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Abstract. Mobile computing applications are required to operate in 
environments in which the availability for resources and services may change 
significantly during system operation. As a result, mobile computing 
applications need to be capable of adapting to these changes to offer the best 
possible level of service to their users. However, traditional middleware is 
limited in its capability of adapting to the environment changes and different 
users requirements. Computational Reflection paradigm has been used in the 
design and implementation of adaptive middleware architectures. In this paper, 
we propose an adaptive middleware architecture based on reflection, which can 
be used to develop adaptive mobile applications. The reflection-based 
architecture is compared to a component-based architecture from a quantitative 
perspective. The results suggest that middleware based on Computational 
Reflection can be used to build mobile adaptive applications that require only a 
very small overhead in terms of running time as well as memory space. 

1 Introduction 

Wireless devices such as laptop computers, mobile phones and personal digital 
assistants are becoming very popular. The combined use of wireless networks 
technologies on these personal devices enables its owners to access their personal 
information as well public resources anytime and anywhere. Such combination results 
in a new computational paradigm: mobile computing.  

However, developing applications targeted to these types of devices presents 
challenging problems to designers and developers [4]. Such devices face temporary 
loss of network connectivity when in movement. They have scarce resources, such as 
low battery power, slow CPU speed and little memory, which should be exploited in 
an efficiently manner. Besides, they are required to react to frequent changes in the 
environment, such as new location and high variability of network bandwidth. As a 
result, from these limitations, building mobile distributed applications on the top of 
network layer would be tedious and error-prone. In this case, applications designers 
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and developers would have to deal explicitly with these non-functional requirements. 
Such constraints are not just artifacts of current mobile devices technology, but they 
are intrinsic to mobility. Therefore, mobile elements must be adaptive to function in a 
successful way [21]. 

Conventional middleware technologies, which reside between the network 
operating system and the distributed application and implement the session and 
presentation layer of the ISO/OSI reference model, provide application developers 
with a higher level of abstraction, hiding the complexity introduced by distribution 
using the network programming primitives of the network operating system. These 
technologies have designed for stationary distributed systems built with fixed 
networks, but they do not appear to be suitable for mobile computing environments, 
which have an intermittent network connection and a dynamic execution context. 
Current generation of mainstream middleware is heavyweight, inflexible, monolithic 
and does not provide the support needed for dealing with the new dynamic aspects in 
which mobile computing applications need to operate nowadays [3][14].  

The development of mobile distributed applications require a middleware that can 
be adapted to changes in their execution context and customized to fit in many kinds 
of mobile devices. However, conventional middleware is limited in its capability of 
supporting adaptation. Adaptive middleware has evolved from conventional 
middleware to solve this problem. Such next middleware generation should be run 
time configurable and allow inspection and adaptation of the underlying software. In 
order to support adaptation, adaptive middleware can employ the Computational 
Reflection engineering paradigm in addition to object-oriented programming 
paradigm. Such combination enables middleware to inspect and adapt itself at 
runtime.  

This paper presents an adaptive middleware architecture based on reflection to 
support adaptation. Section 2 introduces Computational Reflection related concepts. 
Section 3 analyzes a set of requirements that future middleware platforms should 
incorporate in its architecture to supporting adaptive mobile applications. Section 4 
discusses some adaptation techniques that can be employed in mobile computing 
applications to reduce energy consumption and to allow user interaction when 
disconnected from the remote server. Section 5 presents a reflective middleware 
architecture to support adaptation. Section 6 describes a prototype developed to 
validate the architecture proposed. Section 7 evaluates the performance of the 
prototype.  Section 8 briefly presents and compares our approach with related work 
and we outline conclusions and directions for future works in section 9. 

2 Computational Reflection 

Smith [23] and Maes [15] introduced reflective computing systems in the context of 
programming language community to support the design of more open and extensible 
languages. Such computing systems can be made to manipulate representations of 
itself in the same way as it manipulates representations of its application domain. This 
self-representation is constituted of both its state and behavior, and can be used for 
inspection and adaptation of the system’s internals. 
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More specifically, reflection refers to the capability of a system to reason about, 
and possibly, alter its own behavior [22]. It is the ability of a system to watch its 
computation and possibly change the way it is performed. A reflective system 
provides a representation of its own behavior, which can be used to inspection (i.e., 
the internal behavior of the system is exposed) and adaptation (i.e., the internal 
behavior of a system can be dynamically changed) and is causally connected to the 
underlying behavior it describes. Causally connected means that changes made to the 
self-representation are immediately mirrored in the underlying system’s actual state 
and behavior and vice-versa.  

A reflective system is logically structured in two or more levels, constituting a 
reflective tower. The first level is the base-level and describes the computations that 
the system is supposed to do. The second one is the meta-level and describes how to 
perform the previous computations. The entities (objects) working in the base-level 
are called base-entities, while the entities working in the other levels (meta-levels) are 
called meta-entities. 

Each level is causally connected to adjacent levels, i.e., entities working into a 
level have data structures reifying the activities and the structures of the entities 
working into the underlying level and their actions are reflected into such data 
structures. 

A reflective computation can be separated into two logical aspects: computational 
flow context switching and meta-behavior. A computation starts with the 
computational flow in the base-level; when the base-entity begins an action, such 
action is trapped by the meta-entity and the computational flow rises at the meta-level 
(shift-up action). Then the meta-entity completes its meta-computation, and when it 
allows the base-entity to perform the action, the computational flow goes back to the 
base level (shift-down action). 

3 Adaptive Architecture Requirements 

Efstratiou et al. [10] suggests that there are limitations of current approaches for 
supporting adaptive applications. Specifically, these approaches lack of support for 
enabling applications to adapt to numerous different attributes in an efficient and 
coordinated way. Thus, a new approach is required, which must provides a common 
space for the coordinated, system-wide interaction between adaptive applications and 
the complete set of attributes that could be used to trigger adaptation.   

This new approach is based on a set of requirements that could be used to develop 
an appropriate architecture for supporting adaptive applications. The first key 
requirement of the architecture is to provide a common space for handling the 
adaptation attributes used by the system in which new attributes can be introduced as 
and when they become important. The second requirement is to be able to control 
adaptation behavior across all components involved in the interaction on a system-
wide level. A further requirement is to support the notion of system-wide adaptation 
policies that should enable a system to operate differently given the current context 
and the requirements of the user. A final requirement arises from the fact that most 
mobile applications operate in a distributed environment, reason for what the 
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adaptation mechanism need to coordinate all elements involved in the system 
distributed operation. 

4 Adaptation Strategies 

Future mobile environments will require software to dynamically adapt to rapid and 
significant fluctuations in the communication link quality, frequent network 
disconnections, device resource restrictions and power limitations. Such scenario 
implies in the fact that software will have to include adaptation techniques in its 
design and implementation.  

Several adaptation techniques can be triggered in all levels of an adaptive 
application, from system level to user level. In the middleware level, three approaches 
can be identified [11]: middleware services can attempt to reduce application 
bandwidth requirements by using data compression techniques before transmission, 
data can be prefetched and cached during periods of bandwidth high availability in 
preparation to future bandwidth reduction or service disconnection and clients can be 
redirected to services available in the local context until network connectivity can be 
established. In addition, we can include in the middleware level some adaptation 
techniques to reduce energy consumption and to allow users to continue working 
when in disconnected state. 

4.1 Power Management 

Since one of the main limitations on mobile computing is battery life, minimizing 
energy consumption is essential for maximizing the utility of wireless computing 
systems. Adaptive energy conservation algorithms can extend the battery life of 
portable computers by powering down devices when they are not needed. The disk 
drive, the wireless network interface, the display, and other elements of mobile 
computing devices can be turned off or placed in low power modes to conserve 
energy. 

Many physical components are responsible for ongoing power consumption in a 
mobile device. The top three items are, in this order [26]: CPU, screen and disk. Due 
the fact that hardware technology in this area is still rapidly evolving, power 
management techniques to reduce display consumption are not explored in this 
section. 

4.1.1 Processor 
Power consumed by the CPU is related to the clock rate, the supply voltage and the 
capacitance of the devices being switched. The reduction in CPU power consumption 
as the clock rate decreases is a result of the switching characteristics of the logic gates 
in CMOS VLSI circuits. When a complementary transistor pair in a VLSI circuit 
switches state, energy is wasted. Unfortunately, most of logic gates in a CMOS VLSI 
circuit will switch states on every clock circle. Therefore, higher the CPU clock rate, 
more frequently logic gates are switching, and more energy is wasted.  

15



The power wasted by logic gates during switching is equal to the supply voltage 
squared divided by circuit’s resistance. Because the switching resistance is commonly 
fixed, the wasted power is proportional to the square of the operating voltage. 
Besides, the total power required by CPU is proportional to C V2 F, where C is the 
total capacitance of the wires and transistor gates, V is the supply voltage and F is the 
clock frequency. While C can only be changed during the VLSI circuit design, newer 
devices are beginning to make possible to vary F and V during runtime, which allows 
achieving linear and quadratic savings in power.  

Dynamic Voltage Scaling (DVS) has been a key technique in exploiting the 
characteristics above mentioned to reduce processors energy dissipation by lowering 
the supply voltage and operating frequency if it is expected a large amount of CPU 
idle time [17]. DVS tries to address the tradeoff between performance and battery life 
taking into account two important features of most current computing systems. First, 
the peak computing rate needed is much higher than the average throughput, so, high 
performance is only needed for a small fraction of the time, which allows lowering 
the operating frequency of the processor when full speed is not a requirement. 
Second, processors are based on CMOS logic. Such technology allows scaling the 
operating voltage of the processor along with its frequency. In this manner, by 
dynamically scaling both voltage and frequency of the processor based on 
computation load, DVS can provide the performance to meet peak computational 
demands, while on average, providing the reduced power consumption.   
Weiser et al. [25] propose an approach that balances CPU usage between periodic 
bursts of high utilization and the remaining idle periods under the control of the 
operating system scheduling algorithms by predicting the upcoming workload 
requirements and adjusting the processor voltage and frequency accordingly. Three 
algorithms derivate from this approach: OPT, FUTURE and PAST. Each of these 
algorithms adjusts the CPU clock speed at the same time scheduling decisions are 
made by the operating system scheduler with the goal of decreasing time wasted in 
idle loops while retaining interactive response for the user. OPT is completely 
optimistic (and impractical) because it requires perfect future knowledge of the work 
to be done in an interval. FUTURE is similar to OPT, except by the fact it looks to the 
future only in a small window. Unlike OPT, it is practical because it only optimizes 
over short windows (it is assumed that all idle time in the next interval can be 
eliminated). PAST is a practical version of FUTURE that uses the recent past as a 
predictor of the future. Instead of looking a fixed window into the future, it looks a 
fixed window into the past, and assumes the next window will be like the previous 
one. Obviously, such approach depends on an effective way of predicting workload to 
save power by the adjustment of processor speed fast enough to accommodate the 
workload. 

4.1.2 Disk 
Spinning down the disk when it is not being used can save power. Such technique is 
possible by the fact that most mobile computers disk drives have a new mode of 
operation called SLEEP mode (in such mode, a drive can reduce its energy 
consumption to near zero by allowing the disk platter to spin down to a resting state). 
Most, if not all current mobile computers use a fixed threshold specified by the 
manufacturer to determine when to spin down the disk: if the disk has been idle for 
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some predetermined amount of time, the disk is spun down. The disk is spun up again 
upon the next access. The fixed threshold is typically about many seconds or minutes 
to minimize the delay from on demand disk spin-ups.  

Spinning a disk for just a few seconds without accessing it can consume more 
power than spinning it up again upon the next access since spinning the disk back up 
consumes a significant amount of energy. Therefore, spinning down the disk more 
aggressively reduce the power consumption of the disk in exchange for higher latency 
upon the first access after the disk has been spun down.  

Douglis et al. [9] investigated two types of algorithms for spinning a disk up and 
down minimizing power consumption and response time: off-line, which can use 
future knowledge and on-line, which can use only past behavior. Off-line algorithms 
are useful only as a baseline for comparing different on-line algorithms. On the other 
hand, on-line algorithms are implementable. A perfect off-line algorithm can reduce 
disk power consumption by 35-50% when compared to the fixed threshold suggest by 
manufacturers. On the other hand, an on-line algorithm with a threshold of 10 seconds 
reduces energy consumption by about 40% compared to the 5-minute threshold 
recommended by manufacturers.   

4.2 Disconnected Operation 

Wireless networks are very susceptible to suffering disconnections, so this is a very 
important aspect to keep in the mind when designing architectures to support mobile 
computing. We can classify the disconnections in two mainly types: forced 
disconnections (usually accidental and unavoidable, that takes place when the user 
enters in an out-of-coverage area) and voluntary disconnections (when the user 
decides to disconnect from the network to saving energy). 

Forced disconnections as well as voluntary disconnections are frequent in a mobile 
computing environment. But, as can been seen in Coda File System project [20], the 
use of caching and server replication techniques can mitigate the undesirable effects 
of  disconnections, which allows users to be able to continue working even in 
disconnection states. In this mode of operation, a client continues to have read and 
write access to data in its cache during temporary network outages, being the system 
responsible to propagating modifications and detecting conflicts when connectivity is 
restored. In addition, disconnected operation can extend battery life for avoiding 
wireless transmission and reception. 

5 A Reflective Middleware Architecture 

Welling [27] asserts that adaptive techniques must be decoupled from basic 
application functionality due to the complexity of building adaptive applications for 
mobile computing. Such principle allows both applications and adaptive techniques 
be designed and implemented independent of each other.  

In this direction, Zhang and Jacobsen [28] observe that middleware platforms 
architectures have been evolving exactly by the necessity of a software layer that 
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decouples applications from the concern of handling the complexity related to 
distributed computing environments. 

The architecture proposed in this section employs this principle of decoupling 
adaptation techniques (meta-level) from application basic functionality (base-level), 
as can be seen in figures 1 and 2. 

Application

TaskN

Task1

Base  Level

RemoteServer

TaskN

Task1

AdaptationManager Meta  Level

Web Services

Base  Level

 
 

Fig. 1. Separation of concerns in the proposed reflective middleware architecture. 
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Fig. 2. The proposed reflective middleware architecture. 

The Adaptation Manager (AM) decides which adaptation strategies should be 
executed from data supplied by the inspection task of each resource managed by the 
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same. Attention might be given to this module in the architecture. Because conflicts 
may arise during the execution of a specific adaptation strategy, this module must 
guarantee that such conflicts can be solved in a coordinate manner. The set of 
attributes (computational resources) to be managed by the AM must be extensible; by 
the way, new attributes can be added in the proposed architecture. The AM depends 
on two modules which responsibilities are complementary, described below. 

The Adaptation Policy Manager loads the adaptation policies described in the 
application profile, which is defined by the application’s user. The application profile 
(which describes the application nonfunctional behavior) is encoded using the 
Extensible Markup Language (XML) due the fact such language supports a 
representation of information that is both easily handled by machines and readily 
understandable by humans. The application profile presented in figure 3, for example, 
inspect the battery resource each 10 seconds and spindown the hard disk and scale 
CPU frequency when the amount of energy available in the battery is below 10%. In 
addition, the Adaptation Policy Manager updates dynamically the adaptation policies 
using statistical learning methods. 
 

<?xml version="1.0"?> 
<ApplicationProfile> 
<InspectionTasks> 
<Task name="BatteryInspector"> 
<Frequency value="10"></Frequency> 
</Task> 
</InspectionTasks> 
<AdaptationTasks> 
<Task name="DiskManager"> 
<Resource name="Battery">10</Resource> 
<Threshold value="10"></Frequency> 
</Task> 
<Task name="CpuManager"> 
<Resource name="Battery">10</Resource> 
<Threshold value="10"></Frequency> 
</Task> 
</AdaptationTasks> 
</ApplicationProfile> 

Fig. 3. An example of the application profile. 

The Adaptation Mechanism Manager inspects and adapts the following attributes: 
connectivity, network bandwidth, energy and memory. The following modules 
manage such attributes: Connection Manager, Network Manager, Power Manager and 
Memory Manager. Besides, this module should guarantee the security of data 
exchanged between the application and the Remote Server. Such behavior is 
encapsulated in the Security Manager module. It should be noted that the attributes 
managed by this module can be extended dynamically by changes in the application 
profile. At the run time, the Adaptation Mechanism Manager checks the conditions of 
each adaptation rule described in the application profile to determine if an adaptation 
task should be performed. To execute this operation, the class 
AdaptationMechanismManager provides two methods that systematically iterates 
through each rule coded in the application profile to check conditions and load an 

19



unload adaptation tasks in accordance to these rules. The Connection Manager 
monitors the connectivity between the application and the Remote Server. In case of 
disconnection, the data handled by the application are gotten from the Local Server 
module. The methods invoked toward the Remote Server are stored in the local cache 
and will be deferred to execute by the Replication Manager adaptation task when the 
Remote Server was in connected mode again. The Network Manager monitors the 
network bandwidth. This module compresses the body message that will be sent to 
the Remote Server. Besides, this module pre-fetches messages that were posted in the 
Remote Server and were not replicated to the Local Server yet. The Power Manager 
monitors energy. If the amount of energy in a moment were below a boundary 
expressed in the application profile, the interface between the application and the user 
is text based. Besides, the hard disk can be put in spindown mode and the CPU 
frequency can be scaled to save battery power.  The Memory Manager monitors 
memory and disk space. If the amount of disk space in a moment were below a 
boundary expressed in the application profile, the messages posted in the Local Server 
as well as data from local cache will be stored in the RAM memory, not more in the 
hard disk. The deferred methods will be stored in RAM memory either. The Security 
Manager module should guarantee the confidentiality (XML Encryption) and the 
integrity (XML Signature) of the XML messages exchanged by the application and 
the Remote Server.  

6 Implementation 

A simplified mail server prototype was implemented based on Web Services and Java 
technologies to evaluate the proposed architecture. The prototype only implements the 
Connection Manager and the Power Manager modules. Therefore, the platform’s 
evaluation performance reflects only these attribute’s measures. We have employed a 
collaborative relationship between the operating system and the application by the 
middleware level in such prototype, which modifies its behavior to conserve energy to 
meet user-specified goals for battery duration. In addition, our approach predicts 
future energy demand from measurements of past usage. 

The Power Manager measures energy consumption by using the ACPI subsystem 
in Linux to get an accurate evaluation of the remaining capacity of the battery. The 
Screen Manager changes the user interface from text to graphic mode and vice-versa 
in accordance to the current energy level available. The CPU Manager implements the 
PAST algorithm using the CPUFreq loadable kernel module framework [7], which is 
a project for adding support for CPU frequency and voltage scaling to the Linux 
kernel. The PAST algorithm calculates that the upcoming interval will be as equally 
busy as the previous interval. The speed policy is as follow: if the prediction is for a 
mostly-idle interval, PAST decreases speed; and if the prediction is for a busy 
interval, PAST increases speed. To avoid excessive fluctuations in processor speed 
(variable performance for the user), PAST will limit the amount in change of speed in 
a decision to a maximum of 20% of the maximum speed. The Disk Manager 
implements the on-line disk spindown algorithm by the use of noflushd [16], which is 
a Linux daemon that monitors disk activity and spins down idle disks. It then blocks 
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further writes to the disk to prevent it from spinning up again. Writes are cached and 
flushed to disk when the next read request triggers a spin-up. 

The application environment is composed by a Local Server and by a Remote 
Server. The Remote Server was implemented with the use of the Axis server API [1]. 
It is a Java class that exposes public methods for invocation and is responsible by the 
following operations: create mailboxes, delete mailboxes, delete messages, list 
messages, read a message and send a message. The Remote Server encapsulates in its 
public interface the semantics of the main SMTP commands as exposed in the Simple 
Mail Transfer Protocol (RFC2821) as well as the semantic of the main IMAP client 
commands as exposed in the Internet Message Access Protocol (RFC3501). The 
Local Server is responsible by delete messages, list messages, read a message and 
send a message. It implements partly both specifications in the local system context 
and employs a queued remote procedure call based technique [12] that permits 
applications to continue to make non-blocking remote procedure calls even when the 
Remote Server is off-line enabling the system to operating in disconnected mode. In 
this case, requests and responses are exchanged upon network reconnection. The 
consistency between data replicated from Remote Server to Local Server is based in 
some clustering principles employed in mobile databases context [18]. Clustering 
maintains two copies of every object: a strict version, which is globally consistent, 
and a weak version, which can be globally inconsistent, but must be locally 
consistent. Weak versions are transformed in strict by the Replication Manager, which 
compares the version number of both weak and strict objects to decide what is the 
more recent. 

The proposed system operates as follows. At the mail’s client first request the 
mailbox data is copied from the Remote Server to the Local Server. The read 
operations are always local and in this case, the disconnections from the Remote 
Server are not important. The write operations are executed simultaneously in the 
Remote Server and Local Server. The mail client is a Java class that implements the 
user interface and uses Axis client API to call the services exposed by the Remote 
Server. The class that implements the AM, which allows the adaptation techniques to 
take place, intercepts all the calls sent by the client. 

7 Evaluation 

In this section, we try to prove that computational reflection can be used to develop 
adaptive mobile applications that require only a very small overhead in terms of 
running time as well as memory footprint. The following measures are the mean value 
gotten after 5000 executions for each operation below in an AMD K6-2 500 MHz 
machine with 184 Mb of memory running a Fedora Core Linux 2.0 kernel 2.6.19. 

Before the data analysis, it should be noted that in the component-based 
implementation the remote methods are invoked directly in the Remote Server class 
by the intermediation of a Proxy class. In this implementation, there no exist meta-
levels between the client and the remote server. In this manner, the component-based 
implementation is not designed to adapting to environment changes. 
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Table 1.  Running time to respond a service request. 

Implementation Create a mailbox Delete a mailbox Delete a message 
Component-based 2181.50 ms 2096.50 ms 2163.30 ms 
Reflection-based 3027.33 ms 2268.50 ms 2658.50 ms 

Table 2. Running time to respond a service request (continuation). 

Implementation List messages Read a message Send a message 
Component-based 511.60 ms 197.50 ms 2678.50 ms 
Reflection-based 370.33 ms   76.66 ms 3279.50 ms 

 
The collected results presented in tables 1 and 2 suggest that reflection can be used 

to develop mobile adaptive applications which require only a small overhead in terms 
of running time. The write operations (create a mailbox, delete a mailbox, delete a 
message and send a message) require more time to running (the code size is bigger 
than component-based). However, the read operations require less time due the fact 
that these operations are served by the local system. 

Table 3. Code size. 

Implementation Code size (disk) Code size (memory) Number of classes 
Component-based   85231 bytes 2429544 bytes 46 
Reflection-based 149507 bytes 2066232 bytes 64 

 
From table 3, it can be verified that reflective-based code size in disk is 42,3 % 

bigger than component-based code. However, reflective-based code size in memory is 
14,5 % smaller than component-based code. It should be emphasized that reflective-
based code has a code overhead of 18 classes (64276 bytes), but in this case the usage 
of memory is lower (the classes are loaded dynamically, on demand, by the 
Adaptation Manager). 

8 Related Work 

The middleware community has already investigated the principle of reflection during 
the past years, mainly to achieve flexibility and dynamic reconfigurability of the 
Object Request Broker (ORB) of CORBA. Examples include OpenCorba [24], 
DynamicTAO [13] and OpenORB [2]. OpenCorba is a CORBA compliant ORB that 
uses reflection to expose and modify some internal characteristics of CORBA. 
OpenCorba is implemented in NeoClasstalk, a reflective language based on Smalltalk. 
OpenCorba allows the dynamic modification of a remote invocation mechanism 
though a proxy class, which is its major reflective aspect. DynamicTAO is a reflective 
CORBA ORB written in C++ which extends TAO [8] to support runtime 
configuration already at the startup time of the ORB engine and non-CORBA 
applications OpenORB is a reflective middleware that has been implemented using 
Python and was designed to target configurable and dynamically reconfigurable 
platforms for applications that require dynamic requirements support. However, such 
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platforms were based on standard middleware implementations and are therefore 
targeted to a wired distributed environment. 

FlexiNet [19] is another CORBA compliant ORB implemented in Java that uses 
reflection to provide dynamic adaptation. Nevertheless, FlexiNet only supports static 
configuration of communication protocols stack layers at compile time.  

OpenCOM [6] is a reflective middleware based on a component framework built 
atop a subset of Microsoft’s COM, which can be specialized to application domains 
such as multimedia, real-time systems and mobile computing. However, OpenCOM 
only runs at Microsoft platforms. On the other hand, mobile devices such smart 
phones and personal digital assistants (PDA) is already coming with the Java Virtual 
Machine installed by default, which justifies our approach. Moreover, the Java 
language allows the development of applications that run in heterogeneous operating 
systems and machine architectures.  

RECOM [22], like FlexiNet, has a reflective structure based on the Java platform 
that supports different transformations on a remote method invocation. RECOM 
supports dynamic configuration of the binding between the client and the server, such 
as inserting into the communication protocol stack some reflective layers of high level 
features which meet the needs of some nonfunctional properties required by adaptive 
middleware platforms. However, such platform only supports dynamic adaptation of 
the remote invocation mechanism (cache the results on client side and redirect the 
invocation to an alternative server when the initial server is down). Differently, our 
reflective architecture is extensible; thus, new attributes (computational resources) 
can be added and removed from the same and be managed in a coordinate manner.  

CARISMA [5] is an adaptive middleware platform implemented in Java, which 
employs reflection and metadata to enable context-aware interactions between mobile 
applications. In such platform, the middleware can be seen by applications as a 
dynamically customizable service provider, where the customization takes place by 
means of application profiles. Each application profile defines associations between 
the services that the middleware delivers, the policies that can be applied to deliver 
the services and context configurations that must hold in order for a policy to be 
applied. Our abstraction of application profiles is based on this work. 

9 Conclusions 

Because conventional middleware technologies do not provide appropriate support for 
handling the dynamic aspects of mobile applications, the next generation applications 
will require a middleware platform that can be adapted to changes in the environment 
and customized to several computational devices.  

Computational Reflection allows the creation of a middleware architecture that is 
flexible, adaptable and customizable. The architecture proposed in this work employs 
this concept in its design and implementation. The results appointed by the 
researchers in the reflective middleware field were validated with data collected from 
the prototype experimental evaluation.  

About future work, we have to solve the problems below mentioned. The 
Adaptation Policy Manager does not have yet a module to resolve conflicts that can 
occur between the application policies. In addition, the statistical learning methods 
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employed by this component to updating policies dynamically have to be designed 
and implemented and we still have to implement the others architecture components 
(Network, Memory and Security Managers). 
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