
Requirements-Driven Automatic Configuration of
Natural Language Applications

Dan Cristea1,2, Corina Forăscu1,3, Ionuţ Pistol1

1 University “Al. I. Cuza” of Iaşi, Faculty of Computer Science
2Institute for Computer Science, Romanian Academy, Iaşi – Romania

3Institute for Artificial Intelligence, Romanian Academy, Bucharest – Romania

Abstract. The paper proposes a model for dynamical building of architectures
intended to process natural language. The representation that stays at the base of
the model is a hierarchy of XML annotation schemas in which the parent-child
links are defined by subsumption relations. We show how the hierarchy may be
augmented with processing power by marking the edges with names of
processors, each realising an elementary NL processing step, able to transform
the annotation corresponding to the parent node onto that corresponding to the
child node. The paper describes a navigation algorithm in the hierarchy, which
computes paths linking a start node to a destination node, and which
automatically configures architectures of serial and parallel combinations of
processors.

1 Introduction

In this paper we propose a methodology that allows for the automatic configuration of
architectures of serial and parallel combinations of natural language (NL) processors,
each able to perform an elementary transformation to an input file. The input and
output of the modules (between the processing steps) are XML annotated files.

GATE [1], [2] is an extremely versatile environment for building and deploying
NLP software and resources. It allows for the integration of a large amount of built-
ins in new processing pipelines that can be put to work on single documents or
corpora. In order to assemble a pipeline the user is instructed to select the modules
(called resources in GATE) needed as parts of the processing chain, in the correct
processing order, and to instantiate their parameters. When all these are done, the
configured chain of processes may be put to work on an input file, with the result of
obtaining an output file, XML annotated. The model we propose is able to automatise
the process of assembling architectures of modules, which is manually performed in
GATE. The automatically configured architecture will combine processing steps and
filtering steps. The processing steps add information while filtering steps remove
information. Conforming to the proposed model, the input and output annotation
schemas can be automatically classified on a pre-existing hierarchy, their places
triggering the whole computation of the steps involved in the transformation.

Our approach further extends the Cristea and Butnariu’s model of operators based
on a hierarchy of annotation schemas [3]. In their model, XML annotation schemas

Cristea D., Forǎscu C. and Pistol I. (2006).
Requirements-Driven Automatic Configuration of Natural Language Applications.
In Proceedings of the 3rd International Workshop on Natural Language Understanding and Cognitive Science, pages 47-56
DOI: 10.5220/0002481200470056
Copyright c© SciTePress

are nodes in a directed acyclic graph, in which the hierarchical links are subsumption
relations between schemas. The model allows classification, simplification and
merging operations to be performed on files observing the restrictions of the
annotation schemas that are included in the hierarchy.

We describe how the graph of annotation schemas may be augmented with
processing power by marking edges, linking parent nodes to child nodes, with names
of processors, each realising an elementary NL processing step. On the augmented
graph, three operations are defined: simplification, pipeline and merge. We present
then a navigation algorithm in this hierarchy, which computes paths between a start
node, corresponding to an input file, and a destination node corresponding to an
output file. These computed paths correspond to sequences of operations, which are
equivalent to architectures of serial and parallel combinations of NL processors.
When an input file is given to a system that implements these principles, and the
requirements of an output annotation are specified as the destination node, first the
XML annotation schema of the input file is determined, then this schema is classified
onto the hierarchy, becoming the start node, then the expression of operations
corresponding to the minimum paths linking the start node to the destination node is
computed (the architecture), and finally the input file is given to this architecture,
resulting in the expected output file.

Section 2 of the paper reviews the hierarchical model of annotation schemas, while
section 3 presents the hierarchy augmented with processing power. In section 4, the
operations associated to the augmented graph are defined. Section 5 presents the
algorithm that computes the sequence of operations, displays some examples and
briefly describes an implementation of the algorithm. In section 6 the feasibility of the
approach in practical settings is discussed.

2 The Graph Representation of Annotation Schemas

In [3], different layers of annotation over a corpus are represented as a hierarchy. A
node in the hierarchy is an annotation schema. It contains a list of XML tags, each
characterised by a name, a list of attributes, and possible restrictions encumbered by
identifying attributes values of different tags in the hierarchy. The parenthood
relationship places the schemas described in this way in a hierarchy, which is a
directed acyclic graph whose node names are unique symbols. If a node A is directly
linked to a node B, then it is said that A subsumes B in the hierarchy (therefore B is
a descendent of A). This happens if and only if:
- any tag-name of A is also in B;
- any attribute in the list of attributes of a tag-name in A is also in the list of

attributes of the same tag-name of B;
- any restriction which holds in A also holds in B.

The subsumption relation indicates that each node in the hierarchy inherits all
features (seen here as tags and their attributes) of all of its parents. So, if A subsumes
B, B is an annotation schema which is more informative than A and/or defines more
constraints. In general, either B has at least one tag-name which is not in A, and/or
there is at least one tag-name in B such that at least one attribute in its list of attributes
is not in the list of attributes of the homonymous tag-name in A, and/or there is at

48

least one constraint which holds in B but which doesn’t hold in A. The subsumption
relation is transitive, reflexive and asymmetrical.

Fig. 1. Example of a hierarchy of schemas (adapted after an example from [3]).

Figure 1 shows an example of a hierarchy of schemas describing different layers of
annotation useful for many NLP applications. SCH-ROOT represents the “empty”
annotation (no tags). Immediately under this trivial schema, three schemas, SCH-
TOK, SCH-SEG and SCH-PAR are placed. SCH-TOK identifies tokens and marks
word lemmas, SCH-SEG marks borders between elementary discourse units, while
SCH-PAR marks paragraphs. SCH-POS, placed under SCH-TOK, does not contribute
with new tags but it complements the token tag with an attribute that indicates the
part-of-speech. SCH-POS is a parent for both SCH-NP and SCH-VP schemas. These
mark noun phrases (NPs) and, respectively, verb phrases (VPs). Then, SCH-COREF,
placed under SCH-NP, marks anaphoric links between co-referential NPs. SCH-SEG-
NP-VP is a schema marking simultaneously noun phrases, verb phrases and discourse
units boundaries. It adds no new markings to those inherited from its three parents.
Finally, SCH-COREF-IN-SEG is a schema in which the co-references and segment
boundaries are marked.

An example of an XML file observing the restrictions of the SCH-COREF-IN-
SEG node is shown in Figure 2.

3 Marking the Edges of the Graph with Processor Names

Modern software engineering design uses interchangeable modules, which are
interconnected in complex processing architectures. In NLP, this approach has proven
advantages with respect to reusability, and language and application independence. In
such a view, each module has inputs, outputs and accesses resources. In order for the
modules to be truly interconnectable, each of the module’s inputs and outputs must
observe the constraints of certain annotation schemas. Usually the language and,
sometimes, application dependence of a module is given by the specific set of
resources it accesses. For instance, a POS-tagger, runs the same algorithms on differe-

SCH-NP

SCH-SEG-NP-VP

SCH-ROOT

SCH-TOK SCH-PAR

SCH-POS

SCH-VP

SCH-COREF

SCH-COREF-IN-SEG

SCH-SEG

49

nt sets of language models in order to tag documents for POS in different languages.
For the system builder, the real functioning of a module can be obscured in a black
box, since is it fully determined by the triplet: input, output and resources. This is
equivalent with saying that given a triplet of schemas, characterizing the input, the
resources and the output, a module should exist which produces as output a file
observing the restrictions of the output schema, whenever it receives as input a file
observing the restrictions described by the input schema, and accesses resources
observing the resources schema. This way, the hierarchy of annotation schemas
becomes a graph of interconnecting modules.

More precisely, if a node A subsumes a node B (see Figure 3), there should be a
process which takes as input a file observing the restrictions imposed by the node A
and produces as output a file observing the restrictions imposed by the node B. While
doing this type of processing, the module might make use also of some resources.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ROOT>
 <SEG id="s0">
 <NP head-id="t2" id="n0">
 <TOK id="t2" pos="N" lem="Winston">Winston</TOK>
 </NP>
 <TOK id="t3" pos="V" lem="be">was</TOK>
 <TOK id="t4" pos="ING" lem="dream">dreaming</TOK>
 <TOK id="t5" pos="PREP" lem="of">of</TOK>
 <NP head-id="t7" id="n2">
 <NP head-id="t6" id="n1" coref="n0">
 <TOK id="t6" pos="PRON" lem="he">his</TOK>
 </NP>
 <TOK id="t7" pos="N" lem="mother">mother</TOK>
 </NP>
 <TOK id="t8" pos="PUNCT">.</TOK>
 </SEG>
 <SEG id="s1">
 <NP head-id="t9" id="n3" coref="n0">
 <TOK id="t9" pos="PRON" lem="he">He</TOK>
 </NP>
 <TOK id="t10" pos="V" lem="must">must</TOK>
 <TOK id="t11" pos="PUNCT">,</TOK>
 </SEG>
 <SEG id="s2">
 <NP head-id="t12" id="n4" coref="n0">
 <TOK id="t12" pos="PRON" lem="he">he</TOK>
 </NP>
 <TOK id="t13" pos="V" lem="think">thought</TOK>
 <TOK id="t14" pos="PUNCT">,</TOK>
 </SEG>
 <SEG id="s3">
 <TOK id="t15" pos="V" lem="have">have</TOK>
 <TOK id="t16" pos="EN" lem="be">been</TOK>
 <NP head-id="t20" id="n5">
 <TOK id="t17" pos="NUM" lem="ten">ten</TOK>
 <TOK id="t18" pos="CC" lem="or">or</TOK>
 <TOK id="t19" pos="NUM" lem="eleven">eleven</TOK>
 <TOK id="t20" pos="A" lem="years_old">years_old</TOK>
 </NP>
 </SEG>
</ROOT>

Fig. 2. Example of annotation.

50

However, in our graphical notations and the considerations to follow, only the input-
output relations will be retained.

Fig. 3. Equivalence between the subsumption relation and a processing step.

Let’s note that the directionality of a process, as attached to an edge of the graph, is
that of the subsumption relation. So, if node A subsumes node B, then the hierarchical
link is from A to B (from the parent to the descendant). In our figures this will be
marked by oriented edges (arrows). To mark the difference between edges denoting
subsumption relations and edges denoting processing, we will mark with thin arrows
the subsumption relations and with labelled thick arrows processing steps, where the
labels indicate the names of the processes. We will call a graph (or hierarchy) of
annotation schemas on which processing modules have been marked on edges as
being augmented with processing power (or simply, augmented).

Fig. 4. The hierarchy in Figure 1 augmented with processing power.

Sometimes the existence of a process attached to an edge in the graph depends on
the existence of adequate resources. For instance, one may have access to an
automatic tagger, but it will not be able to apply it for a language L because of the
lack of a language model (a resource) adequate for that language. This way, in a
repository of resources and instruments dedicated to NLP, the maximal graph of
annotation schemas hosted can have different instantiations for different languages,
depending on the existence (or absence) of adequate resources. Figure 4 represents the

SCH-PAR

SCH-COREF-IN-SEG

SCH-VP

SCH-SEG-NP-VP

SCH-ROOT

SCH-NP

SCH-COREF

SCH-TOK

SCH-POS

SCH-SEG

tokeniser

POS-tagger

NP-chunker

AR

VP-chunker

segmenter

∅

paragraph finder

∅∅

∅

∅

resources

subsumption relationpprocess p

input

output

A

B

51

hierarchy of schemas from Figure 1, augmented with processing power. The names of
processes are marked on some edges and the symbol ∅ marks the empty process (no
contribution of new tags/attributes). When multiple ∅ edges enter into the same
destination node, the significance is that its annotation represents the merge of all
annotation schemas of the source nodes.

4 Operations in the Augmented Graph

If, in the hierarchical graph of schemas, navigation in the graph allows for the
classification of files in the hierarchy, the simplification of annotations and the
merging of annotations, as described in [3], in the graph augmented with processing
power, navigation allows for the automatic identification of processing steps. Any
process resulting from this computation is a combination of serial processing with
merges. Unlike GATE, which allows only pipeline processing, in which the whole
output of the preceding processor is given as input to the next processor, in our model
a combination of branching pipelines may result.

Once the computation of steps is done using the augmented hierarchy, then the
computed process can be applied on an input file, eventually producing an output
file. These files comply with the restrictions encoded by a start node and,
respectively, a destination node of the hierarchy.

A processing task is defined by a pair of annotation schemas, start and destination.
Transposed on the processing graph, provided the two schemas are represented as
nodes in the graph and since the graph is connected, there should always be at least
one path connecting these two nodes. The paths found are made up of oriented edges,
and, as we will see, it is important if the orientation of the edges is the same as the one
of the path or no.

We will describe later in this section three operations associated with the computed
paths. Due to these operations, the otherwise static set of alternative paths linking a
start node to a destination node determine a set of alternative processing paths or
flows, which represent dynamically configured architectures. There are two ways to
look at flows as processes: as applied to nodes of the graph and as applied to files. A
flow transforms an input (node or file) by adding or deleting some mark-ups, seen as
definitions in a node (schema) and as actual annotation in a file. The term “flow”
comes easily if we imagine that the information actually “flows” through the edges of
the graph, while also producing changes in the input files. Different examples of
flows, linking start nodes with destination nodes, are sketched in Figure 5 in thin,
interrupted arrows.

More precisely, a flow must be seen as summing-up sequences of processing steps.
We will denote by f(x) the flow applied to the input node, or file, x. So, y=f(x) means
either that the destination node y is obtained by applying the flow f to the start node x,
or that the output file y results by the application of the flow f to the input file x. All
three operations which will be defined below produce flows. Trivially, an empty flow,
denoted by f∅, leaves the input unmodified. So, f∅(x)=x, for any node or file x. The
way in which we will define the computation of flows (in section 5), so that if A and B
are the start and destination nodes in a graph, will make that exactly one flow f should
exist such that B=f(A). Flows can be combined, such that it is possible to have B=

52

f1(f2(A)). This notation inspires the generalisation of a flow as applying to flows
instead of nodes or files. Indeed if a node B is placed along a path from A to C, we
may say that the flow that transforms A onto B combines with the one that transforms
B onto C to produce the flow that transforms A onto C. As such, we may see the input
of the second flow as being the first flow, instead of the intermediary node.

In the rest of this section we will give the definitions of the three operations:

Fig. 5. Examples of processing paths: thin, black, interrupted arrows represent processing
paths, superposed over thick, grey, continuous arrows, representing subsumption relations.

simplification, pipelining and merging. We say that a node A is simplified to B, and
we write B=SB(A), if A and B are both placed on a path from the start to the
destination node, in this order, and B subsumes A. When a file corresponding to the
schema A is simplified to B, it will lose all annotations except those imposed by the
schema B. In Figure 5a, we have B=SB(A), and on Figure 5b it holds that C=SC(A) and
E=SE(A). In accordance with our discussion on flows above, we may look at SB as a
flow, which allows us to apply it to a node, to a file or to another flow.

 If, on a path from the start node to the destination node in the augmented graph,
there is an edge linking a node A to a node B which is marked with a process p, we
say that A pipelines to B by p, and we write B = A>p. Equally, when a file
corresponding to the schema A is pipelined to B by p, it will be transformed by the
process p onto a file that corresponds to the restrictions imposed by B. Finally,
according to the discussion on flows, we may consider “pipelines by p” an operation
which is applied to a flow to produce a flow. Pipelining with an empty process ∅
leaves the input unmodified, while pipelining the empty flow with a process yields the
flow consisting of that process. In Figure 5b it holds that B=C>b and B=E>a>c.

The merge operation can be defined in nodes pointed by more than one edge on the
hierarchical graph. If f1, …, fn, are flows entering a node A, we say that flows f1, …, fn
merge into A and we write A= f1 | … | fn . For instance, in Figure 5b we have B=C>b
| E>a>c. Merging a flow f with the empty flow f∅ leaves f unchanged.

With these definitions, for the graph of Figure 5b it holds that B=SC(A)>b |
SE(A)>a>c, and for the graph of Figure 5c it holds that B=((A>c | SC(A)>a>d)>e |
SC(A)>b>f)>g.

B

a

A

A B

C D

E

A

B

C

D E

F

G

b c

a
b

c

e

d
f

g ca b

53

5 Computation of Flows

We give below the Compute-Flow algorithm. The notations used are as follows:
function CF(x,y) receives as input a pair of nodes start-destination and returns that
flow which applied to x outputs y; subsumes(x,y) is a predicate function which
applied to two nodes evaluates to true if and only if x subsumes y on the graph;
simplify(x,y) expresses that the node y is simplified to x and returns a flow;
pipeline(f,p), with f a flow and p a process, expresses that the flow f is
pipelined with the process p and returns a flow; merge(f1,f2) expresses the
merging of flows f1 and f2 and returns a flow, and f∅ is the empty flow.

function CF(st,de)
 if (st equals de) then return(f∅);
 else if (subsumes(de,st)) then return(simplify(de,st));
 else if (there is just one node n such that
 n pipelines to de by a process p) then
 return(pipeline(CF(st,n),p));
 else { expr := f∅;
 while (there still exists a node n pipelining to de
 by a process p) do
 expr := merge(expr, pipeline(CF(st,n),p));
 return(expr); };

Note that in the above notation of the function CF the input is a pair of nodes start-
destination and the output is a computed flow, as an expression of simplify-pipeline-
merge operators. In order to make the computed flow to apply to an input file, the
input file must be given to the result of the computation of a call to the function CF.

Following, we will exemplify with several cases:
- for the graph depicted in Figure 5a, subsumes(B,A) is true, therefore the

algorithm CF(A,B) returns simplify(B,A);
- for the graph in Figure 5c, using short notations for Pipeline (P), Merge (M), and

Simplify (S), the recursive evaluation proceeds as follows, in which the ⇒ sign
should be read as “evaluates to”:
CF(A,B) ⇒ P(CF(A,G),g) ⇒ P(M(P(CF(A,E),f),P(CF(A,F),e)),g) ⇒
P(M(P(P(CF(A,C),b),f),P(M(P(CF(A,A),c),P(CF(A,D),d)),e)),g)
 ⇒ P(M(P(P(S(A,C),b),f),P(M(P(A,c),P((CF(A,C),a),d)),e)),g)

⇒ P(M(P(P(S(A,C),b),f),P(M(P(A,c),P(P(S(A,C),a),d)),e)),g).
This expression is identical with the one depicted in section 4 in an abridged form;
- for the graph in Figure 1, if in the call to the function CF the node st is SCH-

ROOT and the node de is SCH-COREF, the meaning of the compute request CF(SCH-
ROOT,SCH-COREF) is that, starting from a raw text one should get annotations for co-
referential anaphora, but including also the marking of tokens, their part-of-speeches,
and the noun phrases – which usually count as referential expressions. The computed
flow is, in the abridged notation for pipelines: SCH-ROOT > tokeniser > POS-
tagger > NP-chunker > AR, where tokeniser is the process which tokenises a
raw text, the POS-tagger adds part-of-speech markings to a tokenised text, the NP-
chunker marks NPs on a POS-tagged text and AR is the module doing anaphora
resolution on a file having NPs marked;

54

An implementation of the hierarchy model has been developed for a portal
intended to act as a repository for Romanian language resources and NLP tools. The
current implementation performs automatic classification, simplification and merging.
Presently, a number of modules locally developed have been linked with the edges of
an existent graph of schemas. The coupling with the GATE style of processing is
under study. The final machinery will develop into a portal displaying on-line
processing, to which a user can send its own files, he indicates the desired final
annotation and receives the output file.

6 Discussion

The proposed approach has an apparent drawback which is the large diversity of
annotation schemas which could appear in different applications. This could amount
to a huge graph of schemas if the ambition is for exhaustiveness. However, the need
for standardisation is evident nowadays and has been very clearly stated in many
contexts, for instance (Ide et al., 2003). The more and more common use of
international standards for the annotation of documents, such as TEI and CES/XCES,
will make widely applied standardisation a reality. Moreover, Semantic Web, with its
tremendous need for interconnection and integration of resources and applications on
communicating environments, boosts vividly the appeal for standardisation. It is
therefore foreseeable that more and more designers will adopt recognised standards,
in order to allow easy interfacing of their applications. The large acceptance of XML
as an annotation language, the development of a variety of sublanguages based on
XML, and the adoption of encoding standards as TEI and CES in text processing
makes this challenge a reality.

But there is another reason for the drawback to be only apparent. We have seen
already that, by classification, any schema could be placed in the hierarchy. Of
course, classification could increase in an uncontrolled way the number of nodes of
the hierarchy. The proliferation could be caused not so much by the semantic
diversity of the annotations as by the differences in name spaces (names of tags,
attributes and values). Suppose one wants to connect a new file to the hierarchy in
order to exploit its processing power. What s/he has to do is to first classify the file. If
the system reports the result as being a new node in the hierarchy than its position
gives also indications of its similarity/dissimilarity with the neighbouring schemas. A
visual inspection of the names used can reveal, for instance, that a simple translation
operation can make the new node identical to an existing one. This means that the
new schema is not new for the hierarchy, although the set of conventions used, which
make it different from those of the hierarchy, are imposed by the restrictions of the
user’s application. The solution to this incompatibility is not always a despotic
attitude vis-à-vis of the adoption of new notation conventions, but rather a flexible
way of looking at the diversity. Technically, this can be achieved by temporarily
creating links between the new schema classified by the hierarchy, as a new node, and
its corresponding standard in the hierarchy. Processing along such a link is different
than the usual behaviour associated to the edges of the graph. It describes a translation
process, in which the annotation is not enriched, but rather names of tags, attributes
and values are changed. Ideally, the processing abilities of the hierarchy should

55

include also the capability to automatically discover the translation procedure. This
task is not trivial since it would require that the hierarchy “understands” the intentions
hidden behind the annotation, displaying an intelligent behaviour which is not easy to
implement. This subject could make an interesting trend of further research. Now,
once the entry and exit points in the hierarchy have been determined and translation
links have been devised, all the rest is done by the hierarchy itself augmented with the
processing power in the manner described above. This way, the processing needed to
arrive from the input to the output is computed by the hierarchy as sequences of serial
and parallel processing steps, each of them supported in the hierarchy by means of
specialised modules. Then the process itself is launched on the input file. It includes
an initial translation phase, followed by a sequence of simplifications, pipelines
and/or merges, as described by the computed path, and followed by a final translation,
which is expected to produce the output file.

The linguistic annotations can make use of ontologies as formalised schemas
specifying what can actually be annotated, and hence the annotation schemas can be
considered special cases of semantic annotations with regard to an ontology, such as
the one pursued within the context of the Semantic Web. The formalization of the
annotation schema as ontology, and the use of standard formalisms such as RDF or
OWL to encode it, allows for the reuse of the schema across different annotation
tools. The linguistic annotation model based on ontology offers flexibility in the sense
that it is general enough to be applied in a broad variety of annotation tasks.

Acknowledgments

We thank Valentin Tablan and Dan Tufiş for their suggestions and comments during
the final stages of the elaboration of this paper. This work has been partially
supported by the CEEX research grant ROTEL-29 of AMCSIT and the FP6 IST-
STREP project LT4eL, contract number 027391.

References

1. Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan. 2002. GATE: A
framework and graphical development environment for robust NLP tools and applications.
In Proceedings of the 40th Anniversary Meeting of the ACL (ACL’02). Philadelphia, US.

2. Hamish Cunningham, Valentin Tablan, Kalina Bontcheva, Marin Dimitrov. 2003.
Language engineering tools for collaborative corpus annotation. Proceedings of Corpus
Linguistics 2003, Lancaster, UK.

3. Dan Cristea and Cristina Butnariu. 2004. Hierarchical XML representation for heavily
annotated corpora. In Proceedings of the LREC 2004 Workshop on XML-Based Richly
Annotated Corpora, Lisbon, Portugal.

4. Nancy Ide, Laurent Romary, Eric de la Clergerie. 2003. International standard for a
linguistic annotation framework. In Proc. HLT-NAACL'03 Workshop on the Software
Engineering and Architecture of Language Technology. Edmonton, Canada.

56

