
ENABLING ROBUSTNESS IN EXISTING BPEL PROCESSES

Onyeka Ezenwoye and S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University
11200 SW 8th St., Miami, FL 33199

Keywords: ECommerce, Web Service Monitoring, Robust BPEL Processes.

Abstract: Web services are increasingly being used to expose applications over the Internet. To promote efficiency and
the reuse of software, these Web services are being integrated both within enterprises and across enterprises,
creating higher function services. BPEL is a workflow language that can be used to facilitate this integration.
Unfortunately, the autonomous nature of Web services leaves BPEL processes susceptible to the failures of
their constituent services. In this paper, we present a systematic approach to making existing BPEL processes
more fault tolerant by monitoring the involved Web services at runtime, and by replacing delinquent Web
services. To show the feasibility of our approach, we developed a prototype implementation that generates
more robust BPEL processes from existing ones automatically. The use of the prototype is demonstrated using
an existing Loan Approval BPEL process.

1 INTRODUCTION

Web services are becoming prevalent in the electronic
marketplace and are often used to represent specific
business functions (e.g., ticket reservation). In or-
der to create coarse grained business processes that
constitute a number of related business functions, a
high-level work flow language such as BPEL (Weer-
awarana and Curbera, 2002) is often used. However,
due to the autonomous nature of the Web services, it is
difficult for a third party user to ensure and check that
a Web service will fulfill its requirements (functional
or non-functional) (Robinson, 2003; Menasc, 2002).
Consequently, the inherent openness of the interac-
tions among Web services leaves BPEL processes
susceptible to the failures of their constituent services.
In this paper, we present a systematic approach to
making existing BPEL processes more robust. By
systematic, we mean that the code for robustness is
generated and woven into the BPEL process; so the
developers of the BPEL processes do not need to be
aware of such code.

BPEL provides a coarse grain approach to build-
ing complex business processes by integrating sepa-
rate and simpler Web services. The goal of BPEL is
to improve corporate efficiency by promoting appli-
cation integration and software reuse. Figure 1 de-
picts an example business process (Sales service) that
involves four functional units. In this example, the
activity of processing a purchase order from a cus-

tomer involves the accounting, production, inventory
and delivery services.

Figure 1: An example Sales Business Process.

To provide some robustness to BPEL processes,
we need to monitor the behavior of the partner Web
services. The problem of monitoring Web services
is however compounded by the fact that traditional
monitoring, debugging and testing tools do not suf-
fice because some services may be outside the con-
trol of the developer of the BPEL process (Vogels,
2003). One type of monitoring that can be done on
such autonomous Web services is to check that they
fulfill their service contracts (Robinson, 2003). Ex-

95
Ezenwoye O. and Masoud Sadjadi S. (2006).
ENABLING ROBUSTNESS IN EXISTING BPEL PROCESSES.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 95-102
DOI: 10.5220/0002464100950102
Copyright c© SciTePress

isting methods of monitoring BPEL processes either
do not fully separate the functional from the non-
functional requirements of the process (Baresi et al.,
2004) or do not maintain the portability of the BPEL
process by extending the BPEL language or the BPEL
engine (M. Blow et al., 2004).

In this paper, we show how an existing BPEL
process can be made robust by automatically identi-
fying and monitoring desired services and replacing
them upon failure. The rest of this paper is struc-
tured as follows. Section 2 provides a background
on the key technologies used in this paper. Section 3
overviews our approach and provides some detailed
description. A case study using our prototype imple-
mentation is presented in Section 4. Section 5 con-
tains related work. Finally, a discussion of future
work and some concluding remarks are in Section 6.

2 BACKGROUND

The use of the term Web service is often overloaded
and confusing. In its broadest definition, a Web ser-
vice is a software component that is accessible over
the Internet via some middleware protocols. A more
precise definition however is, any software compo-
nent that utilizes WSDL (explained next) as the pri-
mary means to describe its interface and can be ac-
cessed over the Internet with the use of a messag-
ing protocol such as SOAP (Gudgin et al., 2003).
Web services aim to promote the use of distrib-
uted applications by harmonizing the heterogeneity
between interacting systems. Unlike previous at-
tempts, Web services have been successful in fa-
cilitating application-to-application and business-to-
business integration via the Internet (Vinoski, 2003).
This section presents in brief the key technologies that
are necessary for the understanding of the material in
the following sections.

WSDL. Web Services Description Language
(WSDL) (Chinnici et al., 2004) is an XML-based
standard for describing a Web service. A WSDL
definition is divided into two parts: abstract and
concrete. The abstract part describes the service
interface, the operations it performs and the messages
involved; the concrete part describes the location
of the service and how to access and bind to a Web
service. An abstract definition can be mapped to
multiple concrete implementations. Both abstract
and concrete WSDL definitions are independent
of the service implementation. In other words, the
description of service end points, the operations
and messages, the message formats and the network
protocols used in the communication are independent
of how the services are implemented (e.g., what

programming languages have been used or whether
the services are using other services to perform their
tasks).

BPEL. Business Process Execution Language
(BPEL) (T. Andrews et al., 2003) is a high-level
workflow language for defining more coarse-grained
Web services by integrating a number of existing
Web services. BPEL provides many constructs for
the management of the process including loops,
conditional branching, fault handling and event
handling (such as timeouts) and it allows for partner
service to be accessed asynchronously, sequentially
or in parallel. BPEL process can catch faults from
a service invocation. A caught fault is handled
by specified catch activity which could be a reply
containing an error message. Faults are caught
with catch or catchAll handlers that defined
inside faultHandlers tags. The catch elements
specify custom fault-handling activities that execute
on a given fault name or fault variable While the
catchAll elements specify fault-handling activities
that execute when a fault is not caught by a catch
fault handler. The scope is a container that provides
a context for a subset of activities. It can contain fault
and event handler for activities nested within it. The
scope allows the activities enclosed within it to be
managed as logical unit.

3 OVERVIEW OF APPROACH

Our approach to making an existing BPEL process ro-
bust involves monitoring the invocation of partner ser-
vices from within the BPEL process. Events such as
timeouts and faults are monitored and upon the occur-
rence of such events, a specific proxy Web service is
invoked to find and replace the faulty services.

3.1 Modifying BPEL Processes

By modifying existing BPEL processes, either by a
developer or by an automatic generator, our approach
aims to achieve a separation of concerns (McKinley
et al., 2004). That is, enabling the separate devel-
opment of the process’s functional requirements (the
business logic) from the non-functional requirements
(fault tolerance, in our case). This allows the ini-
tial developer of the BPEL process, which could be
a business analyst, to determine the functional re-
quirements of the process and compose it as such.
Adding non-functional requirements involves identi-
fying points in the process at which monitoring is re-
quired and inserting appropriate code to do so. The
monitoring code we insert is in the form of standard

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

96

BPEL constructs to ensure the portability of the mod-
ified process.

BPEL provides constructs for the management of
the faults and events by using the faultHandlers
and eventHandlers clauses, respectively (see sec-
tion 2). A fault can be a programmatic error generated
by the Web service partners of the BPEL process or
unexpected errors (e.g., service unavailability) from
the Web service infrastructure. A timeout is an
“event” in BPEL that is defined by the onAlarm
clause. We use a timeout to limit the amount of time
that the process can wait for a reply from an invoked
Web service.

We modify the existing BPEL process by identify-
ing points in the process at which external Web ser-
vices are invoked and then wrapping each of those
invocations with a BPEL scope that contains the de-
sired fault and event handlers. The following XML
code is an example of a service invocation in BPEL.

1. <invoke name="invokeApprover"
2. partnerLink="approver"
3. portType="loanApprovalPT"
4. operation="approve"
5. inputVariable="request"
6. outputVariable="approvalInfo">
7. </invoke>

Figure 2: An unmonitored invocation.

The above code instructs the BPEL engine (a
virtual machine that interprets and executes BPEL
processes) to invoke a partner Web service. The actual
Web service partner is defined by the partnerLink
(line 2). Lines 3 and 4 identify the inter-
face (portType) of the partner and what method
(operation) the invocation wishes to call. The input
and expected output messages are specified in lines
5 and 6. This bare invocation can be identified and
wrapped with the monitoring code. The process of
identifying an invocation to monitor includes noting
the exact interface (operation, input and output vari-
ables) of the invocation. This is important for defining
the proxy service as we will explain shortly.

The XML shown in Figure 3 is a version of the
above invocation after our monitoring code has been
wrapped around it. The unmonitored invocation (Fig-
ure 2) is first wrapped in a scope container which
contains fault and event handlers (lines 2-11 and 12-
21 respectively in Figure 3). The scope allows the
activities enclosed to be managed as one logical unit.
A catchAll fault handler is added (lines 3-10) to the
faultHandlers to handle any faults generated as a
result of the invocation of the partner Web service.
The fault-handling activity defined is the invocation
of the proxy Web service (lines 4-9). Thus, when a
fault is generated by the partner service invocation,

this fault is caught by the catchAll and the proxy
service is invoked to substitute for the unavailable or
failed service.

1. <scope>
2. <faultHandlers>
3. <catchAll>
4. <invoke name="InvokeProxy"
5. partnerLink="proxy"
6. portType="proxyPT"
7. operation="approve"
8. inputVariable="request"
9. outputVariable="approvalInfo"/>
10. </catchAll>
11. </faultHandlers>
12. <eventHandlers>
13. <onAlarm for="’PT15S’">
14. <invoke name="InvokeProxy"
15. partnerLink="proxy"
16. portType="proxyPT"
17. operation="approve"
18. inputVariable="request"
19. outputVariable="approvalInfo"/>
20. </onAlarm>
21. </eventHandlers>
22. <invoke name="invokeApprover"
23. partnerLink="approver"
24. portType="loanApprovalPT"
25. operation="approve"
26. inputVariable="request"
27. outputVariable="approvalInfo">
28. </invoke>
29.</scope>

Figure 3: A monitored invocation.

A similar construct is used for the event handler.
An onAlarm event handler (lines 13-20) is used to
specify a timeout. That is, a duration within which the
partner service invocation must complete. If the part-
ner service fails to reply within the stipulated time,
the proxy service is invoked (lines 14-19) as a substi-
tute. In our case, we have arbitrarily specified a time-
out duration of 15 seconds (line 13), but this can vary
depending on the type application or personal prefer-
ence. Note that the interface for the proxy Web ser-
vice is exactly the same as that of the monitored Web
service. This is because we intend to generate a proxy
with an exact interface as that of the monitored ser-
vice. Thus, the operation, input and output variables
of the proxy are the same as that of the monitored in-
vocation.

As stated in section 2, the BPEL specification al-
lows for the definition of two types of fault han-
dlers (catch and catchAll). Our decision to use
a catchAll is based on the fact that, we expect the
initial developer of the process would have defined
explicit fault-handlers (using catch) for predefined
exceptions (T. Andrews et al., 2003). Recall that

ENABLING ROBUSTNESS IN EXISTING BPEL PROCESSES

97

the catch handler is used to handle specific prede-
fined programmatic exceptions from the partner ser-
vices. The catchAll would then handle any un-
foreseen faults that might arise from the Web service
infrastructure, for instance, if the invoked service is
unavailable. If it so happens that the specific catch
fault-handlers are missing, the catchAll would han-
dle any fault that is thrown, which may or may not
be desirable. Finally, if there exists a catchAll in
the original BPEL, then the wrapping code will be
added at the beginning, which again may not be de-
sirable. This shortcoming is due to the fact that the
BPEL specification still does not have a proper run-
time exception specification for unavailability of ser-
vice partners.

3.2 Defining the Proxy Web Services

We have previously referred to the proxy Web service
as a “specific proxy”. By specific, we mean that the
proxy for a monitored service has to have the same
interface as the monitored service. Infact, the specific
proxy only exists after the service to be monitored has
been identified. The abstract portion of WSDL de-
scription for the proxy Web service is similar to that
of the monitored service, only the concrete portions
are different.

The job of the proxy Web service is to discover
and bind equivalent Web services that can substitute
for the monitored services, upon the failure of those
services. By equivalent, we mean services that im-
plement the same port type (and business logic) as
that of the monitored service. A port type is simi-
lar to an interface in the Java programming language.
So, when two Web services implement the same port
type, only their internal implementations may vary,
their interfaces (the abstract portions of their WSDL
descriptions) remain the same. Although the Web ser-
vice paradigm is still in its infancy, the idea of having
equivalent services is not far fetched. The business
logic of applications such as search engines, flight
reservation services, driving directions or even a net-
work of printers, are all the same. Thus applications
with the same functional requirement are equivalent.
It is expected that in the near future, standard organi-
zations will specify standard service interface defini-
tions for different business domains that providers can
choose from, implement and deploy (Kreger, 2001;
Januszewski, 2002).

Equivalent services can be discovered at design
time (static discovery) (Kreger, 2001). When sta-
tic discovery is used, services that can substitute for
the monitored service are noted and tightly associated
with the code for the proxy.

One concern about using a specific proxy is that
we need to have several specific proxies, if the BPEL
process has several partner Web services that need to

be monitored. However, this problem can be easily
overcome by defining one proxy with an interface that
is an aggregation of all the interfaces of the monitored
Web services.

3.3 Generating the Robust BPEL

The task of manually modifying a BPEL process to
insert monitoring code and then producing the cor-
responding proxy service, can be quite cumbersome.
This task becomes even more daunting when there
are multiple service invocations that need to be moni-
tored. A systematic approach to achieving these goals
can however be devised. This systematic approach
makes it possible to come up with a generator that
can automatically generate the more robust version of
a given BPEL process and its associated proxy ser-
vice.

Such a generator, as illustrated in Figure 4, would
need as input three sets of documents: (1) the original
BPEL process, (2) the WSDL descriptions of all the
Web service partners of the BPEL process that need
to be monitored, and (3) the WSDL descriptions of all
the substitutes for the monitored services.

The generator would add all the necessary moni-
toring code to the BPEL process. It needs the abstract
descriptions of the partner services from their WSDL
files in order to be able to define the interface for the
proxy service. The WSDL files for the substitutes are
needed so that they can be statically associated with
the developed proxy as described in section 3.2. The
WSDL files for the substitutes may not actually need
to be fed into the generator. They could be enumer-
ated on a list and the list is read by the proxy. The
point here is that the substitutes and their bindings are
known at design time. The output of the generator
is the monitored BPEL and a proxy Web service that
utilizes static discovery.

Figure 4: The generation process.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

98

4 CASE STUDY

To show the feasibility of our approach presented
in the previous section, we developed a prototype
implementation of the generator in Java. Although
the previous section provides an overview of the ap-
proach, some detail about the adaptation and genera-
tion process has been omitted for the purpose of clar-
ity. In this section, we use a case study to demonstrate
in more detail the issues we encountered and the deci-
sions we made. For our case study, we use an existing
Loan Approval process that is commonly used as a
sample BPEL process.

4.1 The Loan Approval Process

The Loan Approval BPEL process is a Web service
(LoanApproval) that is an aggregation of two other
Web services. The two Web services involved in the
process are a risk assessor service (LoanAssessor)
and a loan approver (LoanApprover). The Loan
Approval process implements a business process that
uses its two partner services (LoanAssessor and
LoanApprover) to decide whether a given individ-
ual qualifies for a given loan amount. Please note that
in this case study we assume that we have access to
the Loan Approval BPEL process, but the two other
Web service partners are assumed to be developed,
deployed and managed by third parties (outside our
control). In this case study, we try to use our pro-
totype implementation of the generator to generate
a more robust version of the Loan Approval BPEL
process without manually modifying the source code
of the original BPEL process and without the need to
modify the two Web service partners.

As illustrated in Figure 5, the Loan Approval BPEL
process receives as input a loan request (Receive-
CustomerRequest). The loan request message com-
prises two variables: the name of the customer and
the loan amount (not shown in the figure). If the
loan amount is less than $10,000, then the risk asses-
sor Web service is invoked (InvokeRiskAssessor),
otherwise the loan approver Web service is invoked
(InvokeLoanApprover). The risk assessor and the
loan approver services take as input the loan request
message (not shown in the figure). After the risk as-
sessor is invoked, the BPEL process expects to re-
ceive as reply a risk assessment message. This risk
assessment message is a string with a value of either
“high” or “low”. When the risk assessment is “low”,
this means the loan is approved and the loan approval
process sends an approval message (with “yes” value,
AssignYestoAccept) to the customer and termi-
nates (ReplyCustomerRequest). If the risk assess-
ment message is “high”, the loan approver service
is invoked (InvokeLoanApprover). The loan ap-
prover service returns a loan approval message (ei-

ther “yes” or “no”), which is then sent as reply to the
customer (AcceptMessageToCustomer). Both the
risk assessor service and the loan approver service can
also return a predefined fault message to the BPEL
process. When any of these services reply with a fault
message, the BPEL process sends an error message to
the user and terminates (not shown in the figure).

Figure 5: The work flow of the loan approval BPEL
Process.

Both the risk assessor and the loan ap-
prover Web services were implemented pre-
viously by ActiveWebflow in Java (http:
//www.active-endpoints.com/). For the
purpose of our case study, we deployed the Web
services locally on an Apache Tomcat server with
Apache AXIS (http://www.apache.org/) as the
SOAP engine. The BPEL process was hosted on an
Active-Bpel engine.

To ensure the clarity of the instrumentation process,
it is important to briefly introduce the key WSDL files
involved.

loandefinitions.wsdl: This file contains definition
of the common messages between the risk assessor
and the loan approver Web services. These mes-
sages are the creditInformationMessage and the
loanRequestErrorMessage. The loanRequest-
ErrorMessage defines the input message of the ser-
vices. It is a 3-tuple that consists of the first and
last name of the customer and the loan amount. The
loanRequestErrorMessage defines the program-
matic fault message that can be returned by both ser-
vices. This file ensures consistency in the specifica-
tion of the services. In this case, the services share
the definition of two messages.

loanapprover.wsdl: This file describes the loan ap-
prover Web service. It describes the location of the
service, the methods it exposes and the three mes-

ENABLING ROBUSTNESS IN EXISTING BPEL PROCESSES

99

sages involved. The “loandefinitions.wsdl” file is im-
ported so as to include the two messages specified
therein. A third message, the loan approval message,
is explicitly defined inside this file.

loanassessor.wsdl: This file contains the descrip-
tion for the loan assessor service. It is much similar
to the “loanapprover.wsdl”, the only different being
that, for this interface, the name of the operation and
output message are different.

4.2 Monitoring the Process

As previously described (Figure 4), our static gener-
ator uses the original BPEL process code, the WSDL
file of the partners and their substitutes to generate a
more robust BPEL process and its proxy Web service.
The generator we are developing tries to achieve this
in two steps: generate the modified BPEL process and
generate the proxy Web service. These steps are not
necessarily ordered as both can be achieved indepen-
dently. In the following sections, we describe how we
have done this.

4.2.1 Generating the BPEL Process

We have successfully derived and implemented an
algorithm that, when given any syntactically correct
BPEL process, would generate a more robust but
equivalent version of the process. The task of trans-
parently adapting any program code is made compli-
cated by the need to preserve its original function-
ality (McKinley et al., 2004). This, coupled with
the fact that BPEL is not a sophisticated program-
ming language and is thus limited in the number of
available programming language constructs, makes
the task of instrumentation more arduous.

Because BPEL uses Flow and Sequence contain-
ers to specify parallel and sequential activities, indi-
vidually wrapping the invocations in those containers
with a Scope does not affect the sequence of their
execution. However, when the order of execution be-
tween activities is specified with the use of a Link,
the links have to be removed as part of the Invoke
to become part of the Scope. Recall (from Section 2)
that a Scope allows the activities within to be man-
aged as one logical unit. So moving the moving the
links to the Scope preserves the execution sequence
of the activities. Figure 7 below is the modified ver-
sion of the invocation in Figure 6 after the generation
process. It can be seen that the target and source links
in Figure 6 (lines 7-9) have been moved outside of the
invocation in Figure 7 (line 29) to become immediate
children of the Scope (lines 2-5).

The original Loan Approval BPEL process has a
single fault handler for the whole process. This fault

1. <invoke inputVariable="request"

2. name="InvokeLoanApprover"

3. operation="approve"

4. outputVariable="approval"

5. partnerLink="approver"

6. portType="lns:loanApprovalPT">

7. <target linkName="receive-to-approve"/>

8. <target linkName="assess-to-approve"/>

9. <source linkName="approver-to-reply"/>

10.</invoke>

Figure 6: The invocation of the Loan Approver Service.

handler sends a fault message to the customer in the
event of a fault. Our algorithm leaves this fault han-
dler intact. But our policy of making sure that each
target invocation has a specific fault and event han-
dler means that our monitoring code is closest to the
invocation. A limitation of this approach is that by
using a catchAll fault handler, all faults generated
by the invocation will first be caught by this handler
even though there may already be explicitly defined
handlers for known programmatic faults. Currently,
we are working on a solution to address this problem.
In addition, the current prototype wraps all the invo-
cations in the BPEL process with monitoring code.
It would be easy to come up with an implementa-
tion that allows the user to select which invocations
to monitor. To avoid redundacy, only the transforma-
tion of the invocation for the Loan Approver service
is shown in Figure 7.

The loan approver service was made to gener-
ate a loanProcessFault, which was caught in the
faultHandlers clause and the proxy service in-
voked. The loan approver service is disabled to sim-
ulate an unavailable service. The generated exception
is now successfully caught and the proxy is invoked.
The modified process is also able to deal with a time-
out event after the loan approver is purposefully made
to loop to simulate a slow service. The timeout is
caught by the specified eventHandlers clause (not
shown in the code). Instead of the BPEL failing on
these events, the proxy is successfully able to invoke
an equivalent loan approver service, which substitutes
for the failed loan approver.

4.2.2 Generating the Proxy Web Service

The second part of the generator is to automatically
produce a Java implementation of the proxy Web ser-
vice. As of this writing, this part of the generator
is a work-in-progress. We have however, manually
composed this proxy service. Currently, we employ
a static discovery method (Kreger, 2001) for the dis-
covery of equivalent services. The implementation of
the proxy involves the use of a stub interface gen-
erator through which the discovered equivalent ser-

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

100

1. <scope variableAccessSerializable="no">

2. <target linkName="receive-to-approve"/>

3. <target linkName="assess-to-approve"/>

5. <source linkName="approver-to-reply"/>

6. <faultHandlers>

7. <catchAll>

8. <invoke inputVariable="request"

9. name="proxy"

10. operation="approve"

11. outputVariable="approval"

12. partnerLink="proxy"

13. portType="pxns:proxyPT"/>

14. </catchAll>

15. </faultHandlers>

16. <eventHandlers>

17. <onAlarm>

18. <invoke inputVariable="request"

19. name="proxy"

20. operation="approve"

21. outputVariable="approval"

22. partnerLink="proxy"

23. portType="pxns:proxyPT"/>

24. </onAlarm>

25. </eventHandlers>

26. <invoke inputVariable="request"

27. name="InvokeLoanApprover"

28. operation="approve"

29. outputVariable="approval"

30. partnerLink="approver"

31. portType="lns:loanApprovalPT"/>

32.</scope>

Figure 7: The monitored loan approver service.

vices can be invoked. A stub interface is a Java in-
terface for WSDL Web services using their port type
descriptions. To generate the stub interface, you can
use any tool that generates Java interfaces for WSDL
services using their port type descriptions, such as
WSDL2Java from AXIS or Java WSDP from Sun Mi-
crosystems.

As stated in the overview (Sections 3.2 and 3.3),
the interface for the proxy service can be an aggre-
gation of the interfaces of all the monitored services.
This is the approach we have taken so as to have a
single proxy for all monitored services. In order to
achieve this, the WSDL of the proxy was composed
with a new port type definition called proxyPT. This
port type contains the operations and messages de-
fined in the interfaces of the Loan Assessor and Loan
Approver services. It contains both the check and
approve operations of the loan assessor and loan ap-
prover services, respectively. The WSDL2Java tool
from AXIS was used to generate a Java interface from
the proxy WSDL. This Java interface was then imple-
mented with code that would bind to the equivalent
services when the corresponding operation is invoked.
For the equivalent services, we created replicas of the
Loan Approver and Loan Assessor services.

When a monitored service fails, the input message

for that service is used as input message for the proxy.
The proxy will then invoke the equivalent service with
the same input message. A reply from the substi-
tute service is then sent back to the loan approval
BPEL process via the proxy. More detailed informa-
tion about this case study can be found in (Ezenwoye
and Sadjadi, 2005).

5 RELATED WORK

There has been a lot of work done both in web service
monitoring (Robinson, 2003; Birman et al., 2004; G.
Canfora et al., 2005) and in adding fault tolerant to ex-
isting systems (L. Moser et al., 1999; Natarajan et al.,
2000), but they are not specifically addressing fault
tolerance in BPEL processes. . So, we only focus on
the most related ones.

Baresi’s approach (Baresi et al., 2004) to moni-
toring involves the use of annotations that are stated
as comments in the source BPEL program and then
translated to generate a target monitored BPEL pro-
gram. In addition to monitoring functional require-
ments, timeouts and runtime errors are also moni-
tored. Whenever any of the monitored conditions in-
dicates misbehavior, suitable exception handling code
in the generated BPEL program handles them. This
approach is much similar to ours in that monitoring
code is added after the standard BPEL process has
been produced. This approach achieves the desired
separation of concern. This approach however re-
quires modifying the original BPEL processes manu-
ally. The annotated code is scattered all over the orig-
inal code. The manual modification of BPEL code
is not only difficult and error prone, but also hinders
maintainability. In our approach, there is no need for
annotation and manual modification of the original
BPEL processes.

BPELJ (M. Blow et al., 2004) is an extension to
BPEL. The goal of BPELJ is to improve the func-
tionality and fault tolerance of BPEL process. This
is accomplishes by embedding snippets of Java code
in the BPEL process. This however requires a spe-
cial BPEL engine, thereby limiting its portability of
BPELJ processes. The works mentioned above, al-
though are able to provide some means of monitoring
for BPEL processes, they not dynamically replace the
delinquent services once failure has been established.

6 CONCLUSIONS

We have described and implemented a way of instru-
menting BPEL processes so as to make them more
fault tolerant. By adding code for monitoring the indi-
vidual services that are part of the BPEL composition,

ENABLING ROBUSTNESS IN EXISTING BPEL PROCESSES

101

failed services are replaced via a purposely generated
proxy web service. We described how to automati-
cally generate the more robust BPEL process and the
corresponding static proxy.

In our future work, we plan to address the fol-
lowing issues. First, in our current work, we do not
use dynamic service discovery. But because services
are continuously published with the broker, there are
bound to be appropriate services that become avail-
able after the composition of the BPEL process and
the static proxy. So, it makes sense that upon fail-
ure of any of the constituent Web services of the
BPEL process, an equivalent service can be dynam-
ically discovered (at run-time) to serve as a substi-
tute for the failed service. When dynamic discovery
is used, care must also be taken not to re-discover
the failed service. Second, substituting service im-
plementations at runtime may lead to failures on the
client-side (Denaro et al., 2005). Thus it is impor-
tant to be able to detect and resolve potential inte-
gration problems from discovered equivalent services.
This could include making sure that they actually ful-
fill their functional requirements. Third, we realized
that the task of improving fault tolerance for multi-
ple service collaborations is made even more com-
plex if the collaborating services are stateful. Some
techniques (Dialani et al., 2002) for dealing with such
stateful services can be employed.

Further Information. A number of related pa-
pers, technical reports, and a download of the soft-
ware developed for this paper can be found at
the following URL: http://www.cs.fiu.edu/
∼sadjadi/.

ACKNOWLEDGEMENTS

The authors are very thankful to Eduardo Monteiro
who worked on the implementation of the generator.
This work was supported in part by IBM SUR grant.

REFERENCES

Baresi, L., Ghezzi, C., and Guinea, S. (2004). Smart moni-
tors for composed services. In ICSOC ’04: Proceed-
ings of the 2nd international conference on Service
oriented computing, pages 193–202. ACM Press.

Birman, K. P., van Renesse, R., and Vogels, W. (2004).
Adding high availability and autonomic behavior to
web services. In Proceedings of the 26th Interna-
tional Conference on Software Engineering (ICSE
2004), pages 17–26, Edinburgh, United Kingdom.
IEEE Computer Society.

Chinnici, R., Gudgin, M., Moreau, J.-J., Schlimmer, J., and
Weerawarana, S. (2004). Web Services Description
Language (WSDL) Version 2.0. W3C, 2.0 edition.

Denaro, G., Pezze, M., and Tosi, D. (2005). Adaptive inte-
gration of third party web services. In in Proceeding
DEAS 2005, St. Louis, Missouri, USA.

Dialani, V., Miles, S., Moreau, L., Roure, D. D., and Luck,
M. (2002). Transparent fault tolerance for web ser-
vices based architectures. In Eighth International
Europar Conference (EURO-PAR’02), Lecture Notes
in Computer Science, Padeborn, Germany. Springer-
Verlag.

Ezenwoye, O. and Sadjadi, S. M. (2005). Enabling ro-
bustness in existing bpel processes. Technical Report
FIU-SCIS-2005-08, School of Computing and Infor-
mation Sciences, Florida International University, Mi-
ami, Florida.

G. Canfora et al. (2005). The c-cube framework: Develop-
ing autonomic applications through web services. In
Proceedings of DEAS’05, Missouri, USA.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J.,
and Nielsen, H. F. (2003). SOAP Version 1.2. W3C,
1.2 edition.

Januszewski, K. (2002). Using uddi at run time, part ii.
UDDI Technical Article.

Kreger, H. (2001). Web Services Conceptual Architecture
(WSCA 1.0). IBM Software Group.

L. Moser et al. (1999). The Eternal system: An archi-
tecture for enterprise applications. In Proceedings of
the Third International Enterprise Distributed Object
Computing Conference (EDOC’99).

M. Blow et al. (2004). BPELJ: BPEL for Java, A Joint
White Paper by BEA and IBM.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and Cheng,
B. H. C. (2004). Composing adaptive software. IEEE
Computer, pages 56–64.

Menasc, D. A. (2002). Qos issues in web services. IEEE
Internet Computing, 6(6):72–75.

Natarajan, B., Gokhale, A. S., Yajnik, S., and Schmidt,
D. C. (2000). DOORS: Towards high-performance
fault tolerant CORBA. In International Symposium on
Distributed Objects and Applications, pages 39–48.

Robinson, W. N. (2003). Monitoring web service require-
ments. In Proceedings of the 11th IEEE International
Conference on Requirements Engineering (RE 2003),
pages 65–74. IEEE Computer Society.

T. Andrews et al. (2003). Business Process Execution
Language for Web Services version 1.1. BEA Sys-
tems, International Business Machines Corporation,
Microsoft Corporation, SAP AG, and Siebel Systems.,
1.1 edition.

Vinoski, S. (2003). Integration with Web services. IEEE
Internet Computing.

Vogels, W. (2003). Web services are not distributed objects.
IEEE Internet Computing.

Weerawarana, S. and Curbera, F. (2002). Business process
with bpel4ws: Understanding. Online article.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

102

