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Abstract: Multidimensional analysis supported by Online Analytical Processing (OLAP) systems demands for many 
aggregation functions over enormous data volumes. In order to achieve query answering times compatible 
with the OLAP systems’ users, and allowing all the business analytical views required, OLAP data is 
organized as a multidimensional model, known as data cube. The materialization of all the data cubes 
required for decision makers would allow fast and consistent answering times to OLAP queries. However, 
this also imply intolerable costs, concerning to storage space and time, even when a data warehouse had a 
medium size and dimensionality - this will be critical on refreshing operations. On the other hand, given a 
query profile, only a part of all subcubes are really interesting. Thus, cube selection must be made aiming to 
minimize query (and maintenance) costs, keeping as a constraint the materializing space. That is a complex 
problem: its solution is NP-hard. Many algorithms and several heuristics, especially of greedy nature and 
evolutionary approaches, have been used to provide an approximate solution. To this problem, a new 
algorithm is proposed in this paper: particle swarm optimization (PSO). According to our experimental 
results, the solution achieved by the PSO algorithm showed a speed of execution, convergence capacity and 
consistence that allow electing it to use in data warehouse systems of medium dimensionalities. 

1 INTRODUCTION 

Today’s business environments are very dynamic, 
changing so fast that brings new opportunities for 
everybody at all times. However, as we know, they 
also bring new threats. It is crucial for the 
enterprises to be able to answer to ones and others, 
making timely, interrelated and adjusted decisions in 
useful time. Moving in an uncertain environment, 
decision makers expect for something that guide and 
help them in their daily activities. This reality turned 
information into the new Grail, in which search all 
organizations are involved, leading them to the 
building of data warehouses (DW). The availability 
of reliable data for analysis made it possible for the 
decision makers to acknowledge what the data really 
says about their businesses. This imposed the 

emergence of new systems, with new abilities, 
capable of allowing decision makers to investigate 
their data resources according to different business 
perspectives, and surf through them according to the 
result of previous observations. The systems that 
enable this kind of analysis were coined in (Codd et 
al., 1993) as OLAP systems. These systems, in 
which data is organized in a multidimensional and 
hierarchical way, known as data cube or multicube 
(Chaudhuri  & Dayal, 1997), allow sophisticated 
OLAP operations such as drill-down, roll-up, 
pivoting or slicing and dicing, all of them a 
consequence of a typical profile of a session of 
OLAP queries (mainly of aggregated nature). All 
these interesting OLAP characteristics provide 
access to data and querying satisfaction with 
excellent processing time. If the aggregated data was 
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pre-computed and stored, the answer would be 
almost immediate. Although, usually, that would 
also imply a huge storing space and, specially, lots 
of time to update the already aggregated data, once 

its number is of ∏
=

d

i
ih

1

 , where hi is the number of 

hierarchies of i dimension and d the number of 
dimensions.  

The aggregated data stored in a cube may be 
conceptually represented as a Lattice (Harinarayan 
et al., 1996), a direct acyclic graph where each 
vertex has a subcube or cuboid (result of a Group-
By), and each edge represents a dependency relation, 
that shows whose subcubes may be used to compute 
others. Only a part of the possible subcubes can be 
stored in the repository, being then mandatory to 
select the most beneficial ones – concerning to 
minimizing query and possibly maintenance costs –, 
a problem that is characteristically NP-hard 
(Harinarayan et al., 1996), known as data cube 
selection problem. Some constraints may be applied 
to the problems’ solution as materializing space or 
maintenance time.  

The rest of the paper is organized as follows. In 
section 2, we reference and describe briefly some 
works related with the problem that we address in 
this paper. Section 3 introduces evolutionary 
algorithms, detailing to discrete particle swarm 
algorithm. Next, in section 4 we formalize the cube 
selection problem, where a cost model is discussed 
and where we show how to apply the proposed 
algorithm to the problem. Section 5 describes the 
experimental evaluation of the algorithm and the 
obtained results. At last, section 6 concludes the 
paper and presents some future work proposals. 

2 RELATED WORK 

We have already seen that data cubes and view 
materialization are two possible conditions to 
improve performance. Its materialization and 
especially its maintenance imply special storage 
space and execution time. As users change their 
needs, the “optimal” materialized cube becomes far 
from optimal, which makes mandatory its 
recalibration – its extension and frequency are 
directly related. Big restructurings may occur at 
large intervals and some refining may take place in 
short intervals or in almost real time. So, in terms of 
characterization, we will have the so called static 
and dynamic aggregation selections, or even its pro-
active selection or restructuring. In this paper we 

restrict the discussion to the static approach, once it 
is directly related with the scope of the present work. 
Most of the proposals appear in the static selection 
domain. In (Harinarayan et al. 1996) it was 
approached for the first time the materializing views 
selection problem to support OLAP multi-
dimensional analysis. It was proposed then a greedy 
algorithm to solve the problem. Latter, an extension 
to this proposal, was made in (Gupta et al., 1997), 
which also included indexes selection.  

Despite the greedy characteristics of the proposed 
algorithms, its scalability is not easy. In (Baralis et 
al., 1997) the query load profile is taken into account 
for the views selection, while in (Shukla et al. 1998) 
was proposed another change to the greedy 
algorithm, also to improve the application scalability 
of the algorithms: it selects the views accordingly to 
its size. This proposal is much more efficient, 
keeping the same quality of the others. (Shukla et 
al., 2000) proposed a multicube algorithm where the 
problem was focused from a different view: it is 
supposed that all aggregations are computed not 
from a single cube, but for multicube data models. A 
systematic methodology for the materializing views 
selection appeared in 1997 in (Gupta, 1997), 
spreading the aggregated queries to a more general 
form, those that can be represented by a AND-OR 
graph. In (Gupta & Mumick, 1999), besides the 
space for the materialized views, its maintenance 
cost is also considered. This same problem is also 
discussed in (Liang et al., 2001).  

Other approaches, in a different domain, were 
also attempted and proposed: the research for 
solutions using evolutionary or random techniques. 
Thus, there is some work devoted to the application 
of genetic algorithms (Horng et al., 1999; Zhang et 
al. 2001; Lin & Kuo, 2004) or random search in 
(Kalnis et al., 2002).  

3 EVOLUTIONARY AND 
PARTICLE SWARM 
ALGORITHMS 

3.1 Biological Mimic Algorithms  

Several search algorithms have a biological 
motivation, trying to mimic a characteristic aspect of 
what can be called “life”. There is a simple reason: 
life (as its biological basic aspect or, at a higher 
level, as the social and cognitive behaviour), is a 
perpetual process of adaptation to environmental 
conditions, requiring a continuous demand of 
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solutions in face of succeeding new problems. The 
best known algorithms in this huge domain are: 1) 
evolutionary algorithms, where the most 
representatives and most used are probably genetic 
algorithms; 2) swarm algorithms, that may take the 
form of particle swarm algorithms and ant colony 
optimization; and, finally, 3) artificial immune 
systems. As we said previously, in section 2, only 
the first ones have already been applied to cube 
selection in a centralized DW. Swarm algorithms 
have an application domain which may intercept the 
former ones, and, then, it is natural to intend to apply 
them to the same problem.  

3.2 Discrete Particle Swarm 
Algorithm  

The authors of the PSO were trying to simulate a 
bird flock (a simplified social system), modelling a 
social and cognitive behaviour. After many 
modifications, the authors realized that the 
conceptual model was, in fact, an optimizer, that was 
proposed in (Kennedy & Eberhart, 1995; Eberhart & 
Kennedy, 1995). This approach assumes a 
population of individuals, represented as binary 
strings or real-valued vectors (particles), whose 
position in an n-dimensional space will bring its 
instant fitness. This position may be altered by the 
application of an interactive procedure that uses a 
velocity vector, allowing a progressively best 
adaptation. It also assumes that individuals are social 
by nature, and thus capable of interacting with 
others, within a given neighbourhood. For each 
individual, there are two main types of information 
available: the first one is his own past experiences 
(known as individual knowledge), the pbest (particle 
best) position, and the other one is related to the 
knowledge about its neighbour’s performance 
(referred as cultural transmission), gbest (global 
best) position.  

There are two main versions of the PSO 
algorithm: 1) the initial version, a continuous one, 
where the particles move in a continuous space; and 
2) the discrete or binary version, proposed in 
(Kennedy & Eberhart, 1997), where the space is 
discretized. Although similar, the spatial evolution 
of particles in the former is addictive and 
continuous, meaning that its next location is 
computed adding the velocity to the position where 
the particle is at the moment. The discrete space 
does not allow the addictive continuous relation 
space-velocity. It is substituted by the introduction 
of the probabilistic space: the particle’s position will 

be given by a probability dependent of its velocity, 
using the rule 
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of the particle i at the kth iteration. The location of 
the particle is now a state. The direct and 
deterministic relation between space and velocity is 
discarded. A casualistic vector is introduced – even 
if the particle maintains the same velocity, its state 
may change. The formula that rules the particle’s 
dynamic concerning to velocity is: 

1 ().( ) ().( ).k k k k

i i i i
w rnd pbest rnd gbestv v s s+ = + − + −   

(2),  
meaning that changes in the particle’s velocity are 
affected by its past velocity and by a vector that 
tends to push it to its best past location, related to its 
own past success knowledge – pbest, and another 
vector, that pushes it to the best position already 
reached by any particle, corresponding to the global 
knowledge - gbest. To prevent the system from 
running away, when particle oscillation becomes too 
high, the velocity of the particle is limited by a Vmax 
parameter and the following rule: 

max max max max
, ; ,

i i i i
if then if thenv v v v v v v v> = < =−−     (3).  

This rule conceptually means that a limit is 
imposed to the maximal probability of a bit to 
achieve the 0 or the 1 value. Since the sigmoid 
function is used, the exploration of new solutions is 
encouraged if Vmax is short, in opposition to the 
expected behaviour in continuous PSO. 

4 THE COST MODEL AND THE 
ALGORITHM 

4.1 The Cost Model  

The aim of an OLAP system is to minimize query 
costs, maintaining maintenance costs at a minimal 
level, satisfying a constraint, in this case, 
materializing space.  To do this, we use the linear 
cost model proposed in (Harinarayan et al., 1996), 
where the cost of a query answer is proportional to 
the number of non-null cells of the used subcube. As 
an OLAP query may be represented by the 
corresponding subcube, the total query costs are: 

.
1

( , )
n

i i
i

fq C q M
=
∑ , where ifq  is the query frequency 

of query qi and ( , )iC q M  is the cost of query 
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answering of query qi, supposing a materialized cube 
M. Using the least ancestor notion, and linear cost 

model, ( , ) min(| |, | ( , ) |)i i iC q M S Lanc q M= . 
As for the maintenance costs, we shall consider, 

to simplify the discussion, a DW environment that 
has only new tuples in the fact tables. We shall also 
suppose that the materialized cubes will always be 
recomputed, but a deferred maintenance technique 
can also be used (Mumick et al., 1997). Thus, 
maintenance costs (update) of a materialized cube ci 
in M are equal to the size of the least ancestor of ci, 
or, ( , ) | ( , ) |i iU c M Lanc c M= . If uf  represents 
the frequency of insertions in the base relation, the 
total maintenance cost will be ( , )u

c M
f U c M

∈
∑ . 

Joining the two former expressions, the total costs 
function becomes  

.
1

( , ) ( , )
n

i i u
i c M

fq C M f U c M
= ∈

+∑ ∑       (4). 

This is the cost function that has to be optimized, 
being the target of the particle swarm optimization 
algorithm that we will describe in the next section. It 
is important to notice that update costs may be 
computed initially from the base relation and after 
from the subcubes that are already materialized. 
Then, M in ( , ) | ( , ) |i iU c M Lanc c M=  is initially 
empty, being then successively added of the 
meanwhile updated subcubes. The same arguments 
may be applied if incremental maintenance (Gupta et 
al., 1993) is in concern: a generated delta may be 
used to compute descendent deltas. 

4.2 Problem Coding 

In order to apply the particle swarm optimization to 
any problem, we must find: 1) a problem coding 
plan/scheme in the solutions space; and 2) a fitness 
function that may evaluate, in terms of the 
objectives, each space position. Once we are 
evaluating solutions in a multidimensional space of 
multidimensional objects, it seems that the coding is 
a direct transpose. Each subcube may or may not be 
materialized, showing that a binary coding is the 
elected one, what implies, at least a priori, the use of 
the discrete PSO (DPSO), where the space is [0,1] 
for each dimension. Moreover, the use of the 
continuous-discretized version of PSO was also 
attempted, but it came across a serious problem, 
very hard to solve, since the particles left the 
possible/authorized solution space, and some 
solutions attempted were not effective. We will have 

as many dimensions as possible subcubes in the 
OLAP cube, which is to say, as many dimensions as 
the bits that represent each solution.  
 

 
Figure 1: Data cube Lattice. 

Based on the example of the data cube presented 
in Figure 1, with dimensions customer, product and 
supplier, we will have 8 possible subcubes, and 
consequently 8 dimensions. The distribution scenery 
1 (Figure 2) will be (00111101) in the binary form, 
which corresponds to the location of the particle in 
point (0,0,1,1,1,1,0,1). In figure 2 a view of this 
mapping is shown, restricted to 3 subcubes, and 
concerning to two different OLAP subcube 
distribution sceneries. 

 

 
Figure 2: Cube materializing mapping in DPSO 
multidimensional. 

The fitness function estimates the “fitness” 
degree of the solution, in terms of objective 
satisfaction. Each particle in the swarm is evaluated, 
being its fitness determined by its respective position 
in the DPSO space. Each location matches a certain 
solution whose value is evaluated by the fitness 
function. If the location is good enough, it will 
become another pbest or gbest position, what pushes 
the other particles towards it. In our case, the cost 
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function of equation 4, will be used as adaptation 
function, since it determines the fitness of the 
solution during the pursuing of the different goals. 
As equation 4 is a cost, we aim at its minimization, 
which means that the particle with the lower cost is 
the one with a bigger fitness. 

4.3 The ODCS-DPSO Algorithm 

Algorithm 1 shows the basic form of the proposed 
OLAP Data Cube Selection DPSO algorithm that is 
based on the standard discrete particle swarm 
algorithm. The fitness function is the cost computed 
using equation 4, and M is the solution proposed by 
the position of each of the swarm’s particles, 
according to the mapping described previously in 
section 4.2. 

Algorithm 1: OLAP data cube selection discrete particle 
swarm (ODCS-DPSO) algorithm. 

 

4.4 Dealing with Impossible 
Solutions   

The wandering of the particles through the PSO 
space leads, inevitably, to impossible solutions. The 

question resides in the fact that the PSO search 
algorithm does not include a space constraint in its 
coding scheme. To avoid this situation, we can 
correct the wrong particle, choosing between 
different solutions. Some of them are proposed in 
the genetic algorithms domain: 1) randomly, to 
eliminate subcubes until the constraint is met; 2) 
using a scheme of successive elimination of 
subcubes (similar to the former), but not in a random 
way: the subcubes are eliminated in a way that the 
solution is the less damaging for the cube’s 
adaptation (a little like a repair); 3) applying a 
constant or adaptive penalty, proportional to the 
seriousness of the violation (in this case, the excess 
relatively to the imposed space constraint); 4) 
leading the “fault” particle to the location of a more 
adapted one (e.g. gbest), keeping, nevertheless, the 
particle’s pbest, what settles an only partial 
substitution (this solution may be considered as an 
hybridization with the genetic algorithm), where the 
wrong particle is simply substituted; or 5) leading 
the research in a way to avoid impossible solutions. 
Among these, in this study, we used solution 1. The 
others deserve further investigation and are reserved 
to future work. 

5 EXPERIMENTAL 
EVALUATION 

Using the cost model, we designed and developed a 
query and maintenance costs computing algorithm, 
used to implement the fitness function of ODCD-
DPSO. Its formal description is not shown here, 
simply due to space constraints. In its design we 
included dynamic programming concepts, as the 
performance of the algorithms is at premium, given 
its intensive use to evaluate the fitness of the 
swarm’s particles. Then, we developed an algorithm 
that, using, as input, matrixes with the dimensional 
hierarchies, parallel hierarchies and composition of 
each subcube, generates and makes available the 
lattice’s dependencies. This information allows the 
easy and fast computing of the least ancestor of any 
subcube. All algorithms were implemented in Java. 
To the experimental evaluation of the ODCD-DPSO 
algorithm we accomplished a set of tests, namely, to 
estimate the fitness of the solutions, the quickness in 
achieving good ones and its scalarity. For test data, 
we have used the test set of Benchmark’s (TPC-R), 
selecting the smallest database (1 GB), from which 
we selected 3 dimensions (customer, product and 
supplier). To broaden the variety of subcubes, we 

1. Initialization: randomly initialize a population of particles 
(position and velocity) in the n-dimensional space. 

{ } Miyx ii ,...,1,, = , [ ]
n

ix 1,0∈  and [ ]ni vvv maxmax,−∈ ; 
 Deal with invalid particles as 2.4. 
 All positions iipbest xx ←, ; 
 iter←0; 
2. Population loop:  
 For each particle, Do: 
 2.1. Own goodness evaluation and pbest update:    
  // evaluate the ‘goodness’ of the particle 
  If )()( , ipbestadaptiadapt xfxf >  then 
   iipbest xx ←, ; // update pbest, if the goodness of  

    // the particle > its best goodness so far 
  2.2. Global goodness evaluation and gbest update:  
  If )()( , gbestadaptipbestadapt xfxf >  then 

   ipbestgbest xx ,← ; // update gbest if the goodness 
   // of this particle > the goodness that any particle  

    // has ever achieved  
  2.3. Apply rules of DPSO: apply eq. (2), rule  (3) and (1); 
  2.4. Deal with invalid particles: // if the storage space of 

      // subcubes’ solution >  available materializing space 
    Uses one of the methods described in section 4.4;  
 Next 
 iter++; 
3. Cycle: Repeat Step 2 Until iter== user defined number of    

iterations. 
4. Return: M, corresponding to the best achieved position of 

any swarm’s particle. 
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added additional attributes to each dimension, 
forming the hierarchies: customer: c-n-r-all; 
product: p-t-all and p-s-all; supplier: s-n-r-all. It is 
important to emphasize that one of the dimensions 
(product) shows parallel hierarchies: this way, the 
algorithm implementation should bear this 
characteristic. As we have 3 dimensions, with 4 
hierarchies each, we will have a total of 64 (4x4x4) 
possible subcubes (Table 1), jointly with their sizes 
(in tuples). We’ll also suppose that the query (or 
maintenance) costs, when the base relation is used, 
are of 18 M tuples (3 times the cost of subcube cps) 
and that the materializing frequency is 0.1. 

Table 1: Generated subcubes with described dimensions 
and hierarchies and corresponding size (in tuples). 

 
 
In the following tests, we shall determine the impact 
of the variation of some parameters over the 
querying and maintenance costs. Firstly, two of them 
will be analyzed: the frequency of the subcubes 
utilization and the space available for the cube 
materialization. As for the first, the algorithms have 
been tested to a uniform, random and with an 
inverse linear variation of the respective size 
frequency distribution. All the queries’ frequencies 
have been normalized to complete a total of 64 
queries. Now, in the second parameter, we have 
selected percentages 1, 2, 3, 4, 5, 6, 8, 10, 15, 20 % 
of the maximal cube size (corresponding this to an 
integral maintenance, the sum of the size of all 
possible subcubes). With comparative proposes, we 
also design and implement a greedy algorithm, a 
variation of the one described in (Harinarayan et al. 
1996), including on the benefit metric the usage 
frequency of each subcube, considering both the 
querying and maintenance costs and a materializing 
space constraint. 

Concerning to ODCD-DPSO parameters, in the 
beginning, the particle generation is random and the 
way for the algorithm to deal with the location of the 
invalid particles is random, which means that if a 
particle proposes a cube that exceeds its maximal 
size, a random elimination of the subcubes is 
pursued, until the constraint is met. Vmax = 10 and 

w linearly varies from 0.99 to 1 with the iterations’ 
number. As soon as we carried out the first 
experiment, we understood how easily the ODCD-
DPSO converged, even with the random way to deal 
with the invalid solutions. Figures 3 and 4 show the 
impact of the maximal number of iterations allowed 
and the number of particles in the swarm on the total 
costs of the solution achieved. It is clear that the 
impact of both parameters in the quality of the 
solution is residual. Even with 5 particles or 20 
iterations the solutions have a decrease of 3% on the 
total costs of the solutions achieved. That is in 
accordance with what is said in (Shi & Eberhart, 
1999), where it is shown that the standard PSO 
algorithm with different population sizes shows an 
almost equal performance. The graphs show also an 
important decrease of the costs until percentages of 
10% of the materializing space; beyond the 10%, the 
gain is almost null, due to the progressive impact of 
the materializing costs (as probably the new 
subcubes are almost redundant ones). 
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Figure 3: Impact of the number of iterations on the total 
costs of the solution achieved with ODCD-DPS algorithm. 

Impact of the Number of Particles in the Swarm on the Total Costs
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Figure 4: Impact of the number of the particles in the 
swarm on the total costs of the solution achieved with 
ODCD-DPS algorithm. 

Concerning to the algorithm’s performance, the test 
shows an increase of the run-time with the number 
of particles (e.g. 200 iterations with 5 particles in 3.4 
seconds x 200 iterations with 500 particles in 25 
seconds), but the increase is not of the same ratio of 
the number of particles (an increase of 100x on the 
particle number, implied an increase of 7x on the 
run-time). That is a characteristic that in the test case 
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was not relevant (as the evidenced reduced impact of 
the number of particles in the swarm on the quality 
of the solution), but that in a real DW system (of 
higher complexity) may be interesting. Other set of 
tests used a uniform query frequency and the results 
confirmed the behaviour evidenced above.  

We also tested the evolution of the quality of the 
solution achieved with the number of iterations 
(Figure 5). We used a 100 swarm particles and a 
10% materializing space. The graph shows an 
extreme speed of the algorithm search for good 
solutions. 
   

Fitness Evolution of ODCD-DPSO Algorithm
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Figure 5: Best fitness x number of iterations of a 100 
particles in the swarm and 10% materializing space. 

The final test was the comparative performance analysis of 
ODCD-DPSO and greedy algorithms (Figure 6). We can 
see a consistent better performance of the former 
algorithm (marginal to materializing spaces till 4 %) but 
clear from 5% and above). Especially in the [5-10%] 
range, the ODCD-DPSO is clearly better, very interesting 
in real DW, where the materializing cube has to be 
restricted to percents of that kind. 
  

Comparative Analysis of ODCD-DPSO and Greedy Algorithms

0

100000000

200000000

300000000

400000000

500000000

600000000

0 5 10 15 20 25

Maximal Materializing Space

To
ta

l C
os

ts
 (i

n 
tu

pl
es

)

ODCD-DPSO
Algorithm
Greedy

 
Figure 6: Comparison of greedy selection and  
ODCD-DPSO algorithms with random query frequencies. 

6 CONCLUSIONS AND FUTURE 
WORK 

In this article, we proposed a subcube selection 
model from a data cube that uses a discrete particle 
swarm optimization algorithm. The experimental 
evaluation performed seems to demonstrate the 

effectiveness of the application of DPSO to the cube 
selection problem, given a certain queries profile 
and a space constraint, seeking to minimize at the 
same time the maintenance and querying costs of the 
cube. More than a good performance, the PSO had 
no difficulty in achieving good and solid results. It 
evidenced also a good scalability, as the run-time is 
linear with the swarm’s particles number (with low 
slope) and the number of selected particles has also a 
reduced impact on the run-time (e.g. 13 subcubes on 
17.7 seconds x 36 subcubes on 25.9 seconds). Also, 
we saw that the algorithm with a low number of 
particles in the swarm and reduced number of 
iterations achieved immediately good solutions. 
Those evidences show a high “power reserve” of the 
algorithm to deal with high complexity cube 
schemas. We also referred the enormous range of 
variations that can be introduced to the base 
algorithm, that show already some interesting 
results, but that deserve a deeper investigation for 
each case. The most important is the domain of the 
hybridization, e.g. the solution for the repair of the 
gain loss implemented, since it uses DPSO and an 
inverse greedy algorithm. In this domain, there are 
several other alternatives, because, as referred in 
(Kennedy & Eberhart, 1997) the PSO does not have 
a mechanism that allows catastrophic jumps from 
one region to another, once, unlike the genetic 
algorithms, the particle swarm keeps a memory of 
the past successes and tends to converge to research 
space regions where once were achieved successes. 
The genetic combination that occurs in the crossings 
will allow those jumps. This way, some changes are 
occurring to the algorithm, in search for the 
improvement of the solutions. Among them, in a 
future work, the next will be attempted: to 
implement a minimum for genetic hybridization to 
deal with the invalid solutions, forcing them to 
retreat to pbest or make it to gbest; a more spreaded 
hybridization, what can be considered as a large 
scale mutation, promoting the particle’s substitution 
for the more adapted ones, a solution proposed in 
(Angeline, 1998) with very promising results; and a 
deeper degree of genetic hybridization, that 
implements the crossing operator, proposed in 
(Lǿvbjerg et al. 2001). 

Besides the hybridization, other techniques come 
to scene, namely: to seek to direct the particle’s 
dynamic in a way that invalid solutions would be 
avoided, what would also prevent the disturbances 
caused by the subsequent recuperation mechanism ( 
something as assuming a pro-active attitude); and to 
try to use all kinds of variants to the original PSO in 
the discrete PSO, specially the cooperation 
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mechanism between particle swarms, properly called 
particle swarm cooperative optimizer, described in 
(Van den Bergh & Engelbrecht, 2004). 
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