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Abstract. The research work presented in this paper has two goals and is 
currently in progress. The first goal is to define a modelling framework 
allowing representing a system by using multi views and multi languages 
paradigms in a unified way and including knowledge and model enrichment by 
defining properties. The second goal consists to define some formal properties 
verification mechanisms in order to help a modeller to detect and to avoid 
dangerous situations and inherent risks which can occur to the system. The 
same mechanisms are then used to improve the quality of the representation 
which is the classical verification goal. This paper focuses on the set of formal 
properties modelling concepts and analysis mechanisms mainly based on 
Conceptual Graphs, which are proposed. The resulting approach is currently 
dedicated here to the risk assessment in healthcare organisations. 

1 Introduction 

A socio-technical system such as a hospital unit, a business process or a production 
line in a factory is a complex system where interact technical and human resources, 
flows and processes, etc. and which has to be considered under different points of 
view: the customer as the designer or the manager. Some of these interactions and 
points of view can be identified and then modelled because of their evidence or their 
necessity. However, some other interactions remain difficult to understand. They 
often make emerge some unpredictable and unforeseen events, unexpected behaviours 
and situations. Those emerging characteristics can have harmful consequences i.e. 
they induce risks. So, the willing to design, to improve or more simply to control 
more efficiently the behaviour of a socio-technical system during its life cycle needs 
to dispose of modelling and analysis techniques. It allows users to describe, to detect 
or to make emerge these risks, their causes and their possible consequences taking 
into account the complexity of the pointed out system. Analytical methods 
particularly for industrial plant [1] are mainly based on probabilities of occurrences 
and statistics of passed events. That is why these methods are still difficult to use in a 
predictive way. Simulation, for example, based on multi-agent paradigm, can be used 
in order to visualize auto-organisation capabilities of the system components and to 
make emerge some new organisation’s behaviour. At last, there are few formal 
concepts of models analysis for the risk assessment, starting from system 
representation. The research work presented below intents to complete the existing 
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tool box in risk assessment by using formal verification mechanisms for detecting and 
avoiding dangerous situations and inherent risks. A modelling framework has been 
developed and is briefly presented and argued in the following. Then verification 
mechanisms are described and illustrated considering the chosen application domain 
of healthcare organisations.  

2 Requirements 

The following summarizes modelling and analysis requirements which are at the 
origin of the proposed approach.  

Considering the engineering system approach [2], a system must be modelled 
taking into account functional (What?), behavioural (How?) and structural (With 
what?) views and taking into account detail refinement and decomposition rules. So 
existing enterprise modelling languages [3], [4], approaches [5], and systemic 
concepts issued from the SAGACE method [6], [7] have been studied and discussed.  

The three aspects described above, corresponding to a given point of view have to 
be coherent with the other ones i.e. to be interoperable and to share the same 
conceptual data model without any ambiguity. So it is necessary to define a unique 
meta model allowing to pass from one modelling language to another without any 
misinterpretation [8] 

Different users are involved during modelling tasks taking into account their own 
objectives (to control, to reuse existing parts, to optimise a given criteria, etc.). Each 
user has then a point of view about the system which has to be coherent (multi view 
modelling) also with the other ones and avoiding different viewpoints. It is necessary 
to define a common and unique set of concepts and relations between the concepts, 
i.e. ontology [9]. This one gathers commonly used and shared terms by all users for 
describing the main characteristics of the pointed out system. 

At last, some characteristics of the model must be checked in order to assume the 
quality i.e. the consistence, the completeness and the coherence of the different 
obtained models regarding the pointed out system [10].  

3 System Modelling 

Taking into account those requirements and the application domain of healthcare 
organisations, a modelling framework has been developed. A partial view of the 
modelling language meta model supported by the modelling framework is given in 
annex. This modelling language has been implemented by using a meta modelling 
environment called GME [11] allowing to dispose of a modelling tool. 

This one unifies the modelling concepts and relations from a coherent and 
interoperable manner. The term unified means that all the concepts of the language 
result from the same meta model. So, there is not inherent problem of interoperability 
classically due to the use of several modelling languages, each one defining its own 
concepts and semantic. In parallel, a method guiding the modeller (not described in 
the continuation but more detailed in [12]) has been developed and is now under 
validation by end users. 
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The resulting modelling framework highlights five views under which the system 
has to be modelled: 

- Functional view: The user describes the finality (Why does the system exist?), 
the mission (what does the system make? What are its functions, processes and 
flows?), and the objectives of the system (what are the efficiency, the level of stability 
and of integrity which have to be reached in order to fulfil this mission?). The used 
modelling language is inspired here by the KAOS [13], [14] modelling approach and 
the IDEF-0 [15] functional modelling language. 

- Structural view: In this view, the goal is to define without ambiguity how the 
mission will be done (what are the processes, activities and flows?), and what is the 
organisation in charge or fulfil this mission (who/what is getting involved i.e. what 
are the resources? What are the involved organisation units – i.e. departments or 
services? What are their capabilities and skills? What are they doing?). The modelling 
paradigms used here are inspired by Binary Relational Model of NIAM [16], by the 
class concept from the class diagram of UML [17] for resource and organisation 
description and by the UEML language [5] in order to support capabilities, processes 
and activity description. 

- Behavioural view: The system, due to the numerous interactions between 
resources, processes has a wide range of behaviours. The interrogations relate to what 
are the possible operational scenarios or the ones already encountered (what is the 
history of the system?). What are the states or situations reached of the system? (a 
situation is defined as a set of states from several entities). What are the events or 
conditions and their effects allowing the entities going from one state to another one? 
Finally, what are the functioning modes (nominal and non nominal) of the system? 
The used modelling languages are directly an extension of the eFFBD (enhanced 
Functional Flow Block Diagram) [18] for scenario and configuration description (i.e. 
behaviours in which several entities must be involved) and classical states diagram 
(for entities behaviour description). 

- Ontological view: The definition of [19] “ontology is a formal, explicit 
specification of a shared conceptualization” indicates that ontology is the result of a 
consensus between actors concerning terms related to professional, management, 
decision and information aspects. Indeed, the system modelling calls upon several 
actors from various cultures (modellers, engineers, specialists in the field to study 
here pharmacist, doctor, nurses, etc.). Each actor or groups of actors has its own 
mental representation of the system and its components. This diversity of discourses 
universes may induce misinterpretations of sense and ambiguities on the chosen 
terms, and eventually a lack of knowledge for some group of actors. So, ontology 
allows defining a common discourse universe and then a description language of the 
domain shared by all actors as an Esperanto of the domain. Its design is made from a 
gradual manner all along the system modelling phase by the various groups of actors 
and by experts of the domain. It allows groups of actors integrating their own 
vocabulary and knowledge in the different modelling views and models. The result is 
of a higher level of confidence around the models and facilitates their analysis during 
the next phase. 

- Property view: On one hand the property view allows users  to enrich their 
knowledge and thus enrich by the same occasion the information already contained in 
each model coming from any view or any aspect. This is done by specifying 
properties highlighting for example a given scenario of execution of a process. On the 
other hand, it allows covering analysis requirements as shown in the following.  
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Property P1
(∀ A ∈ System.Activities), [nature(A) = Type.Diagnosis]

⇒
[∃ O ∈ System.InformationFlows, (outputs(A) ⊃ O) ∧

(nature(O)=Type.Prescription]

Activity: 
Diagnosis

Resource: 
Doctor X

Supports

patient
report

Process model PM1 
(partial)

(from system process view)

Activity: 
Diagnosis

Resource: 
Doctor X

Supports

patient
report

Process model PM1 
(partial)

(from system process view)

Process model PM2 (partial)
(from system process view)

Activity:
Transcription

Ability:
Assume 

transcription

Resource:
Nurse X

Supports

Ability:
Interpret 

transcription

Needs ability

Has
Ability

Has abilities

Ability: 
Obstetric

Resource: 
Nurse X

OrganisationUnit: 
Radiology

Is member of

Resource nurse X abilities
(from system organisation view)

Property P2 (identified risk)
((∀ A ∈ System.Activities, (nature(A) = 

Type.Transcription), (∃ O ∈ System.Flows, (outputs(A) ⊃
O)∧ (nature(O)=Type.Prescription)) , [(∃ R ∈

System.Ressources, (nature(R)=Type.Nurse) ∧
(resourcesOf(A) ⊃ R))]

(influences)
[relevance(O)]

data pres
cripti

on

Property P3
(∀ A ∈ System.Activities), (∀ R ∈ System.Resources, 

[resources(A) ⊃ R] ⇒ [neededAbilities(A) ⊃ abilities(R)]

 
Fig. 1. Example of modelled Properties for each of the three kinds of requirements. 

4 Property Modelling 

As proposed before, the approach analysis is based on verification mechanisms. 
Taking into account the definition given for example in [20], verification must 
provide rigorous arguments (for example properties proofs) in order to convince 
users of the correct functioning and reliability of a model and of model-based 
systems. 

In this case, it is not a question of complying with syntactic rules (already 
commonly verified by any modelling tool and without interest here) but of making 
sure that the semantics of the concepts and the relations contained into the meta 
model are strictly respected. The aim is to assume a high level of confidence in the 
models by specifying and verifying properties.  

So, the proposed meta model includes a property description language called 
LUSP (French acronym of Unified Specification Property Language [21]). This 
modelling language follows the model proposed in [22] very close to those proposed 
by [23] or [24]. A property is here considered as a causal, constrained and typed 
relation linking a set called causes and a set called effect. Each set is composed of 
events and data extracted from the model to be analysed. Each pre condition, post 
condition and constraint describing the relation between causes and effects is then 
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described by using predicates and functions respecting the meta model structure (i.e. 
each role of each relation between two concepts of the meta model is translated into a 
predicate or a function). An example of property modelling is shown in Fig. 1 in 
which for example the predicate named “neededAbilities” translates the relation role 
called “needed abilities” between an instance of concept named “Activity” and an 
instance of concept named “ResourceRole” as shown in Annex. 

At last, the Properties Reference Repository (PRR) [22] gathers a set of generic 
properties described by using LUSP. It allows helping the modeller to select and to 
specify properties (that is to say to interpret generic properties) he wants to prove all 
along the model life cycle. 

The properties are modelled taking into account the three following requirements: 
• Users want to trust and to share the models contents. 
• Users want to assume absence of identified but potential risks. 
• Users want to make emerge new potential risks 

4.1 Trusting The Model 

In this first step of verification, it is a question of modelling properties making it 
possible to ensure itself of the coherence of each system component (scenarios, 
activities, processes, etc.):  

• The models representing different viewpoints of the same system must share 
and must agree with the definition of the entities. A consensus is therefore needed 
between the different actors involved in a process. The properties allow to fix the 
ideas and to assume each viewpoint which describes the same behaviour of this 
process. If a consensus stays impossible to establish, then there are some potential 
dissonances between actors such as detailed in section 4.3. 
• Models representing a higher detail level of another one. It is necessary to 

guarantee that refinement mechanisms respect some rules. 
• Facing to the moving environment, to ensure that structural, functional and 

behavioural aspects of the system stay coherent considering all possible described 
scenarios. 

4.2 Tracking Identified Risks 

The concept of property is used during this step in order to model a risk clearly 
identified by using the model of risk suggested by the MADS-MOSAR approach [25]. 

Indeed this approach describes a risk as a causal relation between a potential cause 
called source state and its effect on the system called sink state. The source’s state 
describes what the states of each entity, data and events are like at a given time. The 
sink state describes what can be the resulting state of each entity in the system. These 
last entities may of course be different from those which are involved into the causes. 
Going from the source state to the sink state needs to describe occurring events (from 
different types such reinforcing event, initial event and so on). So the proposed 
property concept allows describing causes, effects and set of events which allow the 
system to go from a source state to a sink state. When a modeller encounters some 
risk which has occurred in the past he can use a property in order to describe it and to 
test if this risk can occur again. 
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The PRR is then used in order to gather some classical properties modelling 
identified risks in the medical domain. For example, delivering some kind of 
medicine such as drug to a patient needs to control the patient state every time. Does 
one scenario on which the case is described exist? Is there a procedure corresponding 
to this constraint? 

A medical organisation has to face numerous identified risks and they have to 
respect some standards such as [26] but also internal procedures and so on. An 
analysis of these documents allows modeller and experts to add some properties to the 
PRR.  

4.3 Making Emerge Possible Risks 

A property is then used to model situations considered generally as potential 
generators of risks and dysfunctions in all kinds of systems. These situations and 
these risks are described by Cindynic [27]. However, these proposals remain more 
easily usable for analyzing known and passed cases and to formalize a kind of 
experience feedback. They are unfortunately regarded as not very usable a priori 
helping to detect emergent risks. 

The goal is to model some of these propositions as property and to use formal 
verification tool presented below in order to make emerge some new but non 
identified risk. 

Cindynic is based on a theoretical representation called “hyperspace of the 
danger” as shown in Fig. 2. This representation abstracts 5 information domains 
allowing to describe a system or a situation observed through the point of view of a 
group of actors. The members of this group share a common set of knowledge, of 
know how, position or job, role and responsibilities about the system. They have then 
a point of view about the system that is to say they own a particular and dedicated 
hyperspace of danger which may be very different from another group of actors. 

Data

M
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R
ul

es
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Objectives

Statistics, 
etc.

Shared 
representations

of the system
(formal or not)

What has to be 
done by the 
system?

Standards, 
norms, rules of 
thumb, etc. to 
be respected

Fairness, 
Equity, 
etc.
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(formal or not)
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done by the 
system?
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norms, rules of 
thumb, etc. to 
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Fairness, 
Equity, 
etc.

 
Fig. 2. Hyperspace of the danger. 

Cindynic defines then two interesting concepts. First, the concept of dissonance is 
defined as the variation between each axis of two hyperspaces describing each one the 
same system seen by two groups of actors. It may be then possible to make emerge 
some possible conflict between actors (and then some risks which are not taken into 
consideration for the moment). It may also be possible to detect positive and negative 
interactions between some actors or a group of actors. 

Second, the concept of deficiency (called Cindynogenic Structural Deficiencies 
DSC) is defined as a possible lack of knowledge on one or several of the 5 axes of 

139



 

each hyperspace of danger. It can be for example a behaviour which is not completely 
defined, a scenario which do not take into account a possible incident, etc. This lack 
can be established by comparing the models issued from the system representation of 
each group of actors. Deficiencies were experimentally classified by [27], into three 
main categories (cultural deficiency, organizational deficiency and management 
deficiency). 

Organisational Unit : Clinical activity

Diagnosis Prescription

Monitoring Administering

Organisational Unit : 
Pharmacy

PatientDoctor
Interoperability 
deficiency: Loss
of information

Prescription 
Analyse

Transcription

Nurse’s role:
- Assume transcription 
from oral orders or manual 
writing orders coming from 
doctor to electronic 
prescription to pharmacist

Nurses

Preparation

Chemist assistant’s role:
- Dose verification
- In tablet form / in liquid 
form

Pharmacist role:
-Drugs interaction
- Use of generic drugs for 
economic reasons

Communication deficiency: 
no traceability of the 
prescription

Doctor

Doctor NursesNurses

Compartmentalization deficiency

Transport

NursesNurses

Patient Patient

NursesNurses

Chemist 
assistant

Pharmacist

 
Fig. 3. Modelling example (simplified view). 

Fig. 3 shows an example of system model in which three kinds of deficiencies are 
highlighted. The deficiency called ‘Loss of information’ brings a lack of 
interoperability between two organizational units. This lack exposes the organization 
and especially the patient to risk (risk of error in medicine, in dose, etc.). This 
identification of the deficiency can allow the modeller to decrease the system 
vulnerability by reformulating and improving the activity named ‘Transcription’ for 
example by the use of ICT tools. 

5 Verification Mechanisms 

On one hand, when modelled, a property P has to be proven (checked or verified) 
when a model M of a system S must satisfy P whatever may be the resources 
configuration, the available scenarios in which S may be considered and so on. On the 
other hand, knowing in which condition or for which scenario the property P cannot 
be verified allows detecting a modelling error or a mistake during modelling phase or 
even a real dysfunction and then a risk opportunity.  

Even partial, the checking up of the properties resulting from each of the 3 
requirements described above makes it possible to handle a knowledge each time 
more relevant, and especially more consensual between the actors. Models can be 
modified as correct in each iteration possible errors or gaps. They are enriched by a 
whole of properties which cannot be objected thereafter. However, by assumption, 
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any new modification of whole or part of the models requires to check again all the 
properties. That requires having tools making it possible to manage a great quantity of 
information and allows applying, if it is possible in an autonomous and not guided 
way. Theorem provers or model checkers are generally used at this stage [28]. 
However a formal operational semantic is then needed. E.g. the operational semantic 
of a state diagram can be formally described and then used by a model checker in 
order to prove behavioural properties. At the opposite, the proposed approach is based 
on several interacting models and paradigms which have to be merged with a 
common set of verification mechanisms. So, property proof is done by adapting and 
using a conceptual graphs [29] analysis approach as proposed by [30]. 

A conceptual graph is a formal knowledge representation. It is a finite, connected, 
directed and bipartite graph composed of an alternation of nodes called concepts and 
nodes called relations.  

A concept is a double 
[<type>: <marker>] 

Where: 
- type represents the occurrence of the object’s  class. They are grouped in a 

hierarchical structure called concepts lattice. The concepts lattice is obtained by 
translating each object class and each attribute described in the meta model by using 
translating rules summarised in Fig. 4. 

- marker specifies the meaning of a concept by specifying an occurrence (i.e. an 
instance) of the type of concept. For example, the concept [Scenario:  ‘to deliver 
medicine’] describes an object of type scenario identified by ‘to deliver medicine’. 
These markers correspond to the instances of each object (the marker description is 
provided by the name of the instance) contained into the system models.  A relation 
binds two concepts according to the following diagram: 

[Concept1]←(relation)←[Concept2] 
For example, the following relation means that the object of type Configuration 

called ’C1’ authorizes the object of type Scenario called ‘S1’: 
[Scenario:  ‘S1’] ]←(Authorize)←[Configuration: ‘C1’] 

As for the concepts, all the possible relations between concepts are gathered into a 
relations lattice. This relations lattice is obtained by translating each relation role 
between object of the meta model in a relation between concepts described in the 
concept lattice. 

The verification approach (see Fig. 5) can be summarised as follows: 
1 - Taking into account the concepts and relations lattices translated from the meta 

model, each model of the system is translated into conceptual graphs in which all the 
knowledge is then available and formalised by using an unique modelling language: 
the conceptual graphs. A set of formal translation rules (not presented here) has been 
developed aiming to transform the different system models on a (set of) conceptual 
graphs upon which formal reasoning mechanisms can be applied. Conceptual graphs 
may then be used to prove the previous presented properties. 

2 – Analysis mechanisms allowed by conceptual graphs can be used. These 
analysis mechanisms are: 

• Projection: This involves comparing the obtained conceptual graph coming 
from the translation of the model with another one translating the property. If the 
projection fails, then the modelled property cannot be verified and the causes are 
highlighted. 
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• Constraint: a property describes what the links and/or constraints are between 
facts. In this case, the property is translated on a positive or negative conceptual 
graph constraint. A positive constraint between two facts A and B must be 
interpreted as: “If A is true, then B must also be true”. Conversely, a negative 
constraint must be interpreted as: “If A is true then B must be false” (if B is true, A 
must be true or false). 

Object

Concepts lattice (partial view)

Resource

HumanResource

Patient

ResourceRole

InformationObject

T2
Relations Lattices (partial view)

AttributeOf(T,T)PlayARole(Resource,ResourceRole)

isResponsibleOfObject(HumanResource,Object)

T

Attribute

MedicalFile

InformationObjectType

TangibleObjectType

IsPlayedBy(ResourceRole,Resource)

TangibleObject

ofType(Attribute,Type)

Type

Boolean

String

Number

Object

Concepts lattice (partial view)

Resource

HumanResource

Patient

ResourceRole

InformationObject

T2
Relations Lattices (partial view)

AttributeOf(T,T)PlayARole(Resource,ResourceRole)

isResponsibleOfObject(HumanResource,Object)

T

Attribute

MedicalFile

InformationObjectType

TangibleObjectType

IsPlayedBy(ResourceRole,Resource)

TangibleObject

ofType(Attribute,Type)

Type

Boolean

String

Number

Patient
<<Atom>>

MedicalFile : field
CurrentPathology : field

PlayARole
<<Connection>>

Resource
<<Atom>>

TangibleObject
<<Atom>>

TanglibleObjectType : enum

Object
<<FCO>>

DisposabilityPlanning : field
UpdatingPeriod : field
LifeDuration : field
ExigenceLevel : field

isPlayedBy
<<Connection>>

IsResponsibleOfObject
<<Connection>>

ResourceRole
<<Atom>>

InformationObject
<<Atom>>

InformationObjectType : enum

HumanResource
<<Atom>>

dst
0..*

dst 0..*

dst
0..*

src
0..*

src
0..*

src 0..*

Meta model (partial 
view)

Patient
<<Atom>>

MedicalFile : field
CurrentPathology : field

PlayARole
<<Connection>>

Resource
<<Atom>>

TangibleObject
<<Atom>>

TanglibleObjectType : enum

Object
<<FCO>>

DisposabilityPlanning : field
UpdatingPeriod : field
LifeDuration : field
ExigenceLevel : field

isPlayedBy
<<Connection>>

IsResponsibleOfObject
<<Connection>>

ResourceRole
<<Atom>>

InformationObject
<<Atom>>

InformationObjectType : enum

HumanResource
<<Atom>>

dst
0..*

dst 0..*

dst
0..*

src
0..*

src
0..*

src 0..*

Meta model (partial 
view)

/* Initialise the hierarchy of concepts */
GenerateConcept(‘T’, nil) 
GenerateConcept(‘Attribute’, ‘T’)
GenerateConcept(‘Type’,‘T’)
GenerateConcept(‘Boolean’,‘Type’)
GenerateConcept(‘Number’,‘Type’)
GenerateConcept(‘String’,‘Type’)
GenerateRelation(‘T2’,nil)
Signature (‘T2’,2,’T’,’T’)
GenerateRelation(‘AttributeOf’,’T2’)
Signature (‘AttributeOf’,2,’Attribute’,’T’)
GenerateRelation(‘ofType’,’T2’)
Signature (‘ofType’,’Attribute’,’Type’)

/* begin of the generation
For each Object::object where object.class in {FCO, Model, Atom, AtomProxy, ModelProxy, 

FCOProxy, Set, SetProxy}
Do

GenerateConcept (object.name, object.inheritFrom)
End do

For each Connection::connection
Do

GenerateRelation (connection.name, connection.inheritFrom)
Signature(connection.name,2,connection.conceptOrigin,connection.conceptDestination)

End do
For each Attribute::attribute

Do
GenerateConcept(attribute.name, ‘Attribute’)
GenerateRelation( attribute.name+’ofType’, ‘ofType’)
if attribute.type=Boolean then Signature(attribute.name+’ofType’, 2, Attribute.name, 

‘Boolean’)
if attribute.type=Enum(String) or attribute.type=Field(String) then 

Signature(attribute.name+’ofType’, 2, Attribute.name, ‘String’)
if attribute.type=Enum(Number) or attribute.type=Field(Number) then 

Signature(attribute.name+’ofType’, 2, Attribute.name, ‘Number’)
End do

/* end  
Fig. 4. From meta model to lattices (translating rules). 

• Dynamic and static rules: A property is directly modelled as a rule composed 
of a cause and an effect as shown in Fig. 6. If the graph corresponding to the causes 
matches with a part of the conceptual graph translating the system models, then the 
effect must be checked in the same way. 

For some specific modelling languages used in the modelling framework 
particularly the state diagrams used for describing state of each entities all along its 
life cycle, another verification approach can consist to translate the state diagram into 
input language of existing model checkers [28], [31]. This can allow to prove some 
behavioural properties such as state attainability or absence of deadlock and to 
highlight some model improvement or limitation.  

6 Conclusion 

The proposed methodology for verification is now under development. The modelling 
framework is still under validation by partners from Hospital of Nice in France. This 
approach can be a significant benefit for one in charge of risk management in a 
hospital. The modelling phase is currently used by some medical specialists. The 
analysis phase has now to define translation rules for obtaining dynamic rules and to 
define how projection must be automated by using Cogitant tool [32]. 

A possible development consists on using this approach in order to help the 
modeller not only to detect risk, but also to test different alternatives of organisation 
allowing to reduce the vulnerability of a healthcare organisation [33] and to improve 
the performance of this organisation. 
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2 2 -- Properties translationProperties translation

1 1 -- System Models translationSystem Models translation

Each property P 
is translated as 

a conceptual 
graph

State diagram of  
‘Diagnosis’ activity

Resource: ‘Doctor Z’

ResourceOf

Activity: ‘Diagnosis D”

result
Resource: ‘Nurse X’

ResourceOf

Capability

Role: ‘Nurse’

stateOf

State: ‘S4’

action

Action: ‘FurnishDiagnosis’

output

Document: 
‘MedicineList’

A process

Diagnosis D Prescription

Monitoring Administerin
g

Patient

Prescriptio
n Analysis

Transcription

Nurses

Preparation

Doctor NursesNurses

Transport

Nurses

Patient Patient

Nurses

Operator

Doctor Z DoctorNurse X

A process

Diagnosis D Prescription

Monitoring Administerin
g

Patient

Prescriptio
n Analysis

Transcription

Nurses

Preparation

Doctor NursesNurses

Transport

NursesNurses

Patient Patient

NursesNurses

Operator

Doctor Z DoctorNurse XNurse X

S1

S3

S2

Ev1
Condition

S4
FurnishDiagnosis

action
S1

S3

S2

Ev1
Condition

S4
FurnishDiagnosis

action

nature

Activity: * result Document: *

nature

Type: ‘Diagnosis’ Type: ‘Prescription’

Property P1
(∀ A ∈ System.Activities), [nature(A) = 

Type.Diagnosis] ⇒
[∃ O ∈ System.InformationFlows, (outputs(A) ⊃ O) 

∧ (nature(O)=Type.Prescription]

3 3 -- ProjectionProjection

nature

Type: ‘Diagnosis’

Resource: ‘Doctor Z’ ResourceOf
Activity: ‘Diagnosis D”

result

Resource: ‘Nurse X’ ResourceOf

Capability

Role: ‘Nurse’

stateOf

State: ‘S4’ action

Action: ‘FurnishDiagnosis’

output

Document: 
‘MedicineList’

nature

Type: ‘Diagnosis’

Projection fails: output of this activity must be a prescription and a 
prescription is not a document: is it a mistake? Is it a real risk in case 

of medical error to not deliver a prescription?  
Fig. 5. Overview of the verification approach and mechanisms. 

Property P5
(∀ A ∈ System.Activities,
card(resourcesOf(A))<>1), 

[roles(resources(A)) ⊃ (Role: Nurse) ∧
roles(Resources(A)) ⊃ (Role: Doctor)]

⇒
[∃E∈states(A)], output(action(E)) = 

result(A) ∧ result(A)∈System.Forms]

Translation

Effect

Cause Activity: A result Document: F

implies

State: E action Action: Act

ResourceOf

Resource: *

Capability

Role: Doctor

ResourceOf

Resource: *

Capability

Role: Nurse

stateOf

State: E

Form: Prescription output  
Fig. 6. Example of translation of a property specified by using LUSP in a dynamic rule. 
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ANNEX: Partial meta model of the main modelling concepts and 
relations for multi view system modelling (GME 2004) 
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