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Abstract: In previous paper we considered some heuristic methods of decision-making for various discrete 
optimization problems; all these heuristics should be considered as the combination of them and form a 
common multi-heuristic approach to the various problems. And in this paper, we begin to consider local 
heuristics, which are different for different problems. At first, we consider two problems of minimization: 
for nondeterministic finite automata and for disjunctive normal forms. Our approach can be considered 
as an alternative to the methods of linear programming, multi-agent optimization, and neuronets. 

1 INTRODUCTION 

In previous papers (see (Melnikov, 2005), and also 
some papers in Russian) we considered some 
heuristic methods of decision-making for various 
discrete optimization problems (DOP). In fact, all 
these heuristics should be considered as the 
combination of them and form a common multi-
heuristic approach to the various DOP. And in this 
paper, we consider not the common heuristics 
(which can be applied to various DOP), but so called 
local heuristics, which are own for different 
problems. Let us remark, that in (Melnikov, 2005) 
we already considered also some local heuristics (for 
a problem of considered in this paper, i.e., for 
minimization of automata).  

But at first, let us briefly describe the common 
set of heuristics of (Melnikov, 2005). The object of 
each of considered problems is programming 
anytime algorithms.  
• We use some modifications of truncated branch-

and-bound method (B&B).  
• For the selecting immediate step, we apply 

dynamic risk functions. 
• Simultaneously, for the selection of coefficients 

of the averaging-out, we use genetic algorithms.  
• And the reductive self-learning by the same 

genetic methods is used for the start of truncated 
B&B.  

Thus, this combination of heuristics represents a 
special approach to construction of anytime-
algorithms for the discrete optimization problems, 
which is an alternative to the methods of linear 
programming, multi-agent optimization, and 
neuronets.  

2 CONSIDERED PROBLEMS 

Thus, as we said before, the main object of this 
paper is local heuristics, and each of them belongs to 
its own area. Therefore let us describe considered 
DOP. 

At first, we consider some connected problems 
of minimization for nondeterministic finite Rabin-
Scott automata (NFA). Probably, the main for them 
is state-minimization, i.e., the problem of 
constructing NFA, which defines the given regular 
language and has minimum possible number of 
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states. Since (Kameda and Weiner, 1970), there are a 
few changes in description of the exact algorithms 
for this problem: all the algorithms are exponential 
relative to the number of states of considered NFA. 
The last argument is true because all the algorithms 
need to construct equivalent automaton of canonical 
form (or, maybe, some similar graphs or other 
objects). Let us remark, that from the point of view 
of the theory of complexity of algorithms, all the 
published algorithms (Kameda and Weiner, 1970; 
Jiang and Ravikumar, 1993; Melnikov, 2000; etc.) 
are equivalent. However we hope, that the approach 
of authors of this paper (Melnikov, 2000) allows 
formulating some heuristics for anytime algorithms. 

Second, it is the problem of minimization of 
disjunctive normal forms (DNF). The exact 
algorithms for this minimization are obtained for 
ages (and are considered in the classical textbooks, 
for example, in the Russian textbook for first-year 
students (Yablonskiy, 1979), which is used more 
than 25 years), however the computer programs 
making on basis of such solutions cannot work in 
real time even for the number of variables, which is 
equal to 20, except, certainly, for a lot of trivial 
cases. The author does not know books, where any 
anytime algorithms for this problem are obtained, 
however, if such papers do exist, the approach of 
this paper, certainly, can be used in some alternative 
versions of computer programs. 

In this paper, we shall consider local heuristics 
for two the described problems. However, let us 
briefly describe the two other problems, for which 
we are going to publish local heuristics in the next 
papers. 

Thus, the third problem is the classical travelling 
salesman problem (TSP; see (Hromkovič, 2003), 
etc.); certainly, universal methods for solving TSP 
simply cannot exist. Some last years, authors of 
papers for heuristic methods of TSP-solution 
consider most often so called metric TSP. For their 
solving, some methods of linear programming and 
multi-agent optimization are used; (Hromkovič, 
2003; Dorigo and Gambardella, 1997; Johnson and 
McGeoch, 1997; etc). However, some variants of the 
classical B&B can also be used not only for the 
exact (optimal) solution of considered TSP, but also 
for quasi-optimal heuristic solutions. At first, such 
approach can be used for the quasi-metric TSP 
(Melnikov and Romanov, 2001). 

And the fourth problem is the special problem 
for graph transformation algorithms. Considering 
weighted oriented graphs, we formulate some 
special rules for combining their vertices. And the 
goal is to obtain graph having minimum possible 
number of edges. For details, see (Belozyorova and 
Melnikov, 2005) and the references from that paper. 

3 SOME LOCAL HEURISTICS 
FOR THE NFA-MINIMIZATION 
PROBLEM 

In this Section, we consider a heuristic algorithm for 
forming quasi-optimum covering; let it be Q defined 
in (Melnikov, 2000). For this thing, we shall select a 
subset of blocks (grids) of a matrix, which cells are 
corresponding to elements of special binary relation 
#, and this relation can be construct on the base of 
the given NFA. (See details also in (Melnikov, 
2000).) 

The considered algorithm is based on a special 
modification of truncated B&B. It differs from the 
classical truncated B&B that we do not divide the 
considered problem (and, therefore, the searching 
space) into the left and right ones. The whole 
searching space corresponds to the whole set of 
blocks, but for the first step, it is only the considered 
matrix of binary relation #. 

But the practical programming for the classical 
truncated B&B gave the poor results. The main 
obstacle is that we hardly can fixed the fact that the 
considered block does not belong to the anytime 
solution. Besides, we can estimate only the cells, not 
the blocks (see such heuristics in (Melnikov, 2005)). 
And procedure of constructing blocks is the 
particular heuristic sub-problem; we are going to 
describe corresponding algorithms in the next paper. 

Therefore, we have to use the following 
modification of the truncated B&B. 

1. Considering the next problem of the 
searching space, we select a cell using the 
heuristics A (see below). 

2. Using the heuristics B (see below), we 
construct the set of blocks M. Each of 
these blocks contains the selected cell. Let 
the number of blocks given by algorithm 
B be N. 

3. The considered problem is divided into N 
ones. In each of obtained problem, we 
suppose that the next considered block 
belongs to Q, and other N-1 blocks do not 
belong to Q. 

4. Returning to the step 1. (Or exiting, if the 
searching space is empty.)  ■ 

This heuristic algorithm is based on the 
following example. Let us have the considered 
problem T, and after the heuristics A and B (see 
below), we obtain a set of blocks (let they be b1, b2 
and b3) for the next branching. Then we divide the 
problem T for 3 ones (T1, T2 and T3, branching by 
b1, b2 and b3 correspondingly). And we use the fact 
that b1 could hardly be included in the set of blocks 
solving the problems T2 and T3, etc. 
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Heuristics A (selecting the cell). We select the 
cell having the maximum possible sum of the 
numbers of cells in the same row or in the same 
column, which are not included in the current 
answer. (Remark that in (Melnikov, 2005), we 
considered some more complicated heuristics for 
this thing.)  ■ 

Heuristics B (selecting the block). Let us choose 
the set of blocks containing the cell of the row r and 
the column c. 

1. First, let us construct the following quasi-
block. 

a) Excluding columns, which have 0 
in the position r. In the same way, 
we also exclude rows.  

b) Using algorithm A (or its 
modification of (Melnikov, 2005)) 
for estimating remaining columns 
and rows, such that the estimation 
is the sum of their values given by 
algorithm A. Certainly, we 
consider only cells, which values 
are equal to 1. 

c) Proving that there exist two 
columns or two rows, which have 
the different estimations. 
(Otherwise, we already obtained 
the quasi-block, i.e., all the 
corresponding cells have values 1. 
In this case, we add this quasi-
block to the set of them and return 
to step b.)  

d) Excluding the row or the column 
having the minimum estimation. 

e) Returning to the step b. 
2. For each constructed quasi-block, let us 

extend the number of rows and/or 
columns, such that all the corresponding 
values are equal to 1. Thus, we can obtain 
1 or 2 blocks. 

3. All the blocks constructed of the step 2 
form the final set of blocks.  ■ 

Certainly, for the successful execution, B&B 
needs not only heuristics for branching (i.e., 
heuristics A and B described before), but also some 
more heuristics: 
• for calculating the bounds (C1 and C2); 
• for the quick addition for the set of blocks (D); 
• and for quick transformating the quasi-block 

into the block (E).  
Let us remark in advance, that we do not describe 
heuristics E in this paper, and heuristics C2 will be 
described briefly. Their detailed description, and 
also the detailed description of some complicated 
heuristics which are the alternative to the simplest 
heuristics C1 given below, is the subject of the next 
paper. 

Heuristics C1 (calculating upper bound). The 
upper bound is the maximum possible value of 
blocks, which are obtained for the ending of 
calculating the considered problem. 

We count the number of rows which contain at 
least one value 1; also we count the number of such 
columns. The answer is the minimum of two these 
values. ■ 

Heuristics C2 (calculating lower bound). 
Similarly to C1, the lower bound is the minimum 
possible value of blocks, which are obtained for the 
ending of calculating the considered problem. 

For calculating this value, we use another 
heuristics for constructing special set of cells, for 
which each their pair cannot belong to the same 
block. (Let us remark, that there exist, in general, 
more than 1 such sets of cells, but the mentioned 
heuristics constructs the only one.s) The number of 
such cells is the lower bound. ■ 

Certainly, the solved subproblem can be called 
unpromising if its lower bound is equal or more than 
minimum of the upper bounds of all the existing 
subproblems. Such subproblem can be excluded 
from the set of subproblems to be considered. 

Heuristics D (the quick addition for the set of 
blocks). Two of the possible goals of applying this 
heuristics are the following: to make the upper 
bound; to make a sequence of the left problems (for 
the last thing, see (Melnikov, 2005)). 

Thus, the simplest heuristics is the same as 
heuristics C1.  ■ 

4 SOME LOCAL HEURISTICS 
FOR THE DNF-MINIMIZATION 
PROBLEM 

Instead of blocks, we consider here the planes; each 
plane has dimension in the interval from 1 to the 
given number of variables N. At first sight, we have 
to construct all the planes, for which all the values of 
minimized function are equal to 1. (After this 
constructing, B&B can start.) However, all the well-
known algorithms for  constructing such planes are 
too long (Birkhoff and Bartee, 1999; Lee and 
Markus, 1967; Yablonskiy, 1979; etc) – unlike the 
NFA-minimization problem. 

Really, if we use algorithms which obtain planes 
in decreasing order of their dimension, then we 
obtain that the time is O(4N). Let we have N 
variables and M sets of their values (corresponding 
to the sets of coordinates), where the minimized 
function is equal to 1. Then infilling the array 
corresponding planes (the number of planes is 3N) 
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requires O(M•2N) units of time. Because at the worst 
M =2N-1, we obtain that the required time is O(4N). 

Certainly, we exclude the planes belonging to 
other ones. The operation of such excluding require 
the time, which only linearly depends on N. But 
such procedure does not solve formulating problem 
completely. 

Besides, if we use algorithms which obtain 
planes in decreasing order of their dimension, then 
the appearance of the first plane usually needs a lot 
of time; but it is a practical result, it hardly could be 
rigorously proven. 

The algorithms which obtain planes in ascending 
order of their dimension also do not solve the 
problem, although the time estimating is here O(3N); 
this estimating is simply obtained, e.g., by 
realization algorithms of (Birkhoff and Bartee, 1999; 
Yablonskiy, 1979). This time estimating is some 
better, but also too long. However, the immediate 
start of B&B is here uninteresting, because there is 
unlikely that even the pseudo-optimal answer 
(pseudo-optimal DNF) contains planes having little 
dimensions. 

However, the heuristics for the immediate start 
of B&B does exist. The detailed description of this 
heutristics is the subject of the special paper, we 
shall describe it briefly. 

Thus, we set for this thing the following local 
goal: to construct the sets of considered subsets of 
the given planes, which intersections are minimum 
possible. The bound is here the power of intersection 
sets. And the indication of anytime decision is the 
absence of the sets of coordinates, for which the 
value of the given function is equal to 1. 

Then we select an arbitrary value 1 from the 
given set of multidimensional cube corner. For it, we 
construct the plane containing it and having 
maximum possible dimension. (Such algorithm of 
constructing plane is similar to considered in Section 
3 for the selecting block.) Certainly, we can obtain 
more than one planes. Then for each of these planes, 
we exclude then sets of coordinates belonging to this 
plane. It is important to remark, that each of them 
will form the different sub-problem, and, therefore, 
we can start truncated B&B before we have 
constructed the whole set of planes. Besides, such 
algorithm allow to obtain planes of big dimension, 
e.g., we often do not consider intersections of them. 

We use here the following estimation for the 
bounds. The high bound is the number of planes in 
the quasi-optimum DNF (i.e., of the best DNF of the 
considered sub-problem). And the low bound is the 
same value for the considered DNF. 

And, as we said before, the heuristics for 
minimization of DNF (unlike minimization of NFA) 
are given here very briefly. We are going to describe 
this thing more detailed in the next paperз. 

5 SOME PRELIMINARY 
PRACTICAL RESULTS 

While testing, we set the time for our anytime 
algorithm (see the tables). We also set the dimension 
of the problem – i.e., the number of rows for NFA 
(the number of columns depends of the last value 
also by special variate) and the number of variables 
for DNF – not the numbers of grids for NFA and 
planes for DNF, the last values are also special 
variates depending on previous ones. 

The clock speed of the computer was about 2.0 
GHz. If we choose the time under 10 minutes, we 
make the averaging-out by 50 or more solutions. 

And the values of cells have the following 
meaning. For each cell, we made corresponding 
tests. For each test, we set the number of 
grids/planes for the given problem (certainly, we did 
not use this information in the program) and obtain 
the value of grids/planes found by anytime 
algorithm. Then we counted comparative 
improvement of this value (+) or the worsening (–). 
The possibility of positive values is the corollary of 
the fact, that, e.g. for the DNF, two planes of 
dimension k could form one plane of dimension k+1. 
The values were averaged; they are written in the 
table in percents. (I.e., +0.20 means that the mean 
value is better than the a priori given than 0.2%.) 

Thus, below are the practical results. 
 

NFA 20–23 40–45 60–65 80–90 
01 sec –1.76 –0.58 –0.02 –0.02 
10 sec –0.55 –0.17 +0.22 +0.20 
01 min –0.03 +0.45 +1.00 +1.06 
10 min 0 +1.06 +1.07 +1.20 
01 h 0 +1.07 +1.17 +1.21 

 
DNF 20–22 25–27 30–33 
01 sec –8.5 –2.2 –1.9 
10 sec –1.21 –0.70 –0.43 
01 min –0.73 –0.65 –0.43 
10 min –0.03 –0.01 –0.01 
01 h –0.03 –0.01 0 

Thus, the obtained results are near to 100%; this 
fact shows that the approach proposed in this paper 
could be applied in the future. And in the next 
papers, we are going to give the practical results for 
two other problems mentioned in Section 2. 

REFERENCES 

Belozyorova, A., and Melnikov, B., 2005. “Applying the 
set of heuristics in the problem of constructing scheme 
of nuclear transformations”, 2nd Conference 

SOME SPECIAL HEURISTICS FOR DISCRETE OPTIMIZATION PROBLEMS

363



 

“Methods and instrument of the information 
processing”, Russia, Moscow State Univ. Ed. (2005) 
208–212 (in Russian). 

Birkhoff, G., and Bartee, T., 1999. Modern Applied 
Algebra, McGraw-Hill, N.Y., 1999. 

Dorigo, M., and Gambardella, L., 1997. “Ant Colony 
System: A Cooperative Learning Approach to the 
Traveling Salesman Problem”, IEEE Transactions on 
Evolutionary Computation, Vo.1, No.1 (1997) 53–66. 

Hromkovič, J., 2003. Algorithms for Hard Problems, 
Springer, 2003. 

Jiang, T., and Ravikumar, B., 1993. “Minimal NFA 
Problems are Hard”, SIAM J. Comput., Vo.22 (1993). 

Johnson, D., and McGeoch, L., 1997. “The Traveling 
Salesman Problem: A Case Study in Local 
Optimization”, in “Local Search in Combinatorial 
Optimization”, eds E.Aarts, J.Lenstra, John Wiley Ed., 
1997, 215–310.  

Kameda, T., and Weiner, P., 1970. “On the State 
Minimization of Nondeterministic Finite Automata”, 
IEEE Trans.on Computers, C-19 (1970) 617–627.  

Lee, E., and Markus, L., 1967. Foundation of Optimal 
Control Theory. Wiley, 1967. 

Melnikov, B., 2000. “Once more about the state-
minimization of the nondeterministic finite automata”, 
The Korean Journal of Computational and Applied 
Mathematics, Vo.7, No.3 (2000) 655–662. 

Melnikov B., and Romanov, N., 2001. “Once more on the 
heuristics for the traveling salesman problem”, Russia, 
Saratov State Univ. Ed., “Theoretical informatics and 
its applying”, Vo.4 (2001) 81–92 (in Russian).  

Melnikov, B., 2005. “Discrete Optimization Problems – 
Some New Heuristic Approaches”, Conference HPC-
Asia-2005, IEEE Computer Society Press Ed., 2005. 

Yablonskiy, S., 1979. Introduction into discrete 
mathematics, Moscow, Nauka Ed., 1979 (in Russian). 

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

364


