicing and dicing, all of them a
consequence of a typical profile of a session of
OLAP queries (mainly of aggregated nature). All
these interesting OLAP characteristics provide
access to data and querying satisfaction with
excellent processing time. If the aggregated data was

46
Loureiro J. and Belo O. (2006).
A DISCRETE PARTICLE SWARM ALGORITHM FOR OLAP DATA CUBE SELECTION.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 46-53
DOI: 10.5220/0002496000460053
Copyright c© SciTePress

pre-computed and stored, the answer would be
almost immediate. Although, usually, that would
also imply a huge storing space and, specially, lots
of time to update the already aggregated data, once

its number is of ∏
=

d

i
ih

1

 , where hi is the number of

hierarchies of i dimension and d the number of
dimensions.

The aggregated data stored in a cube may be
conceptually represented as a Lattice (Harinarayan
et al., 1996), a direct acyclic graph where each
vertex has a subcube or cuboid (result of a Group-
By), and each edge represents a dependency relation,
that shows whose subcubes may be used to compute
others. Only a part of the possible subcubes can be
stored in the repository, being then mandatory to
select the most beneficial ones – concerning to
minimizing query and possibly maintenance costs –,
a problem that is characteristically NP-hard
(Harinarayan et al., 1996), known as data cube
selection problem. Some constraints may be applied
to the problems’ solution as materializing space or
maintenance time.

The rest of the paper is organized as follows. In
section 2, we reference and describe briefly some
works related with the problem that we address in
this paper. Section 3 introduces evolutionary
algorithms, detailing to discrete particle swarm
algorithm. Next, in section 4 we formalize the cube
selection problem, where a cost model is discussed
and where we show how to apply the proposed
algorithm to the problem. Section 5 describes the
experimental evaluation of the algorithm and the
obtained results. At last, section 6 concludes the
paper and presents some future work proposals.

2 RELATED WORK

We have already seen that data cubes and view
materialization are two possible conditions to
improve performance. Its materialization and
especially its maintenance imply special storage
space and execution time. As users change their
needs, the “optimal” materialized cube becomes far
from optimal, which makes mandatory its
recalibration – its extension and frequency are
directly related. Big restructurings may occur at
large intervals and some refining may take place in
short intervals or in almost real time. So, in terms of
characterization, we will have the so called static
and dynamic aggregation selections, or even its pro-
active selection or restructuring. In this paper we

restrict the discussion to the static approach, once it
is directly related with the scope of the present work.
Most of the proposals appear in the static selection
domain. In (Harinarayan et al. 1996) it was
approached for the first time the materializing views
selection problem to support OLAP multi-
dimensional analysis. It was proposed then a greedy
algorithm to solve the problem. Latter, an extension
to this proposal, was made in (Gupta et al., 1997),
which also included indexes selection.

Despite the greedy characteristics of the proposed
algorithms, its scalability is not easy. In (Baralis et
al., 1997) the query load profile is taken into account
for the views selection, while in (Shukla et al. 1998)
was proposed another change to the greedy
algorithm, also to improve the application scalability
of the algorithms: it selects the views accordingly to
its size. This proposal is much more efficient,
keeping the same quality of the others. (Shukla et
al., 2000) proposed a multicube algorithm where the
problem was focused from a different view: it is
supposed that all aggregations are computed not
from a single cube, but for multicube data models. A
systematic methodology for the materializing views
selection appeared in 1997 in (Gupta, 1997),
spreading the aggregated queries to a more general
form, those that can be represented by a AND-OR
graph. In (Gupta & Mumick, 1999), besides the
space for the materialized views, its maintenance
cost is also considered. This same problem is also
discussed in (Liang et al., 2001).

Other approaches, in a different domain, were
also attempted and proposed: the research for
solutions using evolutionary or random techniques.
Thus, there is some work devoted to the application
of genetic algorithms (Horng et al., 1999; Zhang et
al. 2001; Lin & Kuo, 2004) or random search in
(Kalnis et al., 2002).

3 EVOLUTIONARY AND
PARTICLE SWARM
ALGORITHMS

3.1 Biological Mimic Algorithms

Several search algorithms have a biological
motivation, trying to mimic a characteristic aspect of
what can be called “life”. There is a simple reason:
life (as its biological basic aspect or, at a higher
level, as the social and cognitive behaviour), is a
perpetual process of adaptation to environmental
conditions, requiring a continuous demand of

A DISCRETE PARTICLE SWARM ALGORITHM FOR OLAP DATA CUBE SELECTION

47

solutions in face of succeeding new problems. The
best known algorithms in this huge domain are: 1)
evolutionary algorithms, where the most
representatives and most used are probably genetic
algorithms; 2) swarm algorithms, that may take the
form of particle swarm algorithms and ant colony
optimization; and, finally, 3) artificial immune
systems. As we said previously, in section 2, only
the first ones have already been applied to cube
selection in a centralized DW. Swarm algorithms
have an application domain which may intercept the
former ones, and, then, it is natural to intend to apply
them to the same problem.

3.2 Discrete Particle Swarm
Algorithm

The authors of the PSO were trying to simulate a
bird flock (a simplified social system), modelling a
social and cognitive behaviour. After many
modifications, the authors realized that the
conceptual model was, in fact, an optimizer, that was
proposed in (Kennedy & Eberhart, 1995; Eberhart &
Kennedy, 1995). This approach assumes a
population of individuals, represented as binary
strings or real-valued vectors (particles), whose
position in an n-dimensional space will bring its
instant fitness. This position may be altered by the
application of an interactive procedure that uses a
velocity vector, allowing a progressively best
adaptation. It also assumes that individuals are social
by nature, and thus capable of interacting with
others, within a given neighbourhood. For each
individual, there are two main types of information
available: the first one is his own past experiences
(known as individual knowledge), the pbest (particle
best) position, and the other one is related to the
knowledge about its neighbour’s performance
(referred as cultural transmission), gbest (global
best) position.

There are two main versions of the PSO
algorithm: 1) the initial version, a continuous one,
where the particles move in a continuous space; and
2) the discrete or binary version, proposed in
(Kennedy & Eberhart, 1997), where the space is
discretized. Although similar, the spatial evolution
of particles in the former is addictive and
continuous, meaning that its next location is
computed adding the velocity to the position where
the particle is at the moment. The discrete space
does not allow the addictive continuous relation
space-velocity. It is substituted by the introduction
of the probabilistic space: the particle’s position will

be given by a probability dependent of its velocity,
using the rule

0;1)(() 111 ==< +++ ssv k

i

k

i

k

i
elsethensigrndif (1),

where
)exp(1

1)(
vv k

i

k

isig
−+

=
, being k

iv the velocity

of the particle i at the kth iteration. The location of
the particle is now a state. The direct and
deterministic relation between space and velocity is
discarded. A casualistic vector is introduced – even
if the particle maintains the same velocity, its state
may change. The formula that rules the particle’s
dynamic concerning to velocity is:

1 ().() ().().k k k k

i i i i
w rnd pbest rnd gbestv v s s+ = + − + −

(2),
meaning that changes in the particle’s velocity are
affected by its past velocity and by a vector that
tends to push it to its best past location, related to its
own past success knowledge – pbest, and another
vector, that pushes it to the best position already
reached by any particle, corresponding to the global
knowledge - gbest. To prevent the system from
running away, when particle oscillation becomes too
high, the velocity of the particle is limited by a Vmax
parameter and the following rule:

max max max max
, ; ,

i i i i
if then if thenv v v v v v v v> = < =−− (3).

This rule conceptually means that a limit is
imposed to the maximal probability of a bit to
achieve the 0 or the 1 value. Since the sigmoid
function is used, the exploration of new solutions is
encouraged if Vmax is short, in opposition to the
expected behaviour in continuous PSO.

4 THE COST MODEL AND THE
ALGORITHM

4.1 The Cost Model

The aim of an OLAP system is to minimize query
costs, maintaining maintenance costs at a minimal
level, satisfying a constraint, in this case,
materializing space. To do this, we use the linear
cost model proposed in (Harinarayan et al., 1996),
where the cost of a query answer is proportional to
the number of non-null cells of the used subcube. As
an OLAP query may be represented by the
corresponding subcube, the total query costs are:

.
1

(,)
n

i i
i

fq C q M
=
∑ , where ifq is the query frequency

of query qi and (,)iC q M is the cost of query

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

48

answering of query qi, supposing a materialized cube
M. Using the least ancestor notion, and linear cost

model, (,) min(| |, | (,) |)i i iC q M S Lanc q M= .
As for the maintenance costs, we shall consider,

to simplify the discussion, a DW environment that
has only new tuples in the fact tables. We shall also
suppose that the materialized cubes will always be
recomputed, but a deferred maintenance technique
can also be used (Mumick et al., 1997). Thus,
maintenance costs (update) of a materialized cube ci
in M are equal to the size of the least ancestor of ci,
or, (,) | (,) |i iU c M Lanc c M= . If uf represents
the frequency of insertions in the base relation, the
total maintenance cost will be (,)u

c M
f U c M

∈
∑ .

Joining the two former expressions, the total costs
function becomes

.
1

(,) (,)
n

i i u
i c M

fq C M f U c M
= ∈

+∑ ∑ (4).

This is the cost function that has to be optimized,
being the target of the particle swarm optimization
algorithm that we will describe in the next section. It
is important to notice that update costs may be
computed initially from the base relation and after
from the subcubes that are already materialized.
Then, M in (,) | (,) |i iU c M Lanc c M= is initially
empty, being then successively added of the
meanwhile updated subcubes. The same arguments
may be applied if incremental maintenance (Gupta et
al., 1993) is in concern: a generated delta may be
used to compute descendent deltas.

4.2 Problem Coding

In order to apply the particle swarm optimization to
any problem, we must find: 1) a problem coding
plan/scheme in the solutions space; and 2) a fitness
function that may evaluate, in terms of the
objectives, each space position. Once we are
evaluating solutions in a multidimensional space of
multidimensional objects, it seems that the coding is
a direct transpose. Each subcube may or may not be
materialized, showing that a binary coding is the
elected one, what implies, at least a priori, the use of
the discrete PSO (DPSO), where the space is [0,1]
for each dimension. Moreover, the use of the
continuous-discretized version of PSO was also
attempted, but it came across a serious problem,
very hard to solve, since the particles left the
possible/authorized solution space, and some
solutions attempted were not effective. We will have

as many dimensions as possible subcubes in the
OLAP cube, which is to say, as many dimensions as
the bits that represent each solution.

Figure 1: Data cube Lattice.

Based on the example of the data cube presented
in Figure 1, with dimensions customer, product and
supplier, we will have 8 possible subcubes, and
consequently 8 dimensions. The distribution scenery
1 (Figure 2) will be (00111101) in the binary form,
which corresponds to the location of the particle in
point (0,0,1,1,1,1,0,1). In figure 2 a view of this
mapping is shown, restricted to 3 subcubes, and
concerning to two different OLAP subcube
distribution sceneries.

Figure 2: Cube materializing mapping in DPSO
multidimensional.

The fitness function estimates the “fitness”
degree of the solution, in terms of objective
satisfaction. Each particle in the swarm is evaluated,
being its fitness determined by its respective position
in the DPSO space. Each location matches a certain
solution whose value is evaluated by the fitness
function. If the location is good enough, it will
become another pbest or gbest position, what pushes
the other particles towards it. In our case, the cost

A DISCRETE PARTICLE SWARM ALGORITHM FOR OLAP DATA CUBE SELECTION

49

function of equation 4, will be used as adaptation
function, since it determines the fitness of the
solution during the pursuing of the different goals.
As equation 4 is a cost, we aim at its minimization,
which means that the particle with the lower cost is
the one with a bigger fitness.

4.3 The ODCS-DPSO Algorithm

Algorithm 1 shows the basic form of the proposed
OLAP Data Cube Selection DPSO algorithm that is
based on the standard discrete particle swarm
algorithm. The fitness function is the cost computed
using equation 4, and M is the solution proposed by
the position of each of the swarm’s particles,
according to the mapping described previously in
section 4.2.

Algorithm 1: OLAP data cube selection discrete particle
swarm (ODCS-DPSO) algorithm.

4.4 Dealing with Impossible
Solutions

The wandering of the particles through the PSO
space leads, inevitably, to impossible solutions. The

question resides in the fact that the PSO search
algorithm does not include a space constraint in its
coding scheme. To avoid this situation, we can
correct the wrong particle, choosing between
different solutions. Some of them are proposed in
the genetic algorithms domain: 1) randomly, to
eliminate subcubes until the constraint is met; 2)
using a scheme of successive elimination of
subcubes (similar to the former), but not in a random
way: the subcubes are eliminated in a way that the
solution is the less damaging for the cube’s
adaptation (a little like a repair); 3) applying a
constant or adaptive penalty, proportional to the
seriousness of the violation (in this case, the excess
relatively to the imposed space constraint); 4)
leading the “fault” particle to the location of a more
adapted one (e.g. gbest), keeping, nevertheless, the
particle’s pbest, what settles an only partial
substitution (this solution may be considered as an
hybridization with the genetic algorithm), where the
wrong particle is simply substituted; or 5) leading
the research in a way to avoid impossible solutions.
Among these, in this study, we used solution 1. The
others deserve further investigation and are reserved
to future work.

5 EXPERIMENTAL
EVALUATION

Using the cost model, we designed and developed a
query and maintenance costs computing algorithm,
used to implement the fitness function of ODCD-
DPSO. Its formal description is not shown here,
simply due to space constraints. In its design we
included dynamic programming concepts, as the
performance of the algorithms is at premium, given
its intensive use to evaluate the fitness of the
swarm’s particles. Then, we developed an algorithm
that, using, as input, matrixes with the dimensional
hierarchies, parallel hierarchies and composition of
each subcube, generates and makes available the
lattice’s dependencies. This information allows the
easy and fast computing of the least ancestor of any
subcube. All algorithms were implemented in Java.
To the experimental evaluation of the ODCD-DPSO
algorithm we accomplished a set of tests, namely, to
estimate the fitness of the solutions, the quickness in
achieving good ones and its scalarity. For test data,
we have used the test set of Benchmark’s (TPC-R),
selecting the smallest database (1 GB), from which
we selected 3 dimensions (customer, product and
supplier). To broaden the variety of subcubes, we

1. Initialization: randomly initialize a population of particles
(position and velocity) in the n-dimensional space.

{ } Miyx ii ,...,1,, = , []
n

ix 1,0∈ and []ni vvv maxmax,−∈ ;
 Deal with invalid particles as 2.4.
 All positions iipbest xx ←, ;
 iter←0;
2. Population loop:
 For each particle, Do:
 2.1. Own goodness evaluation and pbest update:
 // evaluate the ‘goodness’ of the particle
 If)()(, ipbestadaptiadapt xfxf > then
 iipbest xx ←, ; // update pbest, if the goodness of

 // the particle > its best goodness so far
 2.2. Global goodness evaluation and gbest update:
 If)()(, gbestadaptipbestadapt xfxf > then

 ipbestgbest xx ,← ; // update gbest if the goodness
 // of this particle > the goodness that any particle

 // has ever achieved
 2.3. Apply rules of DPSO: apply eq. (2), rule (3) and (1);
 2.4. Deal with invalid particles: // if the storage space of

 // subcubes’ solution > available materializing space
 Uses one of the methods described in section 4.4;
 Next
 iter++;
3. Cycle: Repeat Step 2 Until iter== user defined number of

iterations.
4. Return: M, corresponding to the best achieved position of

any swarm’s particle.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

50

added additional attributes to each dimension,
forming the hierarchies: customer: c-n-r-all;
product: p-t-all and p-s-all; supplier: s-n-r-all. It is
important to emphasize that one of the dimensions
(product) shows parallel hierarchies: this way, the
algorithm implementation should bear this
characteristic. As we have 3 dimensions, with 4
hierarchies each, we will have a total of 64 (4x4x4)
possible subcubes (Table 1), jointly with their sizes
(in tuples). We’ll also suppose that the query (or
maintenance) costs, when the base relation is used,
are of 18 M tuples (3 times the cost of subcube cps)
and that the materializing frequency is 0.1.

Table 1: Generated subcubes with described dimensions
and hierarchies and corresponding size (in tuples).

In the following tests, we shall determine the impact
of the variation of some parameters over the
querying and maintenance costs. Firstly, two of them
will be analyzed: the frequency of the subcubes
utilization and the space available for the cube
materialization. As for the first, the algorithms have
been tested to a uniform, random and with an
inverse linear variation of the respective size
frequency distribution. All the queries’ frequencies
have been normalized to complete a total of 64
queries. Now, in the second parameter, we have
selected percentages 1, 2, 3, 4, 5, 6, 8, 10, 15, 20 %
of the maximal cube size (corresponding this to an
integral maintenance, the sum of the size of all
possible subcubes). With comparative proposes, we
also design and implement a greedy algorithm, a
variation of the one described in (Harinarayan et al.
1996), including on the benefit metric the usage
frequency of each subcube, considering both the
querying and maintenance costs and a materializing
space constraint.

Concerning to ODCD-DPSO parameters, in the
beginning, the particle generation is random and the
way for the algorithm to deal with the location of the
invalid particles is random, which means that if a
particle proposes a cube that exceeds its maximal
size, a random elimination of the subcubes is
pursued, until the constraint is met. Vmax = 10 and

w linearly varies from 0.99 to 1 with the iterations’
number. As soon as we carried out the first
experiment, we understood how easily the ODCD-
DPSO converged, even with the random way to deal
with the invalid solutions. Figures 3 and 4 show the
impact of the maximal number of iterations allowed
and the number of particles in the swarm on the total
costs of the solution achieved. It is clear that the
impact of both parameters in the quality of the
solution is residual. Even with 5 particles or 20
iterations the solutions have a decrease of 3% on the
total costs of the solutions achieved. That is in
accordance with what is said in (Shi & Eberhart,
1999), where it is shown that the standard PSO
algorithm with different population sizes shows an
almost equal performance. The graphs show also an
important decrease of the costs until percentages of
10% of the materializing space; beyond the 10%, the
gain is almost null, due to the progressive impact of
the materializing costs (as probably the new
subcubes are almost redundant ones).

Impact of the Iteration Number on the Total Costs

0,0

100.000.000,0

200.000.000,0

300.000.000,0

400.000.000,0

500.000.000,0

600.000.000,0

0 5 10 15 20 25

Maximal Materializing Space

To
ta

l C
os

ts
 (i

n
tu

pl
es

)

TotalCosts_100iter
TotalCosts_200iter
TotalCosts_500iter
TotalCosts_1000iter

Figure 3: Impact of the number of iterations on the total
costs of the solution achieved with ODCD-DPS algorithm.

Impact of the Number of Particles in the Swarm on the Total Costs

0,0

100.000.000,0

200.000.000,0

300.000.000,0

400.000.000,0

500.000.000,0

600.000.000,0

0 5 10 15 20 25

Maximal Materializing Space

To
ta

l C
os

ts
 (i

n
tu

pl
es

) TotalCosts_5p
TotalCosts_10p
TotalCosts_20p
TotalCosts_50p
TotalCosts_100p
TotalCosts_200p
TotalCosts_500p

Figure 4: Impact of the number of the particles in the
swarm on the total costs of the solution achieved with
ODCD-DPS algorithm.

Concerning to the algorithm’s performance, the test
shows an increase of the run-time with the number
of particles (e.g. 200 iterations with 5 particles in 3.4
seconds x 200 iterations with 500 particles in 25
seconds), but the increase is not of the same ratio of
the number of particles (an increase of 100x on the
particle number, implied an increase of 7x on the
run-time). That is a characteristic that in the test case

A DISCRETE PARTICLE SWARM ALGORITHM FOR OLAP DATA CUBE SELECTION

51

was not relevant (as the evidenced reduced impact of
the number of particles in the swarm on the quality
of the solution), but that in a real DW system (of
higher complexity) may be interesting. Other set of
tests used a uniform query frequency and the results
confirmed the behaviour evidenced above.

We also tested the evolution of the quality of the
solution achieved with the number of iterations
(Figure 5). We used a 100 swarm particles and a
10% materializing space. The graph shows an
extreme speed of the algorithm search for good
solutions.

Fitness Evolution of ODCD-DPSO Algorithm

0

100.000.000

200.000.000

300.000.000

400.000.000

500.000.000

0 50 100 150 200 250
Iteration

To
ta

l C
os

ts
 (i

n
tu

pl
es

)

TotalCosts

Figure 5: Best fitness x number of iterations of a 100
particles in the swarm and 10% materializing space.

The final test was the comparative performance analysis of
ODCD-DPSO and greedy algorithms (Figure 6). We can
see a consistent better performance of the former
algorithm (marginal to materializing spaces till 4 %) but
clear from 5% and above). Especially in the [5-10%]
range, the ODCD-DPSO is clearly better, very interesting
in real DW, where the materializing cube has to be
restricted to percents of that kind.

Comparative Analysis of ODCD-DPSO and Greedy Algorithms

0

100000000

200000000

300000000

400000000

500000000

600000000

0 5 10 15 20 25

Maximal Materializing Space

To
ta

l C
os

ts
 (i

n
tu

pl
es

)

ODCD-DPSO
Algorithm
Greedy

Figure 6: Comparison of greedy selection and
ODCD-DPSO algorithms with random query frequencies.

6 CONCLUSIONS AND FUTURE
WORK

In this article, we proposed a subcube selection
model from a data cube that uses a discrete particle
swarm optimization algorithm. The experimental
evaluation performed seems to demonstrate the

effectiveness of the application of DPSO to the cube
selection problem, given a certain queries profile
and a space constraint, seeking to minimize at the
same time the maintenance and querying costs of the
cube. More than a good performance, the PSO had
no difficulty in achieving good and solid results. It
evidenced also a good scalability, as the run-time is
linear with the swarm’s particles number (with low
slope) and the number of selected particles has also a
reduced impact on the run-time (e.g. 13 subcubes on
17.7 seconds x 36 subcubes on 25.9 seconds). Also,
we saw that the algorithm with a low number of
particles in the swarm and reduced number of
iterations achieved immediately good solutions.
Those evidences show a high “power reserve” of the
algorithm to deal with high complexity cube
schemas. We also referred the enormous range of
variations that can be introduced to the base
algorithm, that show already some interesting
results, but that deserve a deeper investigation for
each case. The most important is the domain of the
hybridization, e.g. the solution for the repair of the
gain loss implemented, since it uses DPSO and an
inverse greedy algorithm. In this domain, there are
several other alternatives, because, as referred in
(Kennedy & Eberhart, 1997) the PSO does not have
a mechanism that allows catastrophic jumps from
one region to another, once, unlike the genetic
algorithms, the particle swarm keeps a memory of
the past successes and tends to converge to research
space regions where once were achieved successes.
The genetic combination that occurs in the crossings
will allow those jumps. This way, some changes are
occurring to the algorithm, in search for the
improvement of the solutions. Among them, in a
future work, the next will be attempted: to
implement a minimum for genetic hybridization to
deal with the invalid solutions, forcing them to
retreat to pbest or make it to gbest; a more spreaded
hybridization, what can be considered as a large
scale mutation, promoting the particle’s substitution
for the more adapted ones, a solution proposed in
(Angeline, 1998) with very promising results; and a
deeper degree of genetic hybridization, that
implements the crossing operator, proposed in
(Lǿvbjerg et al. 2001).

Besides the hybridization, other techniques come
to scene, namely: to seek to direct the particle’s
dynamic in a way that invalid solutions would be
avoided, what would also prevent the disturbances
caused by the subsequent recuperation mechanism (
something as assuming a pro-active attitude); and to
try to use all kinds of variants to the original PSO in
the discrete PSO, specially the cooperation

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

52

mechanism between particle swarms, properly called
particle swarm cooperative optimizer, described in
(Van den Bergh & Engelbrecht, 2004).

ACKNOWLEDGMENTS

The work of Jorge Loureiro was supported by a
grant from PRODEP III, acção 5.3 – Formação
Avançada no Ensino Superior, Concurso N.º
02/PRODEP/2003.

REFERENCES

Angeline, P., 1998. Using Selection to Improve Particle
Swarm Optimization. In Proc. Of the IEEE
International Conference on Evolutionary
Computation (ICEC’98), Anchorage, Alaska, USA,
May 4-9.

Baralis, E., Paraboschi, S., and Teniente, E., 1997.
Materialized View Selection in a Multidimensional
Database. In Proceedings of the 23rd International
Conference on Very Large Data Base (VLDB),
Athens, Greece, pp. 156-165.

Codd, E.F., Codd, S.B., and Sulley, C.T., 1993. Providing
OLAP (On-Line Analytical Processing) to User
Analysts: An IT Mandate. Technical Report.

Chaudhuri, S. & Dayal, U., 1997. An Overview of Data
Warehouse and OLAP Technology. In ACM SIGMOD
Record 26(1), pp. 65-74.

Eberhart, R.C., & Kennedy, J., 1995. A new Optimizer
Using Particle Swarm Theory. In Proc. Os the Sixth
International Symposium on Micro Machine and
Human Science, Nagoya, Japan, IEEE Service Center,
Piscataway, NJ, pp. 39-43.

Gupta, A., Mumick, T., and Subrahmanian, V., 1993.
Maintaining Views Incrementally. In Proceedings of
ACM SIGMOD 1993 International Conference on
Management of Data, Washington, DC.

Gupta, H., Harinarayan, V., Rajaraman, A., and Ullman,
J., 1997. Index Selection for OLAP. In Proceedings of
the Intl. Conf. on Data Engineering, Birmingham, UK,
pp. 208-219.

Gupta, H., 1997. Selection of Views to Materialize in a
Data Warehouse. In Proceedings of ICDT, Delphi, pp.
98-112.

Gupta, H. & Mumick, I.S., 1999. Selection of Views to
Materialize under a Maintenance-Time Constraint. In
Proc. Of the International Conference on Database
Theory.

Harinarayan, V., Rajaraman, A., and Ullman, J., 1996.
Implementing Data Cubes Efficiently. In Proc. of
ACM SIGMOD, Montreal, Canada, pp. 205-216.

Horng, J.T., Chang, Y.J., Liu, B.J., and Kao, C.Y., 1999.
Materialized View Selection Using Genetic
Algorithms in a Data Warehouse. In Proceedings of

World Congress on Evolutionary Computation,
Washington D.C.

Kalnis, P., Mamoulis, N., and D. Papadias, 2002. View
Selection Using Randomized Search. In Data
Knowledge Engineering, vol. 42, number 1, pp. 89-
111.

Kennedy, J., & Eberhart, R.C., 1995. Particle Swarm
Optimization. In Proc. of IEEE Intl. Conference on
Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ (1995) IV:1942-1948.

Kennedy, J., and Eberhart, R.C., 1997. A Discrete Binary
Version of the Particle Swarm Optimization
Algorithm. In Proc. of the 1997 Conference on
Systems, Man and Cybernetics (SMC’97), pp. 4104-
4109.

Liang, W., Wang, H., and Orlowska, M.E., 2001.
Materialized View Selection Under the Maintenance
Cost Constraint. In Data and Knowledge Engineering,
37(2), pp. 203-216.

Lin, W.-Y., & Kuo, I-C, 2004. A Genetic Selection
Algorithm for OLAP Data Cubes. In Knowledge and
Information Systems, Volume 6, Number 1, Springer-
Verlag London Ltd., pp. 83-102.

Lǿvbjerg, M., Rasmussen, T., and Krink, T., 2001. Hybrid
Particle Swarm Optimization with Breeding and
Subpopulations. In Proceedings of the 3rd Genetic
and Evolutionary Computation Conference (GECCO-
2001).

Mumick, I.S., Quass, D., Mumick, B.S., 1997.
Maintenance of Data Cubes and Summary Tables in a
Warehouse. In Peckham J (ed.). Proceedings of ACM
SIGMOD International Conference on Management of
Data, Tucson, Arizona, pp. 100-111.

Shi, Y., & Eberhart, R., 1999. Empirical Study of Particle
Swarm Optimization. In Proceedings of the 1999
Congress of Evolutionary Computation, vol. 3, IEEE
Press, pp. 1945-1950.

Shukla, A., Deshpande, P.M., and Naughton, J.F., 1998.
Materialized View Selection for Multidimensional
Datasets. In Proc. of VLDB.

Shukla, A., Deshpande, P.M., and Naughton, J.F., 2000.
Materialized View Selection form Multicube Data
Models. In Zaniolo, C., Lockemann P.C., Scholl,
M.H., Torsten, G. (eds.). In Proceedings of Advances
in Database Technology (EDBT’00), Konstanz,
Germany. Lecture Notes in Computer Science 1777,
Springer, Berlin, pp. 269.284.

Transaction Processing Performance Council (TPC): TPC
Benchmark R (decision support) Standard
Specification Revision 2.1.0. tpcr_2.1.0.pdf, available
at http://www.tpc.org.

Van den Bergh, F., and Engelbrecht, A.P., 2004. A
Cooperative Approach to Particle Swarm
Optimization. In IEEE Transactions on Evolutionary
Computation, Vol. 8, No. 3, pp. 225-239.

Zhang, C., Yao, X., and Yang, J., 2001. An Evolutionary
Approach to Materialized Views Selection in a Data
Warehouse Environment. In IEEE Trans. on Systems,
Man and Cybernetics, Part C, Vol. 31, N.º 3.

A DISCRETE PARTICLE SWARM ALGORITHM FOR OLAP DATA CUBE SELECTION

53

