
SYSTEM ANALYSIS AND DESIGN IN A LARGE-SCALE
SOFTWARE PROJECT: THE CASE OF TRANSITION TO AGILE

DEVELOPMENT

Yael Dubinsky
Department of Computer Science, Technion – Israel Institute of Technology

Orit Hazzan
Department of Education in Technology & Science, Technion – Israel Institute of Technology

David Talby
MAMDAS – Software Development Unit, Air Force, IDF, Israel

Arie Keren
MAMDAS – Software Development Unit, Air Force, IDF, Israel

Keywords: System analysis and design, Agile development, Project specifications, The system analyst role.

Abstract: Agile software development methods mainly aim at increasing software quality by fostering customer
collaboration and performing exhaustive testing. The introduction of Extreme Programming (XP) – the most
common agile software development method – into an organization is accompanied with conceptual and
organizational changes. These changes range from daily-life changes (e.g., sitting together and maintaining
an informative project environment) and continue with changes on the management level (e.g., meeting and
listening to the customer during the whole process and the concept of the whole team which means that all
role holders are part of the team). This paper examines the process of transition to an agile development
process in a large-scale software project in the Israeli Air Force as it is perceived from the system analysis
and design perspective. Specifically, the project specifications of the agile team are compared with those of
a team who continues working according to the previous heavyweight method during the first half year of
transition. Size and complexity measures are used as the basis of the comparison. In addition to the
inspection of the specifications, the change in the role of the system analysts, as the system analysts
conceive of it, is examined.

1 INTRODUCTION

System analysis and design are basic activities in
software development. Traditionally, they are
carried out by a separate group of practitioners, who
gather the system requirements, analyse them and
prepare the specifications documents to be handed to
the development group. In large-scale software
projects these activities are highly significant.

The agile development methods (Highsmith,
2002) and specifically Extreme Programming (XP)

(Beck, 2000, 2005) introduce a change in the
software development environment. For example,
working according to primary practices of XP, the
team Sits Together while implementing the notion of
Whole Team, which means that role holders, such as
the system analyst, work with the other role holders
– developers, testers and team leaders. These work
habits are introduced to foster communication
among teammates.

A natural question to be asked at this point is:
How can we deal with these notions in a large-scale

11
Dubinsky Y., Hazzan O., Talby D. and Keren A. (2006).
SYSTEM ANALYSIS AND DESIGN IN A LARGE-SCALE SOFTWARE PROJECT: THE CASE OF TRANSITION TO AGILE DEVELOPMENT.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 11-18
DOI: 10.5220/0002451900110018
Copyright c© SciTePress

project? Should system analysts need to Sit Together
with the development team? What is the Whole
Team with respect to system analysis and design and
how this notion is interpreted in a large-scale
software project?

Another example is the XP primary practice of
Weekly Cycle. According to this practice, the work is
planed on a weekly basis in accordance with full
customer collaboration. In this case, we should ask:
What is the role of the system analysts in these
weekly planning sessions? Are system analysts the
mediators or do they listen to the customer together
with the Whole Team (i.e., developers, testers, and
so on)? How do we expect the project specifications
to be expressed in an agile environment?

This paper presents a field research conducted in
a large-scale software project in the Israeli Air
Force. The research examined the process of
transition from heavyweight software development
to agile development. Focusing on the system
analysis and design aspect, the research aims at
answering questions such as above-mentioned ones.

In Section 2 we elaborate on the transition
process and in Section 3 we explain the research
setting for its investigation. In Section 4 we present
data analysis by comparing the agile project
specifications with those of a team which continues
working according to the previous heavyweight
method. The comparison relates to the first half year
of transition. Size and complexity measures are used
for the comparison. In addition, in Section 4 we
present data and analysis with respect to the change
in the role of the system analysts as they conceive of
it. In Section 5 we conclude.

2 THE TRANSITION PROCESS

The in-transition software project that this paper
focuses on has been developed by about eighty
skilled system engineers, system analysts,
developers and testers, organized in a hierarchical
structure of small teams. The project develops large-
scale, enterprise-critical software, intended to be
used by a large and varied user population.

The army is known as a large and hard-to-change
organization with respect to fixed regulations,
project approval, management methods and
organizational structure and culture. However, when
the project leadership decided to change the software
development method in order to cope successfully
with the challenges that the project set, the Air Force
leadership supported the decided-upon transition as
a mean to improve software process and quality.

After several months during which the fitness of
different development methods to the said project
had been investigated, XP was selected to be
implemented and a pilot team of fifteen people was
established and started working according to the
agile method. All the other teams of the project
continued working according to the previous
heavyweight method.

It is important to note that during the years prior
to the transition, tools and procedures were
developed and used by the people in this software
unit. Though it was accepted that agile development
can improve the process, it was also agreed that
there are tools and procedures that will not be
changed at the current stage, whether because they
are good practices or whether because of time
constraints.

The software project is built based on a large-
scale in-house object-oriented framework
(Mohamed, Schmidt and Johnson, 1999), which
handles many of the underlying technical aspects of
the system. One aspect is the formal detailed
specifications. This framework relies on a metadata
repository (Talby et al, 2002), which contains most
of the system’s specifications: data entities, data
types, actions, transactions, user types and
privileges, messages, external interfaces and so
forth. This data is edited in the repository, in formal
forms – in contrast to free-text documents – and
much of it is used to automatically generate code
and other files.

As a result of working with this framework, the
process of development starts with design, continues
with writing the formal detailed specifications in the
metadata repository, and then coding those parts of
the specifications that are not automatically
generated. In such a process, the specification
writers have to be formal and precise, and as
formality increases, the cost of communication
increases when teams later on communicate in order
to clarify loose ends.

During the transition process all teams in the
project, including the agile team, continue working
with formal detailed specifications and with the
respective tools that support them.

The roles involved with system analysis and
design in this project are architects, operational
system analysts, functional system analysts, and
system engineers. In this work we focus on the
operational and functional system analysts. The
operational system analysts are practitioners in the
operational aspects of the project subject matter and
are part of an operational analysis group. They
define the system to be developed and they represent
the customers and users. The functional system
analysts process the operational specifications and

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

12

convert them into engineered technical
specifications. They are part of the development
group.

The change for role holders stems from the
change in process. As part of the transition process,
only operational and functional meta-specifications
are produced, and then delivered to the agile team
who together with the customer and system analysts
produced the detailed specifications for both
operational and functional aspects. The impact of
this process on system analysts is elaborated in
Section 4.

Before we delve into the details of the research
findings, we present the difference approaches
reflected by the two development approaches as they
were described by one of the system analysts who
was involved with the transition process in general
and with the agile team in particular. Using the
metaphor of trips he says that the heavyweight
software method is like an organized tourist trip
while the agile method is more a journey-like trip.
Specifically, the tourist makes decisions long time
before executing them, plans ahead into the small
details, and has not much tolerance for changes; The
journeyer, in contrast, is flexible and open to
changes, makes decisions closer to their carrying
out, knows in general terms what he/she wants to see
and plans the details only during the journey itself.

3 RESEARCH FRAMEWORK

The exploration of this transition process started two
years ago when it was decided to change the
traditional heavyweight software method that had
been used in this organization for many years. In
previous work, we presented the way agile and XP
were introduced into this project (Dubinsky, Hazzan
and Keren, 2005) together with the set of product
and process metrics evolved in the first release of the
pilot team and that guided in practice the
development method (Dubinsky, Talby, Hazzan and
Keren, 2005).

Within this research, the sub-research that
focused on the expression of the system analysis and
design aspects in the transition process, two research
approaches were used.

The first approach is a quantitative comparative
one, by which we aimed at measuring the
implications of the transition to the agile method on
system analysis and design. Accordingly, we
examined and compared the specifications produced
from both kinds of teams – the traditional one and
the agile one. Thus, one of the main contributions of
this research is the comparative data and field-based

evidence it provides with respect to the role and
functionality of system analysis and design in an
agile XP large-scale project in a large organization.

The second research approach was a qualitative
approach in which we seek to understand the process
from the system analysts and designers' point of
view. Accordingly, we interviewed system analysts
and asked them questions such as “Do you feel that
your role has been changed? If no, please describe
your role before and after the transition. If yes,
please describe how your role has been changed.”,
“Please compare the traditional way with the agile
XP one.”, and so forth.

In what follows the research tools are presented.
For the comparison purposes, we look at two
different sets of specifications. The first set belongs
to the team which worked according to the
heavyweight method and during the examined half
year was in the phase of fault corrections before
delivery. The second set belongs to the team which
worked according to the agile method and during the
examined half year developed three release – the
second, third and fourth releases – which were each
two months long, and composed of 4 two-week
iterations.

It is clear that a comparison of the specifications
of two different products of two different teams is
not a trivial matter. Therefore, we searched for
trends and relative-to-size measures rather than
absolute numbers. In addition, the comparison value
increases because the two teams work in the same
organization, according to the same procedures, with
the same infrastructure and tools, and with people
with similar experience and expertise.

Three measures were taken from each set. The
first measure is the size of the specifications which
is used for comparison alignment. The second and
third ones are two measures which are used to assess
the complexity of the specifications; one of them is
inspired by the measure of code cyclomatic
complexity (McCabe, 1976; Watson and McCabe,
1996). In Section 4.1 these measures are elaborated
and illustrated.

In order to learn about the transition process
from the point of view of the system analysts, three
thorough interviews were conducted. The interview
was composed of five parts as follows. The first part
was an introduction in which we explained the goals
of the research and the interview, ask permission for
videotaping, and answer questions if exist about our
research and about the interview. The second part
concerns with the interviewee's current position in
which we ask to describe the current role and the

SYSTEM ANALYSIS AND DESIGN IN A LARGE-SCALE SOFTWARE PROJECT: THE CASE OF TRANSITION TO
AGILE DEVELOPMENT

13

significant and interesting things as well as the
problems that occurred as part of this role before and
after the transition. The third part addressed the
system analyst role in general in which the
interviewee was asked to define the role, draw the
position of this role in the organization, and reflect
about the drawing. The forth part of the interview
focused on the agile environment. The interviewee
was asked to share with us his/her knowledge about
the agile method in general and its agile
implementations in the organization in particular.
Then the role of the system analyst was discussed
with respect to the agile environment and with
respect to the drawing from the previous part. In the
last part of the interview, the interviewee was asked
to imagine that she or he are going to establish a new
software company and to decide about the desired
skills and education of the system analysts who they
will hire.

The qualitative data that is the outcome of these
interviews was interpreted by using the theory of
coping with change (Plotkin, 1997) and by using a
reflection ladder (Schön, 1983, 1987; Hazzan, 2002;
Tomayko and Hazzan, 2004).

4 DATA ANALYSIS

The data presented and analyzed in this section was
gathered as described in Section 3. In Section 4.1 the
project specifications are compared using size and
complexity measures. In Section 4.2 the change in
the role of the system analysts is examined. We note
that this research still continues in order to deepen
our understanding of the transition process from
additional perspectives.

4.1 Specifications Comparison

The examined specifications are divided into
modules. We denote the specifications of the team
which worked according to the heavyweight method
by SpecH and the specifications of the team which
worked according to the agile method by SpecA.
During the half year we took three main
measurements – in the beginning, after two months,
and in the end (after 6 months). SpecH was
composed of 189, 196 and 200 modules in these
three measurement times respectively. SpecA was
composed of 34, 44, and 56 modules respectively.

The specifications are written in formal
documents, to enable automatic code generation.
Figure 1 shows an example of specification

fragment. The first measure we use was size, meant
intuitively to represent the number of decisions
made in the specifications. Therefore, a size of 1 is
given to every simple specified value (such as
minimal value and maximal value), and a size of 1 is
given to each line of free-text specifications.
Therefore, the size of the fragment in Figure 1 is 12
since it has 6 simple values, 1 for the one line of the
‘Is Required’ specification, and 5 for the five lines
of the ‘Do on change’ specification.

Field Name: Name
Field Type: String
Description: The customer’s full name
Minimal Length: 1
Maximal Length: 40
Field Editor: Text Box
Is Required: only if the ID field is empty
Do on change: If the ID field is non-empty,
 check that it matches the new
 name. If so, enable the ‘OK’
 button, else display the ‘Name/ID
 Mismatch’ error message.

Figure 1: Specifications sample.

Since the simple values in a specification result in
generated code, and hence do not require any
coding, the size measure does not reflect the
complexity of a given specification for the
development team.

Complexity is only created by the free-text
specifications – and to represent this, we devised
two complexity measures. The first is the Logic-
Based Complexity that is calculated by counting the
number of lines of non-trivial specifications. For the
specification shown in Figure 1, this measure would
be 6. The second is the Keyword-Based Complexity
that is inspired by the cyclomatic complexity
measure (McCabe, 1976; Watson and McCabe,
1996), in which a sequential method has a
complexity of 1, and each decision that causes a split
into two directions raises the complexity by 1. This
definition is equivalent to defining the complexity as
the number of paths in the method’s decision graph.
We emulate the cyclomatic complexity measure by
defining the complexity of free-text specifications
paragraphs to be 1 and add the number of
appearances of the following popular keywords: if,
else, for-every, for-each. For the specification in
Figure 1, this measure would be 6 since we count 2
from the ‘Is Required’ specification (1+1
occurrences of ‘if’), and 4 from the ‘Do on change’
specification (1+2 ‘if’+1 ‘else’). Validating with the
specifications, we found this emulation as a good
and sensible approximation of the actual number of
paths in the specification. Although these

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

14

specifications are free-text, the analysts writing the
specifications normally use only these words. They
are often manually marked by making the font bold,
as shown in Figure 1. This is a project-wide practice,
ensuring the quality of data.

Figure 2 presents the logic-based complexity of
SpecH and SpecA, averaged over all modules of each
project. As can be observed, the averaged logic-
based complexity in the SpecH project is four times
higher than that of SpecA. This difference is
important since we expect that both the agile
development will continuously simplify SpecA (due
to continuous refactoring) and that the stabilization
phase of the heavyweight development will simplify
SpecH. In addition, we can see that the average
logic-based complexity of SpecH increased by 4%
during the researched six-month period, while the
same metrics decreased in SpecA by almost 10%.

SpecH

96.0
97.0
98.0
99.0

100.0
101.0
102.0

1 2 3

SpecA

22.0
23.0
24.0
25.0
26.0
27.0
28.0

1 2 3

Figure 2: Averaged logic-based complexity in three check
points.

Figure 3 presents the averaged keyword-based
complexity of SpecH and SpecA. As can be seen, the
logic-based complexity and the keyword-based
complexity are highly correlated. Also, as in the
previous case, in both cases, the values of the
averaged keyword-based complexity per each
specification in each measurement point are similar,
though for SpecH the range of values is 3.5 times
higher than that of SpecA. The trend of change over
time is also similar to that observed for logic-based
complexity.

This difference in trends over time can be
attributed to the different development methods.
Note that this difference is for the average
complexity over all modules, so the absolute size of

each project is irrelevant here. The heavyweight
project is in a mature phase; Although 11 modules
were added to it during the researched period, the
average per-module complexity increased, hinting
that most new functionality was embedded in
existing modules.

SpecH

68.0

69.0

70.0

71.0

72.0

1 2 3

SpecA

19.0

20.0

21.0

22.0

23.0

1 2 3

Figure 3: Averaged keyword-based complexity in three
check points.

In the agile project, on the other hand, 22 new
modules were added, and average complexity
noticeably decreased. According to the team’s
testimony, and to XP practices, this is caused by
continuous refactoring. When a module gets too
complex, it is refactored into (possible several)
simpler modules. The goal is to keep the design
simple over a long period of time, not assuming the
“right” design in advance. In contrast, in traditional
projects, the design of modules is usually set in
advance. It may also be the case that the high
absolute complexity of the heavyweight project,
achieved over time (as it is in a more mature state
than the agile project), makes refactoring at this
stage more expensive and risky.

The difference in absolute complexity can be
explained by several factors that do not stem from
the development method. For example, the agile
project could be inherently simpler than the
heavyweight one. From conversations with people in
both projects, this is definitely not the case, and two
other explanations have been proposed. First, that
the agile project reuses more features that are built
into the framework, and can be specified in a way
that enables automatic code generation. And second,
the experience gained from specifying the (earlier)
heavyweight project was exploited to specify the
agile project in a way that enables greater use of the
framework, and less manual coding. Figures 4 and 5

SYSTEM ANALYSIS AND DESIGN IN A LARGE-SCALE SOFTWARE PROJECT: THE CASE OF TRANSITION TO
AGILE DEVELOPMENT

15

support these explanations, by presenting the ratio of
logic-based and keyword-based complexity to the
size measure, thereby measuring the proportion of
complex to simple specification. The values are
about 50% and 20% lower in the agile project, for
these two measures respectively.

0

0.05

0.1

0.15

0.2

1 2 3

SpecH SpecA

Figure 4: Logic-based complexity to size in three check
points.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

1 2 3

SpecH SpecA

Figure 5: Keyword-based complexity to size in three
check points.

We elaborate with the notion of feedback cycles
which can add further explanation to the results
described. Before starting using the agile practices,
system analysts had little opportunities to receive
feedback on their work. The specifications were
produced weeks before implementation. The
analysts continued to develop next functions before
they saw the implementation of the previous one.
The developers could not contribute their remarks to
the specifications. This is not the situation with the
agile team. The work of the system analysts is
examined regularly on a two-week basis. The
analysts receive continuous feedback on their work
and can navigate the design accordingly.

4.2 The Role of System Analysts

Based on the qualitative data gathered in the
interviews, we focus in this subsection on the system
analyst role and the changes that characterized it
during the transition period. As has been mentioned
before, during the transition process, one functional

system analyst worked together with the
development agile team and another one stayed as
part of the external functional analysts group. The
group of operational system analysts did not change.

4.2.1 The System Analyst Role

Following are several expressions with respect to the
system analyst role as it was described by the
interviewees:
• “System analyst is a person who observes a

process, understands what the process needs to
achieve, and checks how it is possible to
improve it”;

• “A process designer like buildings designer”;
• “there are system analysts who will finally

instruct also how to build the building”;
• “[the system analyst] has a global understanding

of the system, can analyze the requirements, and
can connect the concepts of the operational
world to technical concepts”;

• “translator from different world of concepts to a
system of development concepts”.

As can be seen, the role of system analyst is
conceived by the interviewees as a central one, both
because he or she has a wide perspective at the
system and because she or he connects the different
parties involved in the development process.

4.2.2 The System Analyst Role During the
Transition Period

The interviewees also described the change they
experienced during the transition process and how
they tried to cope with it.

Plotkin describes two main sets of solutions to
deal with phenomenon that are characterized by
change, and explains how change can be coped with.
None of the solutions is exclusive of the others
(Plotkin, 1997, pp. 145-152).

 The first set of solutions concerns with
'reducing the amount of significant change', thus
reducing the change scope. One way to do it is by
reducing the period of time between conception and
reproductive competence; Meaning, to keep the ratio
'life-span length to numbers of offspring' low, i.e., to
maintain high reproductive output in a relatively
short period of time. In this case, the change is
coped by keeping updated, as far as possible, the
genetic instructions of each individual. Plotkin’s
examples in this chapter are mostly taken from
animals’ life. The second way to reduce the amount
of significant change is to live in a relatively isolated
and unpopulated place. A variation of this idea is

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

16

parents' protection on their offspring by isolating
them.

The second set of solutions to cope with the
phenomenon of change takes the form of ‘if you
can’t beat it, join it’, i.e., change the phenotypes so
that they can change with and match the changing
features of the world. The first strategy is diversity.
One way to accomplish it is to produce large
numbers of different offspring in order to increase
the chance that at least some individuals will be able
to face the change. The second strategy, named the
'tracking option', is to give rise to a change within
phenotypes, i.e., by producing phenotypes that
change in response to changes in the world. The
tracking option is achieved by knowledge-gaining
devices which, according to Plotkin, are the immune
system and the intelligent mechanisms of the brain.
And thus, the immune system operates in the sphere
of chemistry, while the brain mechanisms, known as
rationality or intelligence, operate in the sphere of
the physical world of temporal and spatial
relationships of events and objects.

In what follows we present some of the
interviewees' expressions with respect to the change
in the system analyst role during the transition
process. The expressions are arranged according to
the way the change is coped with.
I. Time aspect
• “I should better understand the constraints

because people start to work immediately and I
immediately see their side”;

• “every two weeks I need to say what will be in
the iteration”;

• “there is no waste of time”.
II. Place aspect
• “everything stays in the customer hands”;
• “It helps reduce over spec”.
III. Diversity
• “everyone is involved and this raises the

confidence feeling with respect to the process”;
• “there is more interaction”.
IV. Knowledge-gaining devices
• “XP gave us more power”;
• “sometimes we use documents and sometimes

only presentations”;
• “Explaining the concept, I sometimes see that

my concept is wrong”;
• “process designer is like building designer”.

One of the most salient phenomena that were

observed during the interviews was that the
interviewees frequently used metaphors and even
mentioned this use as a skill that may support the
performance of the system analysts' role. The

metaphors were diverse and come from different
worlds of concepts like buildings, flowers, space
ship, flow, journey, and relationship between
genders.

As presented in Section 3, the interviewees were
asked to draw the position of the system analyst in
the organization as they see it. The three drawings
(a)-(c) are presented as part of Figure 6. As can be
observed, the system analyst role is mainly
conceived as a bridge between the customer and the
developers. Specifically, Draw (a) and Draw (c)
reflect that this role holder is in a tight middleman
situation; Draw (a) reflects that it is not an easy task;
Draw (c) reflects also a kind of pressure between the
vision and constraints. In Draw (b) the interviewee
described the change that was performed in this
project in which the system analyst who works on
the detailed specifications tends to be part of the
development group, the technical side.

(a)

(b)

(c)

Figure 6: The position of the system analyst.

SYSTEM ANALYSIS AND DESIGN IN A LARGE-SCALE SOFTWARE PROJECT: THE CASE OF TRANSITION TO
AGILE DEVELOPMENT

17

We elaborate on how reflective processes can
improve a person's understanding of his or her own
conception. The importance of reflective processes
in software engineering is presented in Hazzan
(2002) and in Tomayko and Hazzan (2004) based on
Schön (1987). For illustration, we look at Draw (a).

Draw (a) reflects the position of the system
analyst in the organization. When the interviewee
was asked to reflect on his own draw, he said that
the draw illustrates a conflict and that "everything is
a matter of explanations”. Specifically, he explains
that “The customer does not know what is possible
to be done. He [the customer] thinks he has a flower.
He does not know that he can have two flowers”.
We conclude with his final words that “Sometimes
there is no conflict. Sometimes it is just that
customers are from Venus and developers from
Mars.”

5 SUMMARY

This paper presents the process of transition to agile
development in a large-scale software project in the
Israeli Air Force focusing on the system analysis and
design aspect. Specifically, the project specifications
are compared using size and complexity measures
and the change in the role of the system analysts is
examined. We found that using the agile practices
actually produce less complex specifications.
Further, the role of the system analyst is changed in
a way that improves the process and the increases
collaboration. As has been mentioned before, our
research continues and further explores the transition
process from additional perspectives.

REFERENCES

Beck, K., 2000. Extreme Programming Explained:
Embrace Change, Addison-Wesley.

Beck, K. with Andres, C., 2005. Extreme Programming
Explained: Embrace Change, Addison-Wesley, 2nd
edition.

Dubinsky, Y., Hazzan, O. and Keren, A. 2005. Introducing
Extreme Programming into a Software Project at the
Israeli Air Force, 6th International Conference on
Extreme Programming and Agile Processes in
Software Engineering, UK.

Dubinsky Y., Talby D., Hazzan O., and Keren A. 2005.
Agile Metrics at the Israeli Air Force, Agile
Conference, Denver, Colorado.

Hazzan, O., 2002. The reflective practitioner perspective
in software engineering education, The Journal of
Systems and Software 63(3), pp. 161-171.

Highsmith, J., 2002. Agile Software development
Ecosystems, Addison-Wesley.

McCabe, T., 1976. A Complexity Measure, IEEE
Transactions on Software Engineering, 2(6), 308-320.

Mohamed, F., Schmidt, D., and Johnson, R., 1999.
Building Application Frameworks, Wiley.

Plotkin, H., 1997. Darwin Machines and the Nature of
Knowledge, Harvard University Press.

Schön, D. A., 1983. The Reflective Practitioner,
BasicBooks.

Schön, D. A., 1987. Educating the Reflective Practitioner:
Towards a New Design for Teaching and Learning in
The Profession, San Francisco: Jossey-Bass.

Talby, D., Adler, D., Kedem, Y., Nakar, O., Danon, N.,
and Keren, A., 2002. The Design and Implementation
of a Metadata Repository, INCOSE/IL.

Tomayko. J. and Hazzan, O., 2004. Human Aspects of
Software Engineering, Charles River Media.

Watson, A.H. and McCabe, T.J., 1996. Structured Testing:
A Testing Methodology Using the Cyclomatic
Complexity Metric, NIST Special Publication 500-
235.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

18

