
A Reflective Middleware Architecture for Adaptive
Mobile Computing Applications

Celso Maciel da Costa 1, Marcelo da Silva Strzykalski 1 and Guy Bernard 2

1 Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul,
Av. Ipiranga, 6681, prédio 30,
bloco 4, Porto Alegre, Brazil

2 Département Informatique, Institut National des Télécommunications,
Rue Charles Fourier, 91000,

Evry, France

Abstract. Mobile computing applications are required to operate in
environments in which the availability for resources and services may change
significantly during system operation. As a result, mobile computing
applications need to be capable of adapting to these changes to offer the best
possible level of service to their users. However, traditional middleware is
limited in its capability of adapting to the environment changes and different
users requirements. Computational Reflection paradigm has been used in the
design and implementation of adaptive middleware architectures. In this paper,
we propose an adaptive middleware architecture based on reflection, which can
be used to develop adaptive mobile applications. The reflection-based
architecture is compared to a component-based architecture from a quantitative
perspective. The results suggest that middleware based on Computational
Reflection can be used to build mobile adaptive applications that require only a
very small overhead in terms of running time as well as memory space.

1 Introduction

Wireless devices such as laptop computers, mobile phones and personal digital
assistants are becoming very popular. The combined use of wireless networks
technologies on these personal devices enables its owners to access their personal
information as well public resources anytime and anywhere. Such combination results
in a new computational paradigm: mobile computing.

However, developing applications targeted to these types of devices presents
challenging problems to designers and developers [4]. Such devices face temporary
loss of network connectivity when in movement. They have scarce resources, such as
low battery power, slow CPU speed and little memory, which should be exploited in
an efficiently manner. Besides, they are required to react to frequent changes in the
environment, such as new location and high variability of network bandwidth. As a
result, from these limitations, building mobile distributed applications on the top of
network layer would be tedious and error-prone. In this case, applications designers

Maciel da Costa C., da Silva Strzykalski M. and Bernard G. (2006).
A Reflective Middleware Architecture for Adaptive Mobile Computing Applications.
In Proceedings of the 5th International Workshop on Wireless Information Systems, pages 12-25
Copyright c© SciTePress

and developers would have to deal explicitly with these non-functional requirements.
Such constraints are not just artifacts of current mobile devices technology, but they
are intrinsic to mobility. Therefore, mobile elements must be adaptive to function in a
successful way [21].

Conventional middleware technologies, which reside between the network
operating system and the distributed application and implement the session and
presentation layer of the ISO/OSI reference model, provide application developers
with a higher level of abstraction, hiding the complexity introduced by distribution
using the network programming primitives of the network operating system. These
technologies have designed for stationary distributed systems built with fixed
networks, but they do not appear to be suitable for mobile computing environments,
which have an intermittent network connection and a dynamic execution context.
Current generation of mainstream middleware is heavyweight, inflexible, monolithic
and does not provide the support needed for dealing with the new dynamic aspects in
which mobile computing applications need to operate nowadays [3][14].

The development of mobile distributed applications require a middleware that can
be adapted to changes in their execution context and customized to fit in many kinds
of mobile devices. However, conventional middleware is limited in its capability of
supporting adaptation. Adaptive middleware has evolved from conventional
middleware to solve this problem. Such next middleware generation should be run
time configurable and allow inspection and adaptation of the underlying software. In
order to support adaptation, adaptive middleware can employ the Computational
Reflection engineering paradigm in addition to object-oriented programming
paradigm. Such combination enables middleware to inspect and adapt itself at
runtime.

This paper presents an adaptive middleware architecture based on reflection to
support adaptation. Section 2 introduces Computational Reflection related concepts.
Section 3 analyzes a set of requirements that future middleware platforms should
incorporate in its architecture to supporting adaptive mobile applications. Section 4
discusses some adaptation techniques that can be employed in mobile computing
applications to reduce energy consumption and to allow user interaction when
disconnected from the remote server. Section 5 presents a reflective middleware
architecture to support adaptation. Section 6 describes a prototype developed to
validate the architecture proposed. Section 7 evaluates the performance of the
prototype. Section 8 briefly presents and compares our approach with related work
and we outline conclusions and directions for future works in section 9.

2 Computational Reflection

Smith [23] and Maes [15] introduced reflective computing systems in the context of
programming language community to support the design of more open and extensible
languages. Such computing systems can be made to manipulate representations of
itself in the same way as it manipulates representations of its application domain. This
self-representation is constituted of both its state and behavior, and can be used for
inspection and adaptation of the system’s internals.

13

More specifically, reflection refers to the capability of a system to reason about,
and possibly, alter its own behavior [22]. It is the ability of a system to watch its
computation and possibly change the way it is performed. A reflective system
provides a representation of its own behavior, which can be used to inspection (i.e.,
the internal behavior of the system is exposed) and adaptation (i.e., the internal
behavior of a system can be dynamically changed) and is causally connected to the
underlying behavior it describes. Causally connected means that changes made to the
self-representation are immediately mirrored in the underlying system’s actual state
and behavior and vice-versa.

A reflective system is logically structured in two or more levels, constituting a
reflective tower. The first level is the base-level and describes the computations that
the system is supposed to do. The second one is the meta-level and describes how to
perform the previous computations. The entities (objects) working in the base-level
are called base-entities, while the entities working in the other levels (meta-levels) are
called meta-entities.

Each level is causally connected to adjacent levels, i.e., entities working into a
level have data structures reifying the activities and the structures of the entities
working into the underlying level and their actions are reflected into such data
structures.

A reflective computation can be separated into two logical aspects: computational
flow context switching and meta-behavior. A computation starts with the
computational flow in the base-level; when the base-entity begins an action, such
action is trapped by the meta-entity and the computational flow rises at the meta-level
(shift-up action). Then the meta-entity completes its meta-computation, and when it
allows the base-entity to perform the action, the computational flow goes back to the
base level (shift-down action).

3 Adaptive Architecture Requirements

Efstratiou et al. [10] suggests that there are limitations of current approaches for
supporting adaptive applications. Specifically, these approaches lack of support for
enabling applications to adapt to numerous different attributes in an efficient and
coordinated way. Thus, a new approach is required, which must provides a common
space for the coordinated, system-wide interaction between adaptive applications and
the complete set of attributes that could be used to trigger adaptation.

This new approach is based on a set of requirements that could be used to develop
an appropriate architecture for supporting adaptive applications. The first key
requirement of the architecture is to provide a common space for handling the
adaptation attributes used by the system in which new attributes can be introduced as
and when they become important. The second requirement is to be able to control
adaptation behavior across all components involved in the interaction on a system-
wide level. A further requirement is to support the notion of system-wide adaptation
policies that should enable a system to operate differently given the current context
and the requirements of the user. A final requirement arises from the fact that most
mobile applications operate in a distributed environment, reason for what the

14

adaptation mechanism need to coordinate all elements involved in the system
distributed operation.

4 Adaptation Strategies

Future mobile environments will require software to dynamically adapt to rapid and
significant fluctuations in the communication link quality, frequent network
disconnections, device resource restrictions and power limitations. Such scenario
implies in the fact that software will have to include adaptation techniques in its
design and implementation.

Several adaptation techniques can be triggered in all levels of an adaptive
application, from system level to user level. In the middleware level, three approaches
can be identified [11]: middleware services can attempt to reduce application
bandwidth requirements by using data compression techniques before transmission,
data can be prefetched and cached during periods of bandwidth high availability in
preparation to future bandwidth reduction or service disconnection and clients can be
redirected to services available in the local context until network connectivity can be
established. In addition, we can include in the middleware level some adaptation
techniques to reduce energy consumption and to allow users to continue working
when in disconnected state.

4.1 Power Management

Since one of the main limitations on mobile computing is battery life, minimizing
energy consumption is essential for maximizing the utility of wireless computing
systems. Adaptive energy conservation algorithms can extend the battery life of
portable computers by powering down devices when they are not needed. The disk
drive, the wireless network interface, the display, and other elements of mobile
computing devices can be turned off or placed in low power modes to conserve
energy.

Many physical components are responsible for ongoing power consumption in a
mobile device. The top three items are, in this order [26]: CPU, screen and disk. Due
the fact that hardware technology in this area is still rapidly evolving, power
management techniques to reduce display consumption are not explored in this
section.

4.1.1 Processor
Power consumed by the CPU is related to the clock rate, the supply voltage and the
capacitance of the devices being switched. The reduction in CPU power consumption
as the clock rate decreases is a result of the switching characteristics of the logic gates
in CMOS VLSI circuits. When a complementary transistor pair in a VLSI circuit
switches state, energy is wasted. Unfortunately, most of logic gates in a CMOS VLSI
circuit will switch states on every clock circle. Therefore, higher the CPU clock rate,
more frequently logic gates are switching, and more energy is wasted.

15

The power wasted by logic gates during switching is equal to the supply voltage
squared divided by circuit’s resistance. Because the switching resistance is commonly
fixed, the wasted power is proportional to the square of the operating voltage.
Besides, the total power required by CPU is proportional to C V2 F, where C is the
total capacitance of the wires and transistor gates, V is the supply voltage and F is the
clock frequency. While C can only be changed during the VLSI circuit design, newer
devices are beginning to make possible to vary F and V during runtime, which allows
achieving linear and quadratic savings in power.

Dynamic Voltage Scaling (DVS) has been a key technique in exploiting the
characteristics above mentioned to reduce processors energy dissipation by lowering
the supply voltage and operating frequency if it is expected a large amount of CPU
idle time [17]. DVS tries to address the tradeoff between performance and battery life
taking into account two important features of most current computing systems. First,
the peak computing rate needed is much higher than the average throughput, so, high
performance is only needed for a small fraction of the time, which allows lowering
the operating frequency of the processor when full speed is not a requirement.
Second, processors are based on CMOS logic. Such technology allows scaling the
operating voltage of the processor along with its frequency. In this manner, by
dynamically scaling both voltage and frequency of the processor based on
computation load, DVS can provide the performance to meet peak computational
demands, while on average, providing the reduced power consumption.
Weiser et al. [25] propose an approach that balances CPU usage between periodic
bursts of high utilization and the remaining idle periods under the control of the
operating system scheduling algorithms by predicting the upcoming workload
requirements and adjusting the processor voltage and frequency accordingly. Three
algorithms derivate from this approach: OPT, FUTURE and PAST. Each of these
algorithms adjusts the CPU clock speed at the same time scheduling decisions are
made by the operating system scheduler with the goal of decreasing time wasted in
idle loops while retaining interactive response for the user. OPT is completely
optimistic (and impractical) because it requires perfect future knowledge of the work
to be done in an interval. FUTURE is similar to OPT, except by the fact it looks to the
future only in a small window. Unlike OPT, it is practical because it only optimizes
over short windows (it is assumed that all idle time in the next interval can be
eliminated). PAST is a practical version of FUTURE that uses the recent past as a
predictor of the future. Instead of looking a fixed window into the future, it looks a
fixed window into the past, and assumes the next window will be like the previous
one. Obviously, such approach depends on an effective way of predicting workload to
save power by the adjustment of processor speed fast enough to accommodate the
workload.

4.1.2 Disk
Spinning down the disk when it is not being used can save power. Such technique is
possible by the fact that most mobile computers disk drives have a new mode of
operation called SLEEP mode (in such mode, a drive can reduce its energy
consumption to near zero by allowing the disk platter to spin down to a resting state).
Most, if not all current mobile computers use a fixed threshold specified by the
manufacturer to determine when to spin down the disk: if the disk has been idle for

16

some predetermined amount of time, the disk is spun down. The disk is spun up again
upon the next access. The fixed threshold is typically about many seconds or minutes
to minimize the delay from on demand disk spin-ups.

Spinning a disk for just a few seconds without accessing it can consume more
power than spinning it up again upon the next access since spinning the disk back up
consumes a significant amount of energy. Therefore, spinning down the disk more
aggressively reduce the power consumption of the disk in exchange for higher latency
upon the first access after the disk has been spun down.

Douglis et al. [9] investigated two types of algorithms for spinning a disk up and
down minimizing power consumption and response time: off-line, which can use
future knowledge and on-line, which can use only past behavior. Off-line algorithms
are useful only as a baseline for comparing different on-line algorithms. On the other
hand, on-line algorithms are implementable. A perfect off-line algorithm can reduce
disk power consumption by 35-50% when compared to the fixed threshold suggest by
manufacturers. On the other hand, an on-line algorithm with a threshold of 10 seconds
reduces energy consumption by about 40% compared to the 5-minute threshold
recommended by manufacturers.

4.2 Disconnected Operation

Wireless networks are very susceptible to suffering disconnections, so this is a very
important aspect to keep in the mind when designing architectures to support mobile
computing. We can classify the disconnections in two mainly types: forced
disconnections (usually accidental and unavoidable, that takes place when the user
enters in an out-of-coverage area) and voluntary disconnections (when the user
decides to disconnect from the network to saving energy).

Forced disconnections as well as voluntary disconnections are frequent in a mobile
computing environment. But, as can been seen in Coda File System project [20], the
use of caching and server replication techniques can mitigate the undesirable effects
of disconnections, which allows users to be able to continue working even in
disconnection states. In this mode of operation, a client continues to have read and
write access to data in its cache during temporary network outages, being the system
responsible to propagating modifications and detecting conflicts when connectivity is
restored. In addition, disconnected operation can extend battery life for avoiding
wireless transmission and reception.

5 A Reflective Middleware Architecture

Welling [27] asserts that adaptive techniques must be decoupled from basic
application functionality due to the complexity of building adaptive applications for
mobile computing. Such principle allows both applications and adaptive techniques
be designed and implemented independent of each other.

In this direction, Zhang and Jacobsen [28] observe that middleware platforms
architectures have been evolving exactly by the necessity of a software layer that

17

decouples applications from the concern of handling the complexity related to
distributed computing environments.

The architecture proposed in this section employs this principle of decoupling
adaptation techniques (meta-level) from application basic functionality (base-level),
as can be seen in figures 1 and 2.

Application

TaskN

Task1

Base Level

RemoteServer

TaskN

Task1

AdaptationManager Meta Level

Web Services

Base Level

Fig. 1. Separation of concerns in the proposed reflective middleware architecture.

Information

Control

AdaptationManager

AdaptationPolicyManager

ConnectionManager NetworkManager PowerManager MemoryManager

AdaptationTask InspectionTask AdaptationTask InspectionTask AdaptationTask InspectionTask AdaptationTask InspectionTask

LocalServer

DiskFileSystemManager

DiskCacheManager

DiskReplicationManager PreFetchManager

CompressionManager

CPUManager

ScreenManager RAMCacheManager

RAMReplicationManager

LocalServer

RamFileSystemManager

DiskMonitor

MemoryMonitor

Class

DiskManager

SecurityManager

EncryptionManager

AdaptationTask

SignatureManager

AdaptationMechanismManager

Fig. 2. The proposed reflective middleware architecture.

The Adaptation Manager (AM) decides which adaptation strategies should be
executed from data supplied by the inspection task of each resource managed by the

18

same. Attention might be given to this module in the architecture. Because conflicts
may arise during the execution of a specific adaptation strategy, this module must
guarantee that such conflicts can be solved in a coordinate manner. The set of
attributes (computational resources) to be managed by the AM must be extensible; by
the way, new attributes can be added in the proposed architecture. The AM depends
on two modules which responsibilities are complementary, described below.

The Adaptation Policy Manager loads the adaptation policies described in the
application profile, which is defined by the application’s user. The application profile
(which describes the application nonfunctional behavior) is encoded using the
Extensible Markup Language (XML) due the fact such language supports a
representation of information that is both easily handled by machines and readily
understandable by humans. The application profile presented in figure 3, for example,
inspect the battery resource each 10 seconds and spindown the hard disk and scale
CPU frequency when the amount of energy available in the battery is below 10%. In
addition, the Adaptation Policy Manager updates dynamically the adaptation policies
using statistical learning methods.

<?xml version="1.0"?>
<ApplicationProfile>
<InspectionTasks>
<Task name="BatteryInspector">
<Frequency value="10"></Frequency>
</Task>
</InspectionTasks>
<AdaptationTasks>
<Task name="DiskManager">
<Resource name="Battery">10</Resource>
<Threshold value="10"></Frequency>
</Task>
<Task name="CpuManager">
<Resource name="Battery">10</Resource>
<Threshold value="10"></Frequency>
</Task>
</AdaptationTasks>
</ApplicationProfile>

Fig. 3. An example of the application profile.

The Adaptation Mechanism Manager inspects and adapts the following attributes:
connectivity, network bandwidth, energy and memory. The following modules
manage such attributes: Connection Manager, Network Manager, Power Manager and
Memory Manager. Besides, this module should guarantee the security of data
exchanged between the application and the Remote Server. Such behavior is
encapsulated in the Security Manager module. It should be noted that the attributes
managed by this module can be extended dynamically by changes in the application
profile. At the run time, the Adaptation Mechanism Manager checks the conditions of
each adaptation rule described in the application profile to determine if an adaptation
task should be performed. To execute this operation, the class
AdaptationMechanismManager provides two methods that systematically iterates
through each rule coded in the application profile to check conditions and load an

19

unload adaptation tasks in accordance to these rules. The Connection Manager
monitors the connectivity between the application and the Remote Server. In case of
disconnection, the data handled by the application are gotten from the Local Server
module. The methods invoked toward the Remote Server are stored in the local cache
and will be deferred to execute by the Replication Manager adaptation task when the
Remote Server was in connected mode again. The Network Manager monitors the
network bandwidth. This module compresses the body message that will be sent to
the Remote Server. Besides, this module pre-fetches messages that were posted in the
Remote Server and were not replicated to the Local Server yet. The Power Manager
monitors energy. If the amount of energy in a moment were below a boundary
expressed in the application profile, the interface between the application and the user
is text based. Besides, the hard disk can be put in spindown mode and the CPU
frequency can be scaled to save battery power. The Memory Manager monitors
memory and disk space. If the amount of disk space in a moment were below a
boundary expressed in the application profile, the messages posted in the Local Server
as well as data from local cache will be stored in the RAM memory, not more in the
hard disk. The deferred methods will be stored in RAM memory either. The Security
Manager module should guarantee the confidentiality (XML Encryption) and the
integrity (XML Signature) of the XML messages exchanged by the application and
the Remote Server.

6 Implementation

A simplified mail server prototype was implemented based on Web Services and Java
technologies to evaluate the proposed architecture. The prototype only implements the
Connection Manager and the Power Manager modules. Therefore, the platform’s
evaluation performance reflects only these attribute’s measures. We have employed a
collaborative relationship between the operating system and the application by the
middleware level in such prototype, which modifies its behavior to conserve energy to
meet user-specified goals for battery duration. In addition, our approach predicts
future energy demand from measurements of past usage.

The Power Manager measures energy consumption by using the ACPI subsystem
in Linux to get an accurate evaluation of the remaining capacity of the battery. The
Screen Manager changes the user interface from text to graphic mode and vice-versa
in accordance to the current energy level available. The CPU Manager implements the
PAST algorithm using the CPUFreq loadable kernel module framework [7], which is
a project for adding support for CPU frequency and voltage scaling to the Linux
kernel. The PAST algorithm calculates that the upcoming interval will be as equally
busy as the previous interval. The speed policy is as follow: if the prediction is for a
mostly-idle interval, PAST decreases speed; and if the prediction is for a busy
interval, PAST increases speed. To avoid excessive fluctuations in processor speed
(variable performance for the user), PAST will limit the amount in change of speed in
a decision to a maximum of 20% of the maximum speed. The Disk Manager
implements the on-line disk spindown algorithm by the use of noflushd [16], which is
a Linux daemon that monitors disk activity and spins down idle disks. It then blocks

20

further writes to the disk to prevent it from spinning up again. Writes are cached and
flushed to disk when the next read request triggers a spin-up.

The application environment is composed by a Local Server and by a Remote
Server. The Remote Server was implemented with the use of the Axis server API [1].
It is a Java class that exposes public methods for invocation and is responsible by the
following operations: create mailboxes, delete mailboxes, delete messages, list
messages, read a message and send a message. The Remote Server encapsulates in its
public interface the semantics of the main SMTP commands as exposed in the Simple
Mail Transfer Protocol (RFC2821) as well as the semantic of the main IMAP client
commands as exposed in the Internet Message Access Protocol (RFC3501). The
Local Server is responsible by delete messages, list messages, read a message and
send a message. It implements partly both specifications in the local system context
and employs a queued remote procedure call based technique [12] that permits
applications to continue to make non-blocking remote procedure calls even when the
Remote Server is off-line enabling the system to operating in disconnected mode. In
this case, requests and responses are exchanged upon network reconnection. The
consistency between data replicated from Remote Server to Local Server is based in
some clustering principles employed in mobile databases context [18]. Clustering
maintains two copies of every object: a strict version, which is globally consistent,
and a weak version, which can be globally inconsistent, but must be locally
consistent. Weak versions are transformed in strict by the Replication Manager, which
compares the version number of both weak and strict objects to decide what is the
more recent.

The proposed system operates as follows. At the mail’s client first request the
mailbox data is copied from the Remote Server to the Local Server. The read
operations are always local and in this case, the disconnections from the Remote
Server are not important. The write operations are executed simultaneously in the
Remote Server and Local Server. The mail client is a Java class that implements the
user interface and uses Axis client API to call the services exposed by the Remote
Server. The class that implements the AM, which allows the adaptation techniques to
take place, intercepts all the calls sent by the client.

7 Evaluation

In this section, we try to prove that computational reflection can be used to develop
adaptive mobile applications that require only a very small overhead in terms of
running time as well as memory footprint. The following measures are the mean value
gotten after 5000 executions for each operation below in an AMD K6-2 500 MHz
machine with 184 Mb of memory running a Fedora Core Linux 2.0 kernel 2.6.19.

Before the data analysis, it should be noted that in the component-based
implementation the remote methods are invoked directly in the Remote Server class
by the intermediation of a Proxy class. In this implementation, there no exist meta-
levels between the client and the remote server. In this manner, the component-based
implementation is not designed to adapting to environment changes.

21

Table 1. Running time to respond a service request.

Implementation Create a mailbox Delete a mailbox Delete a message
Component-based 2181.50 ms 2096.50 ms 2163.30 ms
Reflection-based 3027.33 ms 2268.50 ms 2658.50 ms

Table 2. Running time to respond a service request (continuation).

Implementation List messages Read a message Send a message
Component-based 511.60 ms 197.50 ms 2678.50 ms
Reflection-based 370.33 ms 76.66 ms 3279.50 ms

The collected results presented in tables 1 and 2 suggest that reflection can be used

to develop mobile adaptive applications which require only a small overhead in terms
of running time. The write operations (create a mailbox, delete a mailbox, delete a
message and send a message) require more time to running (the code size is bigger
than component-based). However, the read operations require less time due the fact
that these operations are served by the local system.

Table 3. Code size.

Implementation Code size (disk) Code size (memory) Number of classes
Component-based 85231 bytes 2429544 bytes 46
Reflection-based 149507 bytes 2066232 bytes 64

From table 3, it can be verified that reflective-based code size in disk is 42,3 %

bigger than component-based code. However, reflective-based code size in memory is
14,5 % smaller than component-based code. It should be emphasized that reflective-
based code has a code overhead of 18 classes (64276 bytes), but in this case the usage
of memory is lower (the classes are loaded dynamically, on demand, by the
Adaptation Manager).

8 Related Work

The middleware community has already investigated the principle of reflection during
the past years, mainly to achieve flexibility and dynamic reconfigurability of the
Object Request Broker (ORB) of CORBA. Examples include OpenCorba [24],
DynamicTAO [13] and OpenORB [2]. OpenCorba is a CORBA compliant ORB that
uses reflection to expose and modify some internal characteristics of CORBA.
OpenCorba is implemented in NeoClasstalk, a reflective language based on Smalltalk.
OpenCorba allows the dynamic modification of a remote invocation mechanism
though a proxy class, which is its major reflective aspect. DynamicTAO is a reflective
CORBA ORB written in C++ which extends TAO [8] to support runtime
configuration already at the startup time of the ORB engine and non-CORBA
applications OpenORB is a reflective middleware that has been implemented using
Python and was designed to target configurable and dynamically reconfigurable
platforms for applications that require dynamic requirements support. However, such

22

platforms were based on standard middleware implementations and are therefore
targeted to a wired distributed environment.

FlexiNet [19] is another CORBA compliant ORB implemented in Java that uses
reflection to provide dynamic adaptation. Nevertheless, FlexiNet only supports static
configuration of communication protocols stack layers at compile time.

OpenCOM [6] is a reflective middleware based on a component framework built
atop a subset of Microsoft’s COM, which can be specialized to application domains
such as multimedia, real-time systems and mobile computing. However, OpenCOM
only runs at Microsoft platforms. On the other hand, mobile devices such smart
phones and personal digital assistants (PDA) is already coming with the Java Virtual
Machine installed by default, which justifies our approach. Moreover, the Java
language allows the development of applications that run in heterogeneous operating
systems and machine architectures.

RECOM [22], like FlexiNet, has a reflective structure based on the Java platform
that supports different transformations on a remote method invocation. RECOM
supports dynamic configuration of the binding between the client and the server, such
as inserting into the communication protocol stack some reflective layers of high level
features which meet the needs of some nonfunctional properties required by adaptive
middleware platforms. However, such platform only supports dynamic adaptation of
the remote invocation mechanism (cache the results on client side and redirect the
invocation to an alternative server when the initial server is down). Differently, our
reflective architecture is extensible; thus, new attributes (computational resources)
can be added and removed from the same and be managed in a coordinate manner.

CARISMA [5] is an adaptive middleware platform implemented in Java, which
employs reflection and metadata to enable context-aware interactions between mobile
applications. In such platform, the middleware can be seen by applications as a
dynamically customizable service provider, where the customization takes place by
means of application profiles. Each application profile defines associations between
the services that the middleware delivers, the policies that can be applied to deliver
the services and context configurations that must hold in order for a policy to be
applied. Our abstraction of application profiles is based on this work.

9 Conclusions

Because conventional middleware technologies do not provide appropriate support for
handling the dynamic aspects of mobile applications, the next generation applications
will require a middleware platform that can be adapted to changes in the environment
and customized to several computational devices.

Computational Reflection allows the creation of a middleware architecture that is
flexible, adaptable and customizable. The architecture proposed in this work employs
this concept in its design and implementation. The results appointed by the
researchers in the reflective middleware field were validated with data collected from
the prototype experimental evaluation.

About future work, we have to solve the problems below mentioned. The
Adaptation Policy Manager does not have yet a module to resolve conflicts that can
occur between the application policies. In addition, the statistical learning methods

23

employed by this component to updating policies dynamically have to be designed
and implemented and we still have to implement the others architecture components
(Network, Memory and Security Managers).

References

1. Apache Software Foundation. Axis: A framework for constructing SOAP processors. In:
http://ws.apache.org/axis, December 2005.

2. Blair, G. S., Coulson, G., Robin, P., Papathornas M. Architecture for Next Generation
Middleware. In: Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, the Lake District, England, September 1998.

3. Capra, L., Blair, G. S., Mascolo, C., Emmerich, W., Grace, P. Exploiting Reflection in
Mobile Computing Middleware. ACM SIGMOBILE Mobile Computing and
Communications Review, Vol. 6, No. 6, pp 34-44, 2002.

4. Capra, L., Emmerich, W., Mascolo, C. Middleware for Mobile Computing. In: Advanced
Lectures on Networking - Networking 2002 Tutorials, Pisa, Italy. Volume 2497 of LNCS,
pages 20-58, Springer Verlag. May 2002.

5. Capra, L., Emmerich, W., Mascolo, C. CARISMA: Context-Aware Reflective Middleware
System for Mobile Applications. IEEE Transactions on Software Engineering, 29(10):929-
945, 2003.

6. Clarke, M., Blair, G., Coulson, G., Parlavantzas, N. An Efficient Component Model for the
Construction of Adaptive Middleware. In: Proceedings of Middleware 2001, Heidelberg,
Germany, November 2001.

7. CPUFreq. In: http://www.linux.org.uk/listinfo/cpufreq, December 2005.
8. Douglas, C. S., Cleeland, C. Applying Patterns to Develop Extensible ORB Middleware.

IEEE Communications Magazine Special Issue on Design Patterns, 37(4), 54-63, May
1999.

9. Douglis, F., Krishnan, P., Marsh, B. Thwarting the Power-Hungry Disk. In: Proceedings of
Winter USENIX Conference, California, 1994, pp. 292–306.

10. Efstratiou, C., Cheverst, K., Davies, N., Friday, A. Architectural Requirements for the
Effective Support of Adaptive Mobile Applications. In: Proceedings of 2nd International
Conference in Mobile Data Management. Hong Kong, Springer, Vol. Lecture Notes in
Computer Science Volume 1987, pp. 15-26, January 2001.

11. Friday, A., Davies, N., Blair, G. S., Cheverst, K. W. J. Developing Adaptive Applications:
The MOST Experience. Journal of Integrated Computer-Aided Engineering, Volume 6,
Number 2, 1999, pp143-157.

12. Joseph, A., deLespinasse, A., Tauber, J., Gifford, D., and Kaashoek, M. Rover: A Toolkit
for Mobile Information Access. In: Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, December 1995.

13. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L. C., R., Campbell, H.
Monitoring, Security and Dynamic Configuration with the DynamicTAO Reflective ORB.
In: Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms, New York, April 2000.

14. Kon, F., Gordon, B., Costa, F., Campbell, R. H. The Case for Reflective Middleware,
CACM, Vol. 45, No. 6, pp 33-38, 2002.

15. Maes, P. Concepts and Experiments in Computational Reflection. In: Proceedings of the
ACM Conference on Object-Oriented Languages, December 1987.

16. Noflushd. In: http://sourceforge.net/projects/noflushd, December 2005.

24

17. Pillai, P., Shin, K. G. Real-Time Dynamic Voltage Scaling for Low-Power Embedded
Operating Systems. In: Proceedings of the Eighteenth ACM Symposium on Operating
systems principles, Alberta, Canada, October 2001.

18. Pitoura, E., Bhargava, B. Maintaining Consistency of Data in Distributed Environments. In:
Proceedings of Fifteenth International Conference on Distributed Computing Systems,
Vancouver, Canada, May 1995.

19. R. Hayton, ANSA Team. FlexiNet Architecture. Architecture Report, Citrix Systems
(Cambridge) Limited, February, 1999.

20. Satyanarayanan, M., Kistler, J. J., Mummert, L. B., Ebling, M. R., Kumar, P., Lu, Qi.
Experience with Disconnected Operation in Mobile Computing Environment. In:
Proceedings of the 1993 USENIX Symposium on Mobile and Location-Independent
Computing, Cambridge, MA, August 1993.

21. Satyanarayanan, M. Mobile Information Access. IEEE Personal Communications, February
1996.

22. Sizhong, Y., Jinde, L. RECOM: A Reflective Architecture of Middleware. In: Proceedings
of the 3rd International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns, Kyoto, Japan, September 2001.

23. Smith, B. C. Reflection and Semantics in a Procedural Language. PhD thesis, MIT
Laboratory of Computer Science, 1982, MIT Technical Report 272.

24. T. Ledoux. OpenCorba: A Reflective Open Broker. Lecture Notes in Computer Science,
vol. 1616, 1999.

25. Weiser, M., Welch, B., Demers, A., Shenker, S. Scheduling for Reduced CPU Energy. In:
Proceedings of Symposium on Operating Systems Design and Implementation, November
1994.

26. Welch, G.F. A Survey of Power Management Techniques. In Mobile Computing Operating
Systems. Operating Systems Review, Volume 29, Number 4, October 1995.

27. Welling, G.S. Designing Adaptive Environmental-Aware Applications for Mobile
Computing. PhD thesis, Rutgers University, New Brunswick, July 1999.

28. Zhang, C., Jacobsen, H. Aspectizing Middleware Platforms. Technical Report, Computer
Systems Research Group, CSRG-466, University of Toronto, Canada, January 2003.

25

