
Security Patterns related to Security Requirements

David G. Rosado1, Carlos Gutiérrez2, Eduardo Fernández-Medina1 and
Mario Piattini1

1 ALARCOS Research Group. Information Systems and Technologies Department
UCLM-Soluziona Research and Development Institute. University of Castilla-La Mancha

Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain

2 STL. Calle Manuel Tovar 9, 28034 Madrid, Spain

Abstract. In the information technology environment, patterns give information
system architects a method for defining reusable solutions to design problems.
The purpose of using patterns is to create a reusable design element. We can
obtain, in a systematic way, a security software architecture that contains a set
of security design patterns from the security requirements found. Several
important aspects of building software systems with patterns are not addressed
yet by today’s pattern descriptions. Examples include the integration of a
pattern into a partially existing design, and the combination of patterns into
larger designs. Now, we want to use these patterns in our architectures, designs,
and implementations.

1 Introduction

It is very common not to consider security at the first stages of systems development
but to deal with it once the system has been designed and implemented. However,
those aspects known as “quality requirements” [4] [16], being security one of them,
must be described in a concrete way before the system architecture is designed [3].
The worldwide security/business continuity market is showing good growth and is
forecasted to gain momentum by 2005, reaching a 15% growth rate, all translating
into over $118 billion in spending by 2007. All segments - hardware, software, and
services - will lead growth uniformly as enterprises seek to improve their
infrastructures to manage organisational risks more effectively [20].

Ignoring security issues is dangerous because it can be difficult to retrofit security
in an application [30]. As the statistics presented by the CERT show, the number of
incidents related to security have exponentially grown during the last years (they have
passed from 3734 incidents reported in 1998 to 137529 in 2003; Total incidents
reported (1988-2003): 319,992) [9].

Security patterns are proposed as a means of bridging the gap between developers
and security experts. Security patterns are intended to capture security expertise in the
form of worked solutions to recurring problems. Security patterns are also intended to
be used and understood by developers who are not security professionals [21]. The
first person who used the pattern approach was Christopher Alexander [1], and in his
book he indicated that each pattern describes a problem which occurs over and over

Delgado J. (2006).
Protecting Notification of Events in Multimedia Systems.
In Proceedings of the 4th International Workshop on Security in Information Systems, pages 163-173
Copyright c© SciTePress

again in our environment, and then states the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever doing it
the same way twice. The “Gang of Four” book, as it is commonly known, defined
design patterns as “descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context” [19].

Design patterns tell their readers how to design a system, given a statement of a
problem and a set of forces that act upon the system. In the information technology
environment, patterns give information system architects a method for defining
reusable solutions to design problems without ever having to talk about or write
program code; they are truly programming language-independent.

The purpose of using patterns is to create a reusable design element. Each pattern
is useful in and by itself. The combination of patterns assists those responsible for
implementing security to produce sound, consistent designs that include all the
operations required, and so assure that the resulting implementations can be
efficiently completed and will perform effectively [6].

One of problems we face in everyday practice is that we want to secure an
application without spending excessive time and effort; for this reason, we are
tempted to use some known solutions like putting up a firewall or using simple
password authentication. Applying a pattern, a solution that has already been
extensively used in practice, might seem to be a reasonable idea. In many cases,
however, a solution applied without a thorough understanding of security
requirements does not provide adequate protection within the specific context [23].

In this paper, we will study the most important security requirements types, and
then we will look for a set of security patterns that covers all of the security
requirements specified and these patterns will help us create reference security
architecture where all security requirements are covered.

The rest of the paper is organized as follows: in Section 2, we will show several
security requirements types. In Section 3, we will discuss security patterns, we will
give a catalogue of architectural patterns and design patterns grouping together by
requirement types that fulfil and we will finish showing a pattern example. Finally,
we will put forward our conclusions and future work.

2 Requirements Security

In this section, we will select the most commonly used attributes and security
properties in the security dominion; the defined criteria are based on the works of
Babar [2] and Firesmith [17]. The selected security properties are the following:
• Authentication: the system verifies the identities of its externals before

interacting with them. It must be validated the identity of customers to frustrate
any disauthorized access.

• Authorization: access and usage privileges of authenticated externals are properly
granted and enforced. This attribute defines the access privileges of entities to
different resources and services of a system.

• Integrity: there should be a mechanism to protect data from unauthorized
modification while data are stored in an organizational repository or are

164

transferred into a network. It should ensure that data and communications will
not be compromised by active attacks.

• Confidentiality: sensitive information is not disclosed to unauthorized parties
(e.g., individuals, programs, processes, devices, or other systems). A system
should ensure data and communication privacy from unauthorized access.
Resource hiding is an important aspect of confidentiality.

• Attacker detection: attempted or successful attacks (or their resulting harm) are
detected, recorded, and notified. It consists of being able to detect and register
access or modification intents in the system coming from disauthorized users.

• Non-Repudiation: a party of an interaction (e.g., message, transaction,
transmission of data) is prevented from successfully repudiating (i.e., denying)
any aspect of the interaction. It prevents that certain participant in certain
interaction can deny to have participated in it.

• Security Auditing: security personnel are enabled to audit the status and use of
security mechanisms by analyzing security-related events. This means keeping a
log of users’ or other systems’ interaction with a system. It helps detect potential
attacks, find out what happened after assaults, and gather evidence of abnormal
activities.

• Maintainability: It facilitates the introduction or modification of the security
policy during the software development life cycle.

• Availability: It assures that authorized users can use the resources when they are
required. It ensures that authorized users can access data and other resources
without any obstruction or disturbance. If a disaster occurs, it ensures that a
system recovers quickly and completely.

3 Searching/Defining Security Patterns Based on Security
Requirements

3.1 Security Patterns

Patterns can be grouped into three categories according to their level of abstraction [8]
(high-level, mid-level and low-level): i) An architectural pattern expresses a
fundamental structural organization schema for software systems. It provides a set of
predefined subsystems, specifies their responsibilities, and includes rules and
guidelines for organizing the relationships between them. ii) A design pattern
provides a scheme for refining the subsystems or components of a software system, or
the relationships between them. It describes a commonly-recurring structure of
communicating components that solves a general design problem within a particular
context. iii) An idiom is a low-level pattern specific to a programming language. An
idiom describes how to implement particular aspects of components or the
relationships between them using the features of the given language.

For Ramachandran [24], a pattern is a common and repeating idiom of solution
design and architecture. Ramachadran defines a pattern as a solution to a problem in
the context of an application. Security components tend to focus on hardening the
system against threat to the exclusion of other goals. Patterns bring balance to the

165

definition of security architecture because they place equal emphasis on good
architecture and strong security. Our choices of security properties, authentication
mechanisms, and access control models can either drive our architecture towards
some well-understood pattern of design or turn us towards some ad hoc solution with
considerable architectural tensions. Without a model for security architecture, if we
take the latter path we might discover flaws or risks in the solution’s construction
only at deployment. That might be too late.

Something is a security pattern if: we can give it a name; we have observed its
design repeated over and over in many security products; there is a benefit to defining
some standard vocabulary dictated by common usage rules to describe the pattern;
there is a good security product that exemplifies the pattern; there is value in its
definition. The pattern might capture expertise or make complex portions of an
architecture diagram more intelligible. The pattern might make the evaluation of a
product easier by highlighting departures from a standard way of approaching a
problem. It might also raise a core set of issues against these departures [24].

Security patterns provide techniques for identifying and solving security issues;
they work together to form a collection of best practices (to support a security
strategy) and they address host, network and application security. The benefits of
using patterns are: they can be revisited and implemented at anytime to improve the
design of a system; less experienced practitioners can benefit from the experience of
those more fluent in security patterns; they provide a common language for
discussion, testing and development; they can be easily searched, categorized and
refactored; they provide reuseable, repeatable and documented security practices; they
do not define coding styles, programming languages or vendors [5].

Design strategies determine which application tactics or design patterns should be
used for particular application security scenarios and constraints. Security Design
patterns are an abstraction of business problems that address a variety of security
requirements and provide a solution to the known security related problem(s). They
can be architectural patterns that depict how a security problem can be architecturally
resolved, or they can be defensive design strategies upon which secure code can be
later built [28].

3.1.1 Architectural Patterns
An architectural pattern is a description of element and relation types together with a
set of constraints on how they may be used. A pattern can be thought of as a set of
constraints on an architecture -on the element types and their patterns of interaction -
and these constraints define a set or family of architectures that satisfy them. For
example, client-server is a common architectural pattern. Client and server are two
element types, and their coordination is described in terms of the protocol that the
server uses to communicate with each of its clients. Use of the term client-server only
implies that multiple clients exist; the clients themselves are not identified, and there
is no discussion of what functionality, other than implementation of protocols, has
been assigned to any of the clients or to the server. Countless architectures are of the
client-server pattern under this (informal) definition, but they are different from each
other. An architectural pattern is not an architecture but it still conveys a useful image
of the system—it imposes useful constraints on the architecture and, in turn, on the
system [4].

166

An architectural pattern expresses a fundamental structural organization schema
for software systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them [8]. An architectural pattern is a high-level abstraction. The choice of
the architectural pattern to be used is a fundamental design decision in the
development of a software system. It determines the system-wide structure and
constrains the design choices available for the various subsystems. It is, in general,
independent of the implementation language to be used. Examples of architectural
patterns are broker, multi-layer, pipe and filter, transaction-processing, etc.

One of the most useful aspects of patterns is that they exhibit known quality
attributes. This is why the architect chooses a particular pattern and not one at
random. Some patterns represent known solutions to performance problems, others
lend themselves well to high-security systems, still others have been successfully used
in high-availability systems. Choosing an architectural pattern is often the architect's
first major design choice [4].

3.1.2 Design Patterns
Mature software design patterns, like patterns in any other discipline, capture
solutions that have developed and evolved over time. Hence they are not the designs
that people tend to generate initially. Mature patterns reflect many iterations of untold
redesign and recoding, as developers have struggled for greater reuse and flexibility in
their software. Design patterns capture refined solutions in a succinct and easily
applied form.

The purpose of using patterns is to create a re-usable design element. Each pattern
is useful in and of itself. The combination of patterns assists those responsible for
implementing security to produce sound, consistent designs that include all the
operations required, and so assure that the resulting implementations can be
completed efficiently and will perform effectively [6].

A design pattern provides a scheme for refining the subsystems or components of a
software system, or the relationships between them. It describes a commonly-
recurring structure of communicating components that solves a general design
problem within a particular context [8]. A design pattern is a mid-level abstraction.
The choice of a design pattern does not affect the fundamental structure of the
software system, but it does affect the structure of a subsystem. Like the architectural
pattern, the design pattern tends to be independent of the implementation language to
be used. Examples of design patterns are adapter, composite, delegation, façade,
observer, etc.

3.2 Relation between Patterns and Requirements

We propose a set of security patterns that guarantee, in some way, one or several
security requirements types, that is, for a security requirement type we know one or
several patterns that insure the mentioned requirement. The use of patterns helps us
develop a secure system.

In table 1, we can see the relation between security requirements, security services,
security architectural patterns and security design patterns that we can use to be sure

167

that our design based on these patterns fulfils and guarantees these security
requirements for the system designed. We have selected a subset of security
requirements types of the aforementioned; we have studied several security patterns
that drive and guide us towards a secure development as well as towards a security
software architecture based on security patterns. Due to space constraints, we will
only briefly describe some patterns of those shown in table 1. For more information
about these patterns, please see the shown references. Some of the patterns can be
described as follows:
- Audit Interceptor: This pattern [28] works in conjunction with the Secure Logger

pattern and provides instrumentation of the logging aspects in the front. Besides,
this pattern enables the administration and manages the logging and audit in the
back-end.

- Secure Logger: This pattern [28] defines how to capture the application-specific
events and exceptions in a secure and reliable manner to support security auditing.

- Assertion Builder: This pattern [28] defines how an entity assertion (for example,
authentication assertion or authorization assertion) can be built.

- Secure Pipe: This pattern [28] shows how to secure the connection between client
and server, or between servers when connecting between trading partners. In a
complex distributed application environment, there will be a mixture of security
requirements and constraints between clients, servers, and any intermediaries. It
adds value by requiring mutual authentication and establishing confidentiality or
non-repudiation between trading partners. This is particularly critical for B2B
integration using Web services.

- Authoritative Source of Data: This pattern [25] is used to verify the validity of data
and their origin. It prevents the system from using outdated and incorrect
information and reduces the potential risk of processing and propagating fraudulent
data.

- Layered Security: This pattern [26] is aimed at dividing a system’s structure into
several layers to improve the security of the system by securing all of the layers.
One major drawback of using this pattern is that is increases complexity at the
architecture level.

- Check Point: This pattern [29] [30] centralizes and enforces security policy and
encapsulates the algorithm to put the security policy into operation. The algorithm
can contain any number of security checks. This pattern can be also used to keep
track of the failed attempts of security breaches, which helps take appropriate action
if the failures are malicious activities.

- Data Filter: This pattern [18] filters the contents of client requests in a distributed
system, according to predefined policies. Filtering can occur locally or remotely. In
many distributed systems, e.g., the Internet, requests for services or data need to be
filtered according to institution policies, legislative restrictions, privacy needs, etc.

168

- Authenticator: The Authenticator pattern [12] describes a general mechanism for
providing identification and authentication to a server from a client. It has the added
feature of allowing protocol negotiation to take place using the same procedures.
The pattern operates by offering an authentication negotiation object which then
provides the protected object only after authentication is successful.

- BodyGuard: This pattern [10] allows us to share objects and control their access in
a distributed environment without system level support for distributed objects. The
Bodyguard is a pattern that simplifies the management of object sharing over a
network. It provides message dispatching validation and assignment of access rights
to objects in non-local environments, to prevent the incorrect access to an object in
collaborative applications.
For example, for the requirement type ‘Authorization’, the security service that

orders the authorization requirement is the Authorization Service (Transport level and
Application level), and we know some patterns for developing the mentioned service
as the architectural patterns Firewall, BodyGuard, Check Point, etc. that apply the
architecture necessary for the carrying out of the authorization and the security design
patterns RBAC, Authorization, Session, etc, that implement in some way, the service
required by fulfilling the selected security requirements type. Therefore, if we use

Table 1. Requirements, Architectural Patterns and Design Patterns.

Security
Requirements

Security
Service(s)

Architectural Patterns Design Patterns

Authentication Authenticity and
Integrity

Data Filter [18], SSO [22]
Check Point [29] [30]

Cryptographic [27]

Authenticator [12]
SSO Delegator [28]

Assertion Builder [28]
Sender Authentication [7]

Authorization Authorization
Service

Firewall [15]
PEP+PDP+PRP+PIP+PAP

Data Filter [18]
Bodyguard [10]

Check Point [29] [30]
Cryptographic [27]

RBAC [14]
Application Firewall [11]

XML Firewall [11]
Assertion Builder [28]

Authorization [14]
Session [29] [30]

Confidentiality Confidentiality
Service

Firewall [15]
Layered Security [26]
Check Point [29] [30]

Cryptographic [27]
Encryption [27]

Pipes and Filter [8]

Secure Pipe [28]
Multilevel Security [14]

Session [29] [30]
Information Secrecy [7]

Integrity Integrity Service Firewall [15]
Layered Security [26]

Cryptographic [27]
Encryption [27]
Data Filter [18]

Pipes and Filter [8]

Authoritative Source of
Data [25]

Message Integrity [7]
Multilevel Security [14]

Session [29] [30]

Non-repudiation Non-Repudiation
Service

Encryption [27]
Cryptographic [27]

Secure Pipe [28]
Signature [7]

Audit Audit Service Check Point [29] [30]
Single Access Point [29] [30]

Audit Interceptor [28]
Secure Logger [28]

169

these security patterns, we will be able to develop and design the architecture and the
mechanisms that achieve and fulfil the desired requirement type.

3.3 Example: Cryptographic Pattern

Modern cryptography is been widely used in many applications, such as word
processors, spreadsheets, databases, and electronic commerce systems. The
widespread use of cryptographic techniques and the present interest and research on
software architectures and patterns led us to cryptographic software architectures and
cryptographic patterns. This architecture is composed of many patterns that offer the
cryptographic services address application requirements. The focus of these patterns
is on the security properties of confidentiality, integrity, authentication and non-
repudiation. The Information Secrecy pattern describes how to keep messages secret
from an attacker (confidentiality). The Message Integrity pattern shows how to
prevent that an attacker modifies or replaces messages without the sharing of
cryptographic keys. The Sender Authentication pattern illustrates how messages can
be authenticated with the usage of cryptographic keys. The Signature pattern
describes how it can be prevented that communicating parties cannot repudiate a
message (non-repudiation). Based on these generic cryptographic patterns, we can
generate more patterns composing one pattern with other, obtaining in a same pattern
the fulfilment of several security requirements, for example, Secrecy with Integrity
pattern is the result of linking the patterns Information Secrecy and Message Integrity,
where the properties of confidentiality and integrity are ensured at the same time with
the use of this pattern.

Fig. 1. Relationships between cryptographic design patterns.

Generic Object-Oriented Cryptographic Architecture

Sender
Authentication

Information
Secrecy

Signature Message
Integrity

Secrecy with
Sender

Authentication

Secrecy with
Signature

Signature with
Appendix

Secrecy with
Integrity

Secrecy with
Signature with

Appendix

170

In [7], it is defined an architecture based on these patterns called Generic Object-
Oriented Cryptographic Architecture (GOOCA), that is a abstraction of all these
patterns together forming a generic architecture. Fig. 1 is a directed acyclic graph of
dependences among patterns. An edge from pattern A to pattern B shows that pattern
A generates pattern B. A pattern that is pointed at by more than one edge has as many
generators as the number of edges arriving in it. The GOOCA generates the
microarchitecture for the four basic patterns. All other patterns are generated from
combinations of these.

4 Conclusions

Architects must make design decisions early in a project lifecycle. Many of them are
difficult, if not impossible, to validate and test until parts of the system are actually
built. Due to the difficulty of validating early design decisions, architects sensibly rely
on tried and tested approaches for solving certain classes of problems. This is one of
the great values of architectural patterns. They enable architects to reduce risk by
leveraging successful designs with known engineering attributes.

In the past, only software architects engaged in military application development
had to learn complex security methodologies. The rapid expansion of e-commerce
and internet applications has increased the need for an adequate application security
for practically all enterprise applications. The software architects of enterprise
applications are faced with a difficult choice.

This paper has presented a security patterns catalogue both architectural and design
destined, based on security requirements types that we can consider important for
security information systems.

 We will take these security requirements specified to create a draft of the
candidate security architecture. This candidate architecture will also identify a set of
security patterns that covers all of the security requirements within the component
architecture and will detail them in a high-level way, addressing the known risks,
exposures, and vulnerabilities.

Our future work will be that of studying the different security patterns and getting a
method with that we can classify what pattern is best, for requirement type selected,
of between the possible patterns to use according to some security property
(performance, reliability, degree security, flexibility, etc) and we can use them in our
reference architecture previously created.

Acknowledgements

This research is part of the following projects: DIMENSIONS (PBC-05-012-2)
financed by FEDER and by the “Consejería de Ciencia y Tecnología de la Junta de
Comunidades de Castilla-La Mancha” (Spain), RETISTIC (TIC2002-12487-E) and
CALIPO (TIC2003-07804-C05-03) granted by the “Dirección General de
Investigación del Ministerio de Ciencia y Tecnología” (Spain).

171

References

1. Alexander, C., Ishikawa, S., and Silverstein, M., A pattern language: towns, builings,
construction. 1977, New York: Oxford University Press.

2. Babar, M.A., Wang, X., and Gorton, I. Supporting Security Sensitive Architecture Design.
in QoSA-SOQUA 2005. 2005: Springer-Verlag.

3. Barbacci, M.R., Ellison, R., Lattanze, A.J., Stafford, J.A., Weinstock, C.B., and Wood,
W.G., Quality Attribute Workshops (QWAs). Third Edition., in Architecture Tradeoff
Analysis Initiative. 2003, Carnegie Mellon. Software Engineering Institute. p. 36

4. Bass, L., Clements, P., and Kazman, R., eds. Software Architecture in Practice. 2nd ed.
2003, Addison-Wesley.

5. Berry, C.A., Carnell, J., Juric, M.B., Kunnumpurath, M.M., Nashi, N., and Romanosky, S.,
Chapter 5: Patterns Applied to Manage Security, in J2EE Design Patterns Applied.

6. Blakley, B., Heath, C., and TheOpenGroup, Technical Guide. Security Design Patterns.
2004. http://www.opengroup.org/

7. Braga, A.M., Rubira, C., and Dahab, R. Tropyc: A Pattern Language for Cryptographic
Software. in 5th Pattern Languages of Programming (PLoP'98) Conference. 1998. Allerton
Park, Illinouis, USA.

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., Pattern-Oriented
Software Architecture: A System of Patterns. 1st ed. 1996: John Wiley & Sons. 476 Pg.

9. CERT. http://www.cert.org/stats/cert_stats.html#incidents
10. Das Neves, F. and Garrido, A., BodyGuard, in Pattern Languages of Programs III,

Addison-Wesley, Editor. 1998.
11. Delessy-Gassant, N., Fernandez, E.B., Rajput, S., and Larrondo-Petrie, M.M. Patterns for

Application Firewalls. in 11th Conference on Pattern Languages of Programs (PLoP'2004).
2004. Allterton Park, Monticello, Illinois.

12. F. Lee Brown, J., DiVietri, J., Diaz de Villegas, G., and Fernandez, E.B. The Authenticator
Pattern. in 6th Conference on Pattern Languages of Programs, PLoP 1999. 1999. Allterton
Park, Monticello, Illinois.

13. Fernandez, E.B. Patterns for Operating Systems Access Control. in 9th Conference on
Pattern Languages of Programs, PLoP 2002. 2002. Allerton Park, Illinois, USA.

14. Fernandez, E.B. and Pan, R. A pattern language for security models. in 8th Conference on
Pattern Languages of Programs, PLoP 2001. 2001. Allerton Park, Illinois, USA.

15. Fernandez, E.B., Petrie, M.L., Seliya, N., and Herzberg, A. A Pattern Language for
Firewalls. in 10th Conference on Pattern Languages of Programs (PLoP'2003). 2003.
Allterton Park, Monticello, Illinois.

16. Firesmith, D.G., Commom Concepts Underlying Safety, Security, and Survivability
Engineering. 2003, SEI

17. Firesmith, D.G., Specifying Reusable Security Requirements. Journal of Object
Technology, 2004. 3: p. 61-75.

18. Flanders, R. and Fernandez, E.B. Data Filter Architecture Pattern. in 6th Conference on
Pattern Languages of Programs, PLoP 1999. 1999. Allterton Park, Monticello, Illinois.

19. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software. 1994: Addison-Wesley.

20. IDC. 2005. http://www.idc.com/getdoc.jsp?containerId=prUS00190705
21. Kienzle, D.M. and Elder, M.C., Final Technical Report: Security Patterns for web

Application Development. 2005
22. King, C., Osmanoglu, E., and Dalton, C., Security Architecture. 2001: McGraw-Hill.
23. Kis, M. Information Security Antipatterns in Software Requirements Engineering. in 9th

Conference on Pattern Languages of Programs (PLoP'2002). 2002. Allterton Park,
Monticello, Illinois.

24. Ramachandran, J., Designing Security Architecture Solutions. 2002: John Wiley & Sons.

172

25. Romanosky, S. Enterprise Security Patterns. in 7th European Conference on Pattern
Languages of Programs (EuroPlop'02). 2002. Irsee, Germany.

26. Romanosky, S., Security Design Patterns. 2001.
http://www.cgisecurity.com/lib/securityDesignPatterns.html

27. Schumacher, M. and Roedig, U. Security Engineering with Patterns. in 8th Conference on
Patterns Lnaguages of Programs, PLoP 2001. 2001. Monticello, Illinois, USA.

28. Steel, C., Nagappan, R., and Lai, R., Core Security Patterns. 2005: Prentice Hall PTR. 1088
Pg.

29. Wassermann, R., Using Security Patterns to Model and Analyze Security Requirements.
2004. p. 151

30. Yoder, J. and Barcalow, J. Architectural Patterns for Enabling Application Security. in 4th
Conference on Patterns Language of Programming, PLop 1997. 1997. Monticello, Illinois,
USA.

173

