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Abstract. Recently, Direct Linear Discriminant Analysis (LDA) and Gram-
Schmidt LDA methods have been proposed for face recognition. By utilizing the 
smallest eigenvalues in the within-class scatter matrix they exhibit better 
performance compared to Eigenfaces and Fisherfaces. However, these linear 
subspace methods may not discriminate faces well due to large nonlinear 
distortions in the face images. Redundant class dependence feature analysis 
(CFA) method exhibits superior performance compared to other methods by 
representing nonlinear features well. We show that with a proper choice of 
nonlinear features in the CFA, the performance is significantly improved. 
Evaluation is performed with PCA, KPCA, KDA, and KCFA using different 
distance measures on a large scale database from the Face Recognition Grand 
Challenge (FRGC). By incorporating the SVM for a new distance measure, the 
performance gain is significant regardless of which algorithm is used for feature 
extraction, with our proposed KCFA+SVM performing the best at 85% at 0.1% 
FAR where the baseline PCA gives only 12% at 0.1% FAR. 

1 Introduction 

Machine recognition of human faces from still and video images is an active research 
area due to the increasing demand for authentication in commercial and law 
enforcement applications. Despite some practical successes, face recognition is still a 
highly challenging task due to large nonlinear distortions caused by normalization 
errors, expressions, poses and illumination changes. Two well-known algorithms for 
face recognition are Eigenfaces 1 and Fisherfaces 2. The Eigenfaces method 
generates features that capture the holistic nature of faces through the Principal 
Component Analysis (PCA), which determines a lower-dimensional subspace that 
offers minimum mean squared error approximation to the original high-dimensional 
data. Instead of seeking a subspace that is efficient for representation, the Linear 
Discriminant Analysis (LDA) method seeks directions that are efficient for 
discrimination. Due to the fact that the number of training images is smaller than the 
number of pixels, the within-class scatter matrix Sw is singular causing problems for 
LDA. The Fisherfaces performs PCA to overcome this singular-matrix problem and 
applies LDA in the lower-dimensional subspace. Recently, it has been suggested that 
the null space of the Sw is important for discrimination. The claim is that applying 
PCA in Fisherfaces may discard discriminative information since the null space of the 
Sw contains the most discriminative power. Fueled by this finding, Direct LDA 
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(DLDA) 3 and Gram-Schmidt LDA (GSLDA) 4 methods have been proposed by 
utilizing the smallest eigenvalues in the Sw. However, these linear subspace methods 
may not discriminate faces well due to large nonlinear distortions in the faces. In such 
cases, correlation filter approach may be attractive because of its ability to tolerate 
some level of distortions 5.  
One of recent techniques in correlation filters is redundant class dependence feature 
analysis (CFA) 6 which exhibits superior performance compared to other methods. 
We will show that with a proper choice of nonlinear features, the performance can be 
dramatically improved. Our evaluation includes CFA, GSLDA, and Eigenfaces on a 
large scale database from the face recognition grand challenge (FRGC) 7. 

2 Background 

The PCA finds the minimum mean squared error linear transformation that maps from 
the original N -dimensional data space into an M-dimensional feature space (M < N) 
to achieve dimensionality reduction using large eigenvalues. The resulting basis 
vectors can be computed by      

(1) 
  
where ST denotes the total scatter matrix. Figure 1 shows examples of Eigenfaces 
generated from the generic training images of FRGC data after normalization of the 
face images.  

 
Fig. 1. Eigenfaces generated from the FRGC data sorted by the largest eigenvalues; 1st and 2nd 
row images show first 12 eigenvectors, 3rd row images show 201 ~ 206 eigenvectors and 4th 
row images show 501~506 eigenvectors with small eigenvalues; Eigenvectors do not look like 
human faces can be discarded in order to achieve dimensionality reduction. 

The LDA is another commonly used method which determines a set of discriminant 
basis vectors so the ratio of the between-class scatter and the within-class scatter is 
maximized. The optimal basis vectors can be denoted as 

(2) 
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where BS and WS indicate the between-class scatter matrix and the within-class scatter 
matrix, respectively. The solution can be solved by the generalized eigenvalue 
problem,   

(3)                          
and the final solution becomes the standard eigenvalue problem if Sw is invertible.  
                                                                  (4)    

Due to the fact that the number of training images is smaller than the number of pixels, 
the within-class scatter matrix Sw is singular causing problems for LDA. Fisherfaces 
first performs PCA to reduce the dimensionality and thus overcome this singular-
matrix problem and applies LDA in the lower-dimensional subspace. The projection 
vectors from Fisherfaces are given as follows.  
 
                                                                     

(5)  
 
where c is the total number of class.    
On the other hand, the DLDA derives eigenvectors after simultaneous diagonalization 
8. Unlike previous approaches, the DDLA diagonalizes BS  first and then 
diagonalizes WS  which can be shown as follows  

Λ== T
W

T
B WWSIWWS ,                         (6) 

The smallest eigenvalues in the BS can be discarded since they contain no 
discriminative power, while keeping small eigenvalues in the WS , especially 0’s.   
On the other hand, the GSLDA method avoids inverse or diagonalization approaches 
in LDA. The GSLDA approach calculates the orthogonal basis vectors in    

(7) 
where            indicate the null spaces and the upper bars indicate the 
orthogonal complement spaces of ST and Sw, respectively. The GSLDA method has 
been seen to offer better performance over Fisherfaces and other LDA methods 4, and 
LDA methods typically outperform PCA based methods 2. Figure 2 shows examples 
of the LDA basis vectors generated from the generic training images of the FRGC 
data.  

 
Fig. 2. The LDA basis vectors; 1st row images are examples of the Fisherfaces, and 2nd row 
images are examples of the GSLDA eigenvectors. 

2.1 Advanced Correlation Filters 

Correlation filter approaches represent the data in the spatial frequency domain. One 
of the most popular correlation filters, the minimum average correlation energy 
(MACE) 7 filter is designed to minimize the average correlation plane energy 
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resulting from the training images, while constraining the value at the origin to pre-
specified values. Correlation outputs from MACE filters typically exhibit sharp peaks 
making the peak detection and location relatively easy and robust. The closed form 
expression for the MACE filter vector h is            

 uΧDΧΧDh -1-1 1)( −+=                       (8) 
where X is a d2xN complex matrix and its ith column contains the lexicographically 
re-ordered  version of the 2-D Fourier transform of the ith training image. D is a 
d2xd2 diagonal matrix containing the average power spectrum of the training images 
along its diagonal and u is pre-specified values. Optimally trading off between noise 
tolerance and peak sharpness produces the optimal trade-off filters (OTF).  OTF 
filter vector is given by  

1 1( )− + − −= 1h T X X T X u                       (9) 
where ( )21α α= + −T D C , 0 ≤α ≤ 1 , and C is a d2xd2 diagonal matrix whose diagonal 

elements C(k,k) represent the noise power spectral density at frequency k. Varying 
� allows us to produce filters with optimal tradeoff between noise tolerance and 
discrimination. It is important to note that when α=1, the optimal tradeoff filter 
reduces to the MACE filter in eq. (8) and when α=0, it simplifies to the noise-tolerant 
filter in eq. (9). Large peaks denote good match between the test input and the 
reference from which the filter is designed. Due to built-in shift invariance and 
designed distortion tolerance, correlation filters for biometric verification exhibit 
robustness to illumination variations and other distortions 5. 

2.2 Support Vector Machines (SVM) 

Support Vector Machines 91011 have been successfully applied in the field of object 
recognition, often utilizing the kernel trick for mapping data onto higher-dimensional 
feature spaces. The SVM finds the hyperplane that maximizes the margin of 
separation in order to minimize the risk of misclassification not only for the training 
samples, but also for better generalization to the unseen data. 
Unlike PCA and LDA methods where the basis vectors are obtained after centering 
the data by either the global mean or the individual mean of the class, the SVM does 
not require centering the data. Instead, the SVM emphasizes the data close to the 
decision boundary, and the projection coefficients can be estimated by the weight 
vector w and bias b. Formally, the decision boundary vector w can be obtained by 
minimizing the following known as the Primal Lagrangian form.  
 

(10) 
                                                                    
where w is the weight vector orthogonal to the decision boundary and b, N, y,  
indicate the bias, the total number of data, and the decision value respectively, and αi  
are the Lagrange multipliers. After differentiation of L respect to w and b, eq. 10 can 
be represented by the following the Dual Lagrangian form.                                              

(11) 
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We can also replace        with             using the kernel trick. The solution 
vector w can be denoted as follows depending on whether kernels are applied or not.  

 
(12)  

2.3 Challenges in Face Recognition 

Unfortunately, the best set of features and algorithms to recognize human faces are 
still unknown and many face recognition methods are being developed and evaluated. 
The face recognition grand challenge (FRGC) program [12] is aimed at an objective 
evaluation of face recognition methods under different conditions, especially in 
experiment 4. This experiment 4 is aimed at comparing controlled indoor still images 
to uncontrolled (corridor lighting) still images.  
The baseline performance from Eigenface method on this data set is 12% verification 
rate (VR) at a false accept rate (FAR) of 0.1%. Figure 3 shows an overview of the 
FRGC experiment 4. The generic training set contains 12,776 images (from 222 
subjects) taken under controlled and uncontrolled illumination. The gallery set 
contains16, 028 images (from 466 subjects) under controlled illumination while the 
probe set contains 8014 images (from 466 subjects) under uncontrolled illumination.  
Instead of generating basis vectors from the gallery sets, the participants in the FRGC 
are supposed to generate basis vectors from the generic training set to assess the 
generalization power. Then, the dimensionality of the gallery images and probe 
images can be reduced via the basis vectors. Finally, the matching score between 
gallery and probe sets needs to be presented to assess the performance. 

 
Fig. 3. An overview of the FRGC experiment 4. 

The LDA based methods offer the potential produce better performance over 
Eigenfaces. However, the LDA based vectors may not have generalization power to 
the unseen classes, since they are optimized based on classes shown previously. This 
problem also occurs when we apply the correlation filters since the typical design of 
correlation filters is based on the gallery images. The class-dependence feature 
analysis (CFA) is proposed to generalize the correlation filters as explained in the 
next subsection. 

3 Class Dependence Feature Analysis (CFA) 

In CFA approach, one filter (e.g., MACE filter) is designed for each class in the 
generic training set. Then a test image y is characterized by the inner products of that 
test image with the n MACE filters, i.e. 
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(13)  
 
where hmace-n is a filter gives small correlation output for all classes except for class-n. 
For example, the number of filters generated by the FRGC generic training set is 222 
since it contains 222 classes. Then each input image y is projected onto those basis 
vectors and x contains the projection coefficients with the dimensionality of 222. 
Then the similarity of the probe image to the gallery image is based on the similarity 
between the corresponding class-dependent feature vectors. Figure 2 shows examples 
of the CFA basis vectors generated from the FRGC generic training data.  

 
Fig. 4. The CFA algorithm; the filter response of y1 and hmace-2 can be distinctive to that of y2 
and hmace-2. 

 
Fig. 5. The CFA basis vectors for dimensionality reduction. 

3.1 Nonlinear Feature Representation 

Due to the nonlinear distortions in human faces, the linear subspace methods have not 
performed well in real face recognition applications. As a result, the PCA and LDA 
algorithms are extended to represent nonlinear features efficiently by mapping onto a 
higher dimensional space. Since nonlinear mappings increase the dimensionality 
rapidly, kernel approaches are used as they enable us to obtain the necessary inner 
products without computing the actual mapping on to the high dimensional space.    
Kernel Eigenfaces and Kernel Fisherfaces 13 are proposed to overcome this problem 
using the Kernel PCA and Kernel Discriminant Analysis (KDA) 14. The mapping 
function can be denoted as follows. 

                                      (14)  
Kernel functions defined by                     can be used without having to 
form the mapping as long as kernels form an inner product and satisfies Mercer’ 
theorem 14. Polynomial kernel ( pbabaK )1,(),( +><= ), Radial Basis Function style 
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kernel ( )2/)(exp(),( 22 σbabaK −−= ), and Neural Net style Kernel 
( ),tanh(),( δ−><= bakbaK ) are widely used. 

3.2 Kernel CFA (KCFA)  

The Kernel CFA algorithm can be extended from the linear CFA method using the 
kernel tricks.  The correlation output of a filter h and an input y can be expressed as                           
 

                         
(15) 

                                                                                              
 
where XDX 0.5 ' −=  indicates pre-whitened version of X . From now on, we assume 
the X  is already pre-whitened. After mapping onto a high dimension space, the 
solution becomes  
 

(16)                         
 
These MACE filters based kernel approaches can be extended to include noise 
tolerance as in eq. 9. By replacing D by T, where ( )21α α= + −T D C , the new kernel 

OTF filters show some noise tolerance depending the parameter α.  The resulting 
output for the KCFA approaches can be thought as correlation output in the high 
dimensional space with tolerating some level of distortions. 

3.3 Experimental Results  

The performance of a face recognition algorithm can be measured by its false 
acceptance rate (FAR) and its false rejection rate (FRR). FAR is the percentage of 
imposters wrongly matched. FRR is the fraction of valid users wrongly rejected. A 
plot of FAR vs FRR (as matching score threshold is varied) is called a receiver 
characteristic (ROC) curve. The verification rate (VR) is 1-FRR, often the ROC may 
show VR vs. FAR. Since the FAR can be more problematic in practical face 
recognition applications, the FRGC program compares the verification rates at 0.1 % 
FAR.  Figure 6 shows the experimental results using Eigenfaces (PCA), GSLDA, 
CFA, and KCFA of the experiment 4 of the FRGC. The performance of Eigenfaces is 
provided by the FRGC teams. The similarity or distance measure between gallery 
image and probe image is important. Commonly used distance measures are L1-norm, 
L2-norm 6 and Mahalanobis distance. Those distance measures may not perform well 
depending on different algorithms. The normalized cosine distance (given below) 
exhibits the best results on the CFA and KCFA.  

||)y|| ||xy)/(||-(xy)d(x, ⋅=                   (17)                        
where d denotes the similarity (or distance) between x and y. Based on the similarity 
measure, the identities are claimed using the nearest neighbour rule. The PCA and 
GSLDA use the L2-norm while the CFA and KCFA use the distance in eq. 17, and 
the resulting performance is shown in Figure 6.  
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Fig. 6. The performance comparisons of the FRGC experiment 4 at 0.1 % FAR. The Kernel 
CFA shows the best results over all linear methods. 

4 Distance Measure in SVM Space 

If we can design a decision boundary to separate one face class (with all its 
distortions) from all other classes, we can achieve robust face recognition in real 
applications.  However, it is not an easy task to design those decision boundaries 
under all possible distortions. Therefore, a direct use of the SVM as a classifier may 
produce worse performance under those distortions since only small number of 
training images are allowed to build the SVM. In stead of using the SVM as a 
classifier directly, we use the projection coefficients of KCFA features in the SVM 
space. Figure 7 shows an example of the decision boundary and distance measure in 
the SVM space.  

 
Fig. 7. The decision boundary of a class and distance measure in the SVM space; A direct use 
of the SVM may falsely indicate that image C5 as not the same person with those images inside 
the decision boundary. 

The L2-norm distance without the SVM decision boundary w may be large between 
the same classes causing poor performance. In this case, the L2-norm distance of C2 
and C5 is greater than that of C6 and C5 causing a misclassification. However, if we 
project C5 on to w, the projection coefficients among the same classes will be small 
and we can change the threshold distance depending on FAR and FRR. Thus this 
approach may lead to flexibility of varying thresholds and better performance in 
classification. We apply linear machines, RBF and Polynomial Kernels (PK) in order 
to find the best separating vectors varying parameters associated with each kernel 
method. The nonlinear SVM such as RBF and PK show better performance over the 
linear SVM. 
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Building the SVM of the face images (of size 128x128 pixels) without any form of 
dimensionality reduction is an extremely challenging task. Since the dimensionality 
reduction based on KCFA is better than other approaches, we use KCFA features 
(222 features) as an input for building the SVM. We design 466 SVMs (in a one-
against all framework) using the gallery set of the FRGC data. The probe images are 
then projected on the class-specific SVMs which will provide a similarity score.  As 
shown in Figure 8, the new distance measure in the SVM space produces better 
results than using normalized cosine distance. We also compared the different kernel 
approaches such as KPCA and KDA with different distance measure showing the 
SVM based KPCA methods have superior to other kernel approaches as shown in 
Figure 9. 

 
Fig. 8. VR vs FAR for FRGC experiment 4 for different methods using normalized cosine 
distances and SVM space. 
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Fig. 9. VR vs FAR for FRGC experiment 4 using KCFA with different distance measure. 

5 Conclusions 

Due to nonlinear distortions coupled with blurry images on face images, linear 
approaches such as PCA, LDA, and CFA may not represent nor discriminate facial 
features efficiently. By using kernel tricks, the Kernel CFA performs dimensionality 
reduction showing better performance over all linear approaches. After reducing the 
dimensionality of the data, we map the data again onto higher dimension spaces to 
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build the decision boundaries which separate a class from all classes. Since direct 
mapping onto a high dimension using high quality normalized faces (128 by 128 
pixels) will be not an easy task, dimension reduction scheme may be necessary before 
mapping onto higher dimension where the non-linear features are well represented. 
By incorporating the SVM for a new distance measure, the performance gain is 
dramatic. These approaches (KCFA, Distance in the SVM space) can be extended 
further by adding more databases and may perform robust face recognition in real 
applications. Our ongoing work will be conducting the comparison our approaches on 
large scale database containing pose changes as well. 
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