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Abstract. Models of visual perception are based on image representations in
cortical area V1 and higher areas which contain many cell layers for feature
extraction. Basic simple, complex and end-stopped cells provide input for line,
edge and keypoint detection. In this paper we present an improved method for
multi-scale line/edge detection based on simple and complex cells. We illustrate
the line/edge representation for object reconstruction, and we present models for
multi-scale face (object) segregation and recognition that can be embedded into
feedforward dorsal and ventral data streams (the “what” and “where” subsys-
tems) with feedback streams from higher areas for obtaining translation, rotation
and scale invariance.

1 Introduction

Our visual system is by far the most complicated but also least understood part of our
body. At the retinal level, already twelve types of different bipolar cells have been iden-
tified. These perform complex inhibitory and excitatory interactions in the inner plex-
iform layer [1]. Apart from the rods and cones, the common photoreceptors, retinal
ganglion cells have been identified that have no (in)direct connection to rods and cones,
but their dendrites act as photoreceptors. These ganglion cells transfer luminance in-
formation to central brain regions, including the LGN (lateral geniculate nucleus), for
controlling the circadian clock (solar day), the eyes’ iris muscles (pupil size), and prob-
ably for providing a global background in brightness perception [2]. The LGN was long
considered to be a simple relay station between retinal ganglion cells and the primary
visual cortex. Recent research shows that perhaps only 10% of LGN input comes from
the retinas, i.e. the other 90% consist of feedback from cortical areas, and that the LGN
may play a role as information “gatekeeper” through visual attention [3]. The latter
finding implies that the what and where subsystems, which are thought to be driven by
short-term memory in inferior-temporal (IT) and prefrontal (PF) areas, have feedback
loops to areas V4, V2 and V1 [4, 5], even down to the LGN.

In V1 there are simple and complex cells, which are tuned to different spatial fre-
quencies (scales) and orientations, but also disparity (depth) because of the left-right
hypercolumns, e.g. [6, 7]. These cells provide input for grouping cells that code line
and edge information and that attribute depth information. There also are end-stopped
cells that, together with complicated inhibition processes, allow to extract keypoints
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(singularities, vertices and points of high curvature)c&wly, models of simple, com-
plex and end-stopped cells have been developed, e.g. [8fldition, several inhibition
models, e.g. [9], keypoint detection [8, 10] and line/edgtedtion schemes [9-12], in-
cluding disparity models [13, 10], have become availabletl@ basis of these models
and neural processing schemes, it is now possible to createtiaal architecture for
figure-ground segregation, e.g. [14], and Focus-of-Aiben{FoA), bottom-up and/or
top-down [4, 15], including object detection and recogmiti

A difficult and still challenging application, even in manbivision, is face detec-
tion and recognition. Despite the impressive humber anttyaof methods devised
for faces and facial landmarks, e.g. [16], complicatingdesthat still remain are pose
(frontal vs. profile), beards, moustaches and glasses| fagpression and image con-
ditions (lighting, resolution). Despite these complioas, it is important to develop
cortical models for detection and recognition, in ordemigiove our insight into pos-
sible, neural processing schemes, e.g. [17].

In this paper we will focus exclusively on the multi-scalediedge representation
based on simple and complex cells in V1, a representationhnii common in per-
ception models but not in computer vision. We present anawgat model for line and
edge detection, and we apply this within the context of acalrarchitecture, the where
and what systems, with an emphasis on face (object) deteatid recognition.

We stress that we will not employ the multi-scale keypoipiresentation that also
exists in area V1, in order to study the importance of the/¢idge representation. It
has been shown, e.g. [15], that keypoints alone provide imaportant information
for FOA, object categorisation and facial landmark detectiAlso, we will not tackle
complications referred to above, because we will argudgrtiscussion, that low-level
processing in area V1 needs to embedded into a much widesgxtpand this context
is expected to solve many problems.

2 Line/Edge Detection and Classification

Gabor quadrature filters provide a model of receptive fieRIBs] of cortical simple
cells (see e.g. [9, 15]). We apply filters with an aspect rafi®.5 and half-response
width of one octave. The scadewill be given by, the wavelength, in pixels (all images
shown are of siz&56 x 256 pixels). Responses of even and odd simple cells, which
correspond to the real and imaginary parts of a Gabor filterdanoted b)Rfi(:c, Y)
and R, (z,y), s being the scale; the orientation §; = ir/(Np — 1)) and Ny the
number of orientations (here we udg = 8). Responses of complex cells are modelled
by the modulug’ ;(z, y) = [{RY(x,y)}* + {RS;(z,y)}*]"/2.

A basic scheme for single-scale line and edge detectiordl@seesponses of sim-
ple cells works as follows [12]: a positive (negative) lisedietected wher&” shows
a local maximum (minimum) an&® shows a zero crossing. In the case of edges the
even and odd responses are swapped. This gives 4 possifititipositive and negative
events. An improved scheme [10] consists of combining nesge of simple and com-
plex cells, i.e. simple cells serve to detect positions amhetypes, whereas complex
cells are used to increase the confidence. Since the use of Gaddulus (complex



cells) implies a loss of precision at vertices [18], incexhprecision was obtained by
considering multiple scales (neighbouring micro-scales)

The algorithms described above work reasonably well buethesmain a few prob-
lems: (a) either one scale is used or only a very few scaleméoeasing confidence,
(b) some parameters must be optimised for specific input@sag even as a function
of scale, (c) detection precision can be improved, and (@atien continuity at curved
lines/edges must be guaranteed.

We present an improved algorithm with no free parameteuly; tulti-scale, with
new solutions for problems (c) and (d). With respect to mieai, simple and complex
cells respond beyond line and edge terminations, for exameyond the corners of
a rectangle. In addition, at line or edge crossings, detedéads to continuity of the
dominant events and gaps in the sub-dominant events. Tlegsemgust be reduced
in order to reconstruct continuity. Both problems can bevexblby introducing new
inhibition schemes, like the radial and tangential onegllsethe case of keypoint
operators [10]. Here we use lateral (L) and cross-oriestigiC) inhibition, defined as:

Isl:z(x7 y) = [Cs,i(x + dcs,i7 Y + dSs,i) - Cs,i(x i dcs,ia y— dSs,i)]+ ol
[Coi(x —dCeiyy — dSes) — Coix +dCosy+dSs i)™ ; (D)

IS (@, y) = [Cs 148y 2) (@ + 2dCs i,y + 2dSs 5) — 2.Cs i(w,y)+
C 14Ny 2) (T = 2dCs 5,y — 2dS,2)] T )

where(i + Ny/2) L 4, with Cs; = cos§; andS; ; = sin; andd = 0.6s. Inhibition is
applied to complex cell responses, whereontrols the strength of the inhibition (we
used = 1.0), i.e.Csi(z,y) = [Csi(z,y) — B{IL (2, y) + IS (2,9)}] .

Line/edge detection is achieved by constructing a few egltts on top of simple
and complex cells. The first layer serves to select activensgand dominant orienta-
tions. At each position, responses of complex cells are seadl, = foo’l Cei),
and at positions wher€’;, > 0 an output cell is activated. At active output cells,
the dominant orientation is selected by gating one compédixan the basis of non-
maximum suppression @S,i. The gating is confirmed or corrected by an excita-
tion/inhibition process of dominant orientations in a lloe@ighborhood.

In the second layer, event type and position are determinetti® basis of active
output cells (1st layer) and gated simple and complex c&lfgst cell complex checks
simple ceIIngi and R, for a local maximum (or minimum by rectification) using a
dendritic field size of:)\/4, A being the wavelength of the simple cells (Gabor filter).
The active output cell is inhibited if there is no maximum animum. A second cell
complex does exactly the same on the basis of complex cetlsrd\cell complex gates
four types of zero-crossing cells on the basis of simplescaljain ort-)\/4. If there
is no zero-crossing, the output cell is inhibited. If theseaizero-crossing, the active
output cell at the position of the zero-crossing cell deteas event position and the
active zero-crossing cell determines event type.

In the third layer, the small loss of accuracy due to the useoofplex cells in the
second layer is compensated. This is done by correctingdweat continuity, consider-
ing the information available in the second layer, but byngsxcitation of output cells



Fig. 1. Fine-scale line/edge detection and NCRF inhibition (right).

by means of grouping cells that combine simple and complég ttened to the same
and two neighbouring orientations. The latter process isxa@nsion of linear group-
ing [12] and a simplification of using banana wavelets [18]tHe same layer, event
type is corrected in small neighborhoods, restoring typatinaity, because the cell
responses may be distorted by interference effects wheeweits are very close [18].
Figure 1 shows detection results with positive and negditias and edges coded
by different gray levels. Detection accuracy is very good #iere remain many small
events due to low-contrast textures and the fact that nghiotd value has been applied
(no event amplitudes are shown!). Most events in texturgihns can be suppressed by
NCRF inhibition (last column). For comparing results (é¢lapt image) obtained with
NCRF we refer to [9], but we note that they developed contedgé) detection algo-
rithms, whereas we can distinguish between edges and liltegifferent polarities,
which is necessary for visual reconstruction; see belowcdrapare results in the case
of the orange image with edge-only computer vision algari&hi.e. Bergholm, Canny,
Iverson and Nalwa, see [20] ahttp://marathon.csee.usf/edge/edge _detection.html.

3 Multi-scale Representation and Reconstruction

For illustrating scale space we can create an almost cants)dinear scaling with 288
scales om\ = [4,40] , but here we will present only a few scales. Figure 2 showsteve
detected at five scaled: = {4, 12,18, 24, 40}. In the case of the solid square and star
objects, at fine scales (left) the edges of the square aretddtas are most parts of the
star, but not at the very tips of the star. This illustrategnaportant difference between
normal image processing and developing cortical models. [&tier must be able to



Fig. 2. Multi-scale representations of a square, a star and Fiona image, the |akttetetected
facial landmarks (see text).

construct brightness maps, and at the tips of the star, vilheredges converge, there
are very fine lines. The same effect occurs at coarser scajhg) (until entire triangles
are detected as lines and even pairs of opposite triangléise Icase of the square, lines
will be detected at diagonals, which will vanish, with vemal event amplitudes, at
very coarse scales. Figure 2 (bottom) shows the Fiona im#ébesvents detected at the
same scales, with decreasing amount of detail at coardesdu# stable outlines of the
face and hair—a caricature-like abstraction that is alsainbtl by other scale spaces,
e.g. [21]. Also shown (bottom-right) are facial landmarls®d by grouping operators
in keypoint scale space for face detection (see Discussidrldb]).

Image reconstruction can be obtained by assuming one |a/ilies plus a com-
plete set of (Gabor) wavelets that cover the entire frequelomain—this concept is
exploited in image coding. The goal of our visual system islétect objects, with
no need, nor capacity, to reconstruct a complete image o¥isual environment, see
change blindness and the limited “bandwidth” of the what a@re subsystems [5].
Yet, the image that we perceive in terms of brightness musesow be created. An
image coding scheme, for example by summing responses pfesaalls, requires ac-
cumulation in one cell layer which contains a brightness ,nap this would require
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Fig. 4. Top, from left to right: input, representations)at= 4 and 40, and figure-ground segrega-
tion. Bottom: object interference at coarse scéles= {5, 15, 25, 35,45}).

yet another “observer” of this map in our brain. The solutiorthis dilemma is to as-
sume that detected lines and edges are interpreted symbolian active “line cell”
is interpreted as a Gaussian intensity profile with a cedaigntation, amplitude and
scale, the size of the profile being coupled to the scale ofittterlying simple and
complex cells. In the same way an active “edge cell” is intetgd, but with a bipolar,
Gaussian-truncated error-function profile. As for imageig, this representation must
be complemented with a lowpass filter: the retinal ganglieltlsovith photoreceptive
dendritic fields not (in)directly connected to rods and o2

One brightness model [22] is based on the symbolic line/&ugepretation. It ex-
plains Mach bands by the fact that simple cell responsesotatistinguish between
lines and ramp edges, and it was shown to be able to predigt braghtness illusions
such as simultaneous brightness contrast and assimilatlioh are two opposite in-
duction effects [23]. Here we will not go into more detail; wil only illustrate the
symbolic reconstruction process in 2D (the model referoeabiove was tested in 1D).
Figure 3 shows, from left to right, a lowpass filtered imag€ioha, symbolic line/edge
representations at two scales, combined representati@sdoscales, and the latter
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combined with the lowpass image. Using more scales leadsttertreconstructions,
but the relative weighting of all components requires fertimvestigation.

4 Object Detection and Segregation

Until here we have illustrated the multi-scale line/edgéediion in area V1 and the
symbolic interpretation for reconstruction, but the gdaihe visual cortex is to detect
and recognise objects by means of the what and where systemsink [5] argued that
these systems can attend only one object at any time. In the &l Rolls model [4],
the ventral what system receives input from V1 which prosaadbugh V2 and V4 to
IT. The dorsal where system connects V1 and V2 through MTda 8P. Both systems
are “controlled,” top-down, by attention and short-termnnegy with object represen-
tations in PF, i.e. a what component from PF46v to IT and a elkemponent from
PF46d to PP. The bottom-up (visual input code) and top-daxpected object and
position) data streams are necessary for obtaining sitaian and position invariance,
which means that object templates in memory may be norntalidere we will not go
into more detail, because our goal is not to (re)implemesnttitire model. Our goal is
to show how the line/edge code can be used in the what and wkstems, focusing
on multi-scale processing.

Figure 4 (top row) shows an image with two faces and a leaf gktected events
at a fine scale (middle-left), with all relevant informatj@md at a coarse scale (middle-
right), with reduced and “deformed” information. At the cea level, each individual
event (group of responding line/edge cells) or connectedmof events corresponds
to one object. Each event at the coarse scale is relatedntseateone finer scale, which
can be slightly displaced or rotated. This relation is meddly downprojection using
grouping cells with a dendritic field, the size of which defirtiee region of influence. A
responding event cell activates a grouping cell; only ifdheuping cell is also excitated
by responding event cells one level lower, a grouping ceh@tower level is activated.
This is repeated until the finest scale. This coarse-toduaade process is complemented
by inhibition: other grouping cells at the finest scale arivated by responding event
cells at that scale, and these grouping cells excitate thagng cells at the one coarser
scale. This results in a figure-ground map at the first comsale “above” the finest
scale (Fig. 4 top-right). This result was obtained with- [4, 40], A\ = 4.

A process as described above can be part of the where systeincannot obtain
size, rotation and position invariance; it needs to be emédnto the Deco and Rolls
model [4]. In addition, when two objects are very close, thill/become connected at
coarse scales (Fig. 4 bottom row), and separation is onlgilplesby the what system
that checks features of individual objects.

5 Face Recognition

We assume that templates (views) of faces are stored in nyérand that these have
been built through experience. When the where system deadeise, the attentional

3 We will not go into the view-based vs. mental-rotation discussion.
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system will direct the what system in order to check featfwe&lentification. Here we
present a very simple, straightforward recognition schiamtesting the line/edge rep-
resentation, assuming that input and stored faces are mégssonormalised in terms
of position and size. From the Psychological Image Coltectit Stirling University
(UK), we selected 88 face images of 25 persons in frontal aedr 3/4 view, with dif-
ferent expressions, half against a dark and half againstita Wwackground. For typical
examples see Fig. 5.

Because small rotations and changes in expression do mificigtly change the
line/edge representations at coarser scales, and becguseiical applications frontal
and/or 3/4 views with different expressions may be represkin a database, we created
only 25 templates, one for each person, by randomly setgotie of the available im-
ages. The multi-scale line/edge representation was cad@it3 scales equally spaced
on A\ = [4, 30]. Classification was done using all 88 images. For each teémaeach
scale, a positional relaxation area [24] was created areaoct responding event cell,
by assuming grouping cells with a dentritic field size codgkethe size of underlying
complex cells. These grouping cells sum the occurence oftgwe the input images
around event positions in the templates, a sort of locaktation, and activities of all
grouping cells were grouped together (global correlatidhg final grouping was com-
pared over the 25 templates, scale by scale, and the temythtenaximum response
was selected. Finally, the template with the maximum nurobeorrespondences over
the 8 scales was selected (in the case of 4-4 the second tejnplmure 5 shows in
the upper-left corner of each image 8 bars (scales) withahgth of the bar being the
number of the selected template (1-25). Despite the extsamgicity of the method,
average recognition rate was 90% when only grouping evertgliscrimination be-
tween lines and edges) and 92% when lines and edges wereedgreaparately. Mis-
classifications were only due to extreme expression (Figt®m-right) or wrong view
(last images on first and second row), although some images aeerectly identified
(2nd image on 2nd row and 1st image on 4th row). Also, addesen@ith image on
1st row) and glasses (4th image on 3rd row) were no problemré3ult (92%) is very
close to the 94% obtained by Petkov, Kruizinga and Loureiik [1

6 Discussion

In this paper we presented an improved scheme for line/esiga{) detection on the
basis of simple and complex cells. This scheme has no thidsshor free parameters,
it improves completeness and continuity, and it can be eg@t many scales. If nec-
essary, events due to textures can be suppressed by NCREiomhj9], such that sig-
nificant image structures are preserved. We showed that titte snale representation
and symbolic interpretation are suitable for visual retrgion, which is necessary
for developing a 2D brightness model on the basis of one thattasted in 1D [23].
We also presented simple schemes for object segregaticiae@decognition.

The line/edge representation at coarser scales leadsdbla abstraction of image
features (Fig. 2). This explains, at least partly, the galisation that allows to clas-
sify faces with noise, glasses, and relatively normal esgioss and views (Fig. 5). It
should be stressed that the recognition scheme is not ygbletan because a hierar-
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Fig. 5. Examples of recognised and unrecognised (crossed) faces.

chical linking from coarse to fine scales, as already appli¢te segregation process,
has not been applied. Such an extension can lead to bettgniton rates, especially
when multiple views (frontal, 3/4 and side) of all persons imcluded as templates in
“memory.” In addition, the multi-scale keypoint represaitn [15], which has not been
employed here, will contribute very important information

All multi-scale processing and the representations, tiolgikeypoints, are restricted
to area V1. On the other hand, the Deco and Rolls scheme [#],wentral and dorsal
data streams, necessary for obtaining translation ané soalriance through projec-
tions via areas V2, V4 etc., is solely based on responsesmfisicells. In the future,
this scheme must be based on features extracted in V1, ahéifunulti-scale process-
ing can be added in higher areas V2 and V4. We expect that stehséons in adaptive
up and down projections will lead to much better resultsepdli, our visual system
does not have any difficulty in telling persons apart!
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