
On Collaborations and Choreographies

Giorgio Bruno1, Giulia Bruno1, Marcello La Rosa2

1 Dip. Automatica e Informatica, Politecnico di Torino,
24 Corso Duca degli Abruzzi, 10129 Torino, Italy

2 Centre for Information Technology Innovation,
Queensland University of Technology,

GPO Box 2434, Brisbane QLD 4001, Australia

Abstract. This paper analyzes binary collaborations and multi-party
collaborations in the context of business processes and proposes a lifecycle in
which collaborations are first represented with abstract models called
collaboration processes, then embodied in business processes and finally
implemented in BPEL. In particular this paper discusses how to represent
multi-party collaborations and presents two approaches: one is based on binary
collaborations complemented with choreographies, and the other draws upon
the notion of extended binary collaborations.

1 Introduction

Collaborative business processes are meant to collaborate with each other so as to
achieve a common goal. Therefore great importance is attached to the various notions
of collaborations, i.e. binary collaborations and multi-party ones. In this context,
“party” subsumes “business process” in that the parties are the organizations
responsible for the collaborative business processes.

A binary collaboration mainly refers to the sequence of interactions taking place
between two parties for a specific purpose over a given period of time. An interaction
can be based on a single message (asynchronous interaction) or on a pair of messages
in the opposite directions (synchronous interaction). In an asynchronous interaction
one party (the initiator of the interaction) sends a message to the other party (the
follower), which upon receiving the message will perform some processing, i.e. an
operation, without the initiator being affected in any way. In a synchronous
interaction the initiator sends a “request” message, then waits for a “response”
message from the follower; the follower is meant to perform an operation upon
receiving the request message and to send a result back to the initiator with the
response message.

Collaborations imply a lifecycle, as their development proceeds through a number
of phases. At specification time, the parties involved have to agree on the interactions
and the order in which they are to be carried out; an abstract model is needed and we
refer to it as a collaboration process. At design time the parties work out their

Bruno G., Bruno G. and La Rosa M. (2006).
On Collaborations and Choreographies.
In Proceedings of the 1st International Workshop on Technologies for Collaborative Business Process Management, pages 3-12
Copyright c© SciTePress

business processes so as to conform to the intended collaborations; collaborations are
embodied in communication activities. At run time collaborations are mapped to
mechanisms suitable for correlating the actual messages to the actual process
instances; BPEL [1] has been adopted as the implementation language.

During this research an environment, called bProgress [2], has been developed: it
consists of a number of tools allowing users to manage the lifecycle of collaborations.
In particular, bProgress includes a translator which is able to automatically generate
BPEL processes from collaboration models and business process models.

A multi-party collaboration can be still thought of as the combination of a number
of binary collaborations, which, in general, are not independent of each other. Usually
multi-party collaborations are described by means of choreographies, whose aim is to
encompass all the relevant interactions from a global perspective and to specify
precedence and timing constraints. Choreographies are not meant to completely
replace binary collaborations, as not all the interactions concern all the parties;
therefore choreographies can be interpreted as global constraints imposed on binary
collaborations.

This paper discusses the relationships between binary collaborations and
choreographies and is organized as follows. Section 2 presents how binary
collaborations and collaborative business processes are represented in bProgress.
Section 3 addresses multi-party collaborations and presents two approaches: the first
approach is based on choreographies, the second one on extended binary
collaborations (without choreographies). Section 4 presents the conclusion.

2 Binary Collaborations

An example of binary collaboration is the one established between a buyer and a
seller, as follows. The party which starts the collaboration is called the requester; the
other is called the provider. The requester (i.e. the buyer) starts a new collaboration
by sending a request for quote, which includes the description of the goods (or
services) needed, the identifier of the requester (requesterId) and two deadlines, tQ
and tO. The provider can then send a quote and the requester will wait for it, but if the
quote is not sent before tQ, the collaboration will be ended. A quote includes the
identifier of the provider (supplierId) and the cost of the goods. After receiving a
quote, the requester can send a purchase order and the provider will wait for it, but if
the order is not sent before tO, the collaboration will be ended.

The model of this collaboration, referred to as bsC (i.e. buyer-seller collaboration),
is the collaboration process shown in Fig. 1. A collaboration process is a number of
interactions placed within a control structure providing for sequential, alternative, and
timeout-related paths. It is represented in bProgress as a special activity diagram, for
which we have developed a particular UML profile [3], called collaboration profile
(not shown due to space limitations).

4

Fig. 1. The model of collaboration bsC.

The “RtoP” stereotype indicates an asynchronous interaction whose initiator is the
requester, while the “PtoR” stereotype indicates an asynchronous interaction whose
initiator is the provider. Synchronous interactions are denoted by stereotypes “sRtoP”
and “sPtoR”. The types of the messages are provided in a schema file associated with
the collaboration model.

A collaboration model implies the existence of two business processes, one on the
requester’s side and the other on the provider’s side, whose instances are meant to
carry out actual collaborations conforming to that model. An actual collaboration is a
sort of logical link between two process instances and how this link is implemented
depends on the underlying platform. The BPEL run time system uses a technique
called correlation so as to deliver the incoming messages to the appropriate process
instances. The matching between an incoming message and a process instance waiting
for a message of that type is based on particular attributes of the message, called
properties. The properties of messages are meant to be agreed upon by the parties
involved in the collaboration; hence they are logically part of the collaboration model.
In bProgress we adopted a convention that enables the translator to generate BPEL
code in a standard way. In fact we assume that each message contains a particular
attribute, called collaborationId, as shown in Fig. 1: its value is set by the requester
before starting a given collaboration and then it is used in all the subsequent messages
within that collaboration. A suitable collaborationId can be the URL of the requester
process concatenated with the identifier of the requester process instance and with an
integer value that the requester increments before starting a new collaboration.

Two simplified business processes which belong to different sellers and provide
the same bsC collaboration are presented in Fig. 2. Process salesBP1 is basically an
extension of bsC, in which “RtoP” interactions have been turned into “receive”
activities and “PtoR” interactions have been turned into “send” activities. We think of
business processes as extended UML 2.0 activity diagrams, and for this purpose we
have developed a specific UML profile, called process profile. In our approach a
business process is meant to be automatically translated into a BPEL process,
therefore those stereotypes (and their attributes) aim at facilitating such translation.

Attributes
- rfQ: type = rfQType
- quote: type = quoteType, deadline = rfQ.tQ
- order: type = orderType, deadline = rfQ.tO

Schema bsCX.xsd
- rfQType: string collaborationId,
 string requesterId,
 string description, dateTime tQ,
 dateTime tO
- quoteType: string collaborationId,
 string supplierId, double cost
- orderType: string collaborationId,
 string requesterId, double cost

5

A business process keeps local information in its (process) variables: they do not
need to be explicitly declared, as they can be taken from the inVar and outVar
attributes of the process activities.

Communication activities, i.e. the ones denoted by stereotypes “send” or “receive”,
indicate the collaboration model and the interaction they refer to, by means of
attribute interaction. Attribute inVar indicates into which variable the input message
is to be copied, and attribute outVar indicates from which variable the output message
is to be taken. Process salesBP1 is simplified in the sense that actual processing
activities are ignored; however stereotypes “abstract” act as place cards for them. For
this reason salesBP1 can also be interpreted as a behavioral interface model [4].

Fig. 2. The models of business processes salesBP1 (left) and salesBP2 (right).

Process salesBP2 is more complex in that it acts as a broker. In fact, it relays the
request for quote to a number of suppliers, and then selects the best of the quotes
received and relays it to the buyer; if it receives the order it will relay it to the supplier
selected. For simplicity’s sake the attributes of the activities have been omitted.

The collaborations between salesBP2 and its suppliers are similar to the one
existing between the buyer and salesBP2; those collaborations (referred to as multiple
collaborations) can be handled collectively by means of two new activity types called
“multiSend” and “multiReceive”. These activities carry out patterns “one-to-many
send” and “one-from-many receive” illustrated in [5]. A multiSend activity, such as

Attributes
- receiveRfQ: interaction = bsC.rfQ,
 inVar = rfQ
- generateQuote: outVar = rfQ, inVar = quote
- sendQuote: interaction = bsC.quote,
 outVar = quote, deadline = rfQ.tQ
- receiveOrder: interaction = bsC.order,
 inVar = order, deadline = rfQ.tO
- processOrder: outVar = order, inVar = ack

6

sendRfQ1s, broadcasts the same message to all the parties involved in the multiple
collaborations, whilst a multiReceive activity, such as receiveQuote1s, is meant to
receive a number of similar messages (i.e. a message from each of the parties
involved).

Although similar, the collaboration between the buyer and the broker and the one
between the broker and any particular supplier are independent of each other (as they
are unaware of each other) and hence they do not form what we call a multi-party
collaboration, the topic of the next section.

3 Multi-party Collaborations

Generally speaking, a multi-party collaboration takes place when three or more
parties are involved in (binary) collaborations that are not independent of each other,
in the sense that there is a global awareness of the relevant interactions. The case
study that follows is concerned with a business protocol to be established among a
number of organizations acting as customers, brokers or suppliers. We are interested
in the second part of that protocol, i.e. from orders to payments, whilst the first part
deals with requests for quotes and quotes, as shown in the previous section.

A customer sends a purchase order (orderCB) for certain goods to a broker which
sends a third-party order (orderBS) to a supplier. As soon as the supplier has
completed the delivery to the customer, it sends a delivery document to the customer.
The customer then sends an acceptance document to the broker. On the basis of their
respective agreements the customer sends a payment to the broker (paymentCB) and
the broker sends a payment (paymentBS) to the supplier. The deadlines of the
interactions are as follows: the delivery of goods has to take place within the delivery
date specified in the order, the acceptance will be sent within 3 days from the delivery
date, paymentCB will be made within 30 days from the acceptance date, and
paymentBS will be made within 40 days from the acceptance date. For simplicity’s
sake only the case of successful acceptance will be considered. The above mentioned
interactions can be illustrated, as an UML sequence diagram, in the global model
shown in Fig. 3.

The three binary collaborations implied by the global model are shown in Fig. 4.
The binary collaboration (cbC) between the customer and the broker consists of
interactions orderCB, acceptance and paymentCB; however acceptance is not a direct
consequence of orderCB even if it is preceded by orderCB. In fact, message
acceptance will be sent only after message delivery has been received. Therefore the
link from orderCB to acceptance is dashed as it implies weak precedence; likewise for
the link from orderBS to paymentBS. If the order of the interactions within a given
collaboration is not entirely determined by these interactions, the collaboration is not
self-contained. Of the three collaborations illustrated in Fig.4, only the one between
the supplier and the customer is self-contained, while the others are not. As a
consequence, not all the deadlines of the interactions can be precisely determined.

7

Fig. 3. The global model of interactions.

Fig. 4. The models of binary collaborations cbC (left), bsC (center) and csC (right).

In fact, the deadline of acceptance in collaboration cbC cannot be expressed as it
depends on the date of the delivery (which is not included in the collaboration).

Attributes
- orderCB:
 type = orderCBType
- acceptance:
 type = acceptanceType
- paymentCB:
 type = paymentCBType,
 deadline = acceptance.date+30

Schema cbCX.xsd
- orderCBType:
 dateTime deliveryDate
- acceptanceType:
 dateTime date

Attributes
- orderBS:
 type = orderBSType
- paymentBS:
 type = paymentBSType

Schema bsCX.xsd
- orderBSType:
 dateTime deliveryDate

Attributes
- delivery:
 type = deliveryType

Schema csCX.xsd
- deliveryType:
 dateTime date

8

The problem is then how to represent a multi-party collaboration, without
unnecessary information being revealed to the parties – as it would happen if a global
interaction model were provided. We propose two solutions: the first is based on
binary collaborations plus a choreography model, and the second is based on
extended binary collaborations.

3.1 Choreographies

Binary collaborations are needed as parties interact in pairs, however if binary
collaborations are not self-contained, an additional ordering structure is required.
Such a structure is called choreography as it establishes precedence constraints among
the interactions of different collaborations. The choreography related to the case study
(cbsCh = customer-broker-supplier choreography), shown in Fig. 5, is based on a
UML profile, called choreography profile, which essentially features the “interaction”
stereotype and control flow constructs. Like collaboration processes, choreographies
are made up of a number of interactions placed within a control structure providing
for sequential, alternative, and timeout-related paths.

Fig. 5. Choreography cbsCh.

Basically choreography cbsCh provides the missing links to the binary collaborations
shown in Fig. 4, and if we “merge” cbsCh and the binary collaborations we come up
with the global model shown in Fig. 3. The business processes of the parties involved
in the case study are shown in Fig 6. There are some deadlines that cannot be
precisely determined, such as that of activity receiveAcceptance in process brokerBP.
This happens because brokerBP does not receive message delivery on which that
deadline is based. However, as a reasonable solution, that deadline could be set to the
upper limit, which is given by orderCB.deliveryDate + 3. On the contrary, the

Attributes
- csC.delivery.deadline = bsC.orderBS.deliveryDate
- cbC.acceptance.deadline = csC.delivery.date+3
- bsCpaymentBS.deadline = cbC.acceptance.date+40

9

deadlines of the “send” activities can be precisely established. If we want all the
parties to be able to compute the deadlines precisely, we have to add other messages
to the business protocol; in particular the delivery message should be sent to the
broker, too, and the acceptance message to the supplier, too.

Fig. 6. The business processes of the customer (left), broker (center) and supplier (right).

Attributes of customerBP
- sendOrderCB:
 interaction = cbC.orderCB,
 outVar = orderCB
- receiveDelivery:
 interaction = csC.delivery,
 inVar = delivery,
 deadline =
 orderCB.deliveryDate
- sendAcceptance:
 interaction = cbC.acceptance,
 outVar = acceptance,
 deadline = delivery.date+3
- sendPaymentCB:
 interaction = cbC.paymentCB,
 outVar = paymentCB,
 deadline = acceptance.date+30

Attributes of brokerBP
- receiveOrderCB:
 interaction = cbC.orderCB,
 inVar = orderCB
- sendOrderBS:
 interaction = bsC.orderBS,
 outVar = orderBS
- receiveAcceptance:
 interaction = cbC.acceptance,
 inVar = acceptance,
 deadline = ???
- receivePaymentCB:
 interaction = cbC.paymentCB,
 inVar = paymentCB
- sendPaymentBS:
 interaction = bsC.paymentBS,
 outVar = paymentBS,
 deadline = acceptanceDate+40

Attributes of supplierBP
- receiveOrderBS:
 interaction = bsC.orderBS,
 inVar = orderBS
- sendDelivery:
 interaction = csC.delivery,
 outVar = delivery,
 deadline =
 orderBS.deliveryDate
- receivePaymentBS:
 interaction =
 bsC.paymentBS,
 inVar = paymentBS,
 deadline = ???

10

3.2 Extended Binary Collaborations

This approach is completely decentralized in the sense that it does not require any
common model. The parties, instead, working in pairs, through an iterative process,
will come up with extended binary collaborations. A binary collaboration is extended
if it includes extended interactions, an extended interaction taking place between one
of the two parties (involved in the collaboration) and an external one. The extended
binary collaborations related to the case study are informally shown in Fig. 7, as
UML sequence diagrams. The collaboration between the customer and the broker is
extended because it includes the delivery message from the supplier to the customer.

Fig. 7. Extended collaborations cbC and bsC depicted as UML sequence diagrams.

The extended collaboration models are shown in Fig. 8. Extended interactions are
represented by stereotypes “toP”, “toR”, “fromP” and “fromR”.

Fig. 8. The models of extended collaborations cbC (left) and bsC (right).

The extended collaboration models are shown in Fig. 8. Extended messages are
represented by stereotypes “toP”, “toR”, “fromP” and “fromR”. If we combine those
models by merging the interactions with the same names we come up with the global

Attributes
- delivery:
 from = supplier,
 deadline =
 orderCB.deliveryDate
- acceptance:
 deadline =
 delivery.date+3
 paymentCB:
 deadline =
 acceptance.date+30

Attributes
- delivery:
 to = customer,
 deadline =
 orderBS.deliveryDate
- paymentBS:
 type = paymentBSType
 deadline =
 acceptance.date+40

11

model shown in Fig. 3, and as a consequence the business processes resulting are the
same as those shown in Fig. 6.

4 Conclusion

Current work proceeds in several directions. We are making an in-depth comparison
between our approach and choreography description languages such as WS-CDL [6].
WS-CDL is a complex XML-based language and lacks a graphical notation, therefore
a mapping from our models to WS-CDL descriptions is under consideration;
moreover, as pointed out in [7], it is not clear how WS-CDL deals with multiple
collaborations. Since we follow the MDA [8] principles, a further step is to
automatically produce behavioral interface models from collaboration models; the
automatic mapping from business processes to BPEL processes has already been
achieved [2]. Finally we want to add transactional features [9] to our collaboration
models. As to modeling notations, BPMN [10] is gaining growing consensus,
however it does not treat communication activities as first-level entities and, for this
reason, it seems to be more adequate to workflow processes than to collaborative
ones.

References

1. Andrews, T. et al.: Business Process Execution Language for Web Services (BPEL4WS),
Version 1.1. BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems (2003).
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

2. Bruno, G., La Rosa, M.: From collaboration models to BPEL processes through service
models. In Pre-proceedings of the 1st Int. Workshop on Web Service Choreography and
Orchestration for Business Process Management, BPM 2005, Nancy (2005) 16-30

3. OMG: Unified Modeling Language: Superstructure, Version 2.0 (2005).
http://www.omg.org/cgi-bin/doc?formal/05-07-04

4. Barros, A., Dumas, M., Oaks, P.: Standards for Web Service Choreography and
Orchestration: Status and Perspectives. In Pre-proceedings of the 1st Int. Workshop on Web
Service Choreography and Orchestration for Business Process Management, BPM 2005,
Nancy (2005) 1-15

5. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera F. (eds.): BPM 2005. Lecture Notes in
Computer Science, Vol. 3649. Springer (2005) 302-318

6. Kavantzas, N. et al. (eds): Web Services Choreography Description Language (WS-CDL),
Version 1.0. W3C (2004). http://www.w3.org/TR/ws-cdl-10/

7. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Services Choreography
Description Language (WS-CDL). BPTrends (2005). http://www.bptrends.com

8. Mellor, S., Clark, A. N., Futagami, T.: Special Issue on Model-Driven Development. IEEE
Software, Vol. 20 (5). IEEE Computer Society (2003)

9. Dalal, S., Temel, S., Little, M., Potts, M., Webber, J.: Coordinating business transactions
on the web. IEEE Internet Computing, Vol. 7 (1). IEEE Computer Society (2003) 30-39

10. White, S. A.: Business Process Modeling Notation (BPMN), Version 1.0, BPMI (2004).
http://www.bpmn.org

12

