
A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS
APPLICATIONS

Akito Kiriyama, Yuji Nakagawa
School of Informatics, Kansai University, Takatsuki, Osaka, Japan

Tadao Takaoka, Zhiqi Tu
Department of Computer Science and Software Engineering, University of Canterbury

Christchurch, New Zealand

Keywords: Public-key cryptosystems, Non-linear knapsack problem, Access control.

Abstract: We propose in this paper a new public-key crypto-system, called the non-linear knapsack cryptosystem. The
security of this system is based on the NP-completeness of the non-linear knapsack problem. We extend the
system into secret sharing and access control. That is, an encrypted message can be decrypted only when all
members of a group agree to do so with their secret sub-keys. The secret sharing here is equivalent to access
control, which establishes multiple identities. That is, when the verifier challenges the prover with encrypted
messages with public sub-keys, the prover can prove multiple identities using the secret sub-keys. Some
experimental results are given, which demonstrate the efficiency of our system.

1 INTRODUCTION

In the era of ubiquitous computing, the technology
of RFID (radio frequency identification) is receiving
much attention. Viewing from another perspective,
RFID brings up a tagged society, as described in
Thinking Tags (Borovoy, 1996). Tags can be
attached to almost everything; from manufacturing
to retail, from human to animals. The attached tag
emits a radio signal passively or actively. The tags
can control manufacturing process up stream, and
retail process down stream with various pieces of
information recorded into the tags, which are
attached to goods and commodities. A typical
example of a tag attached to a human is seen in
museums. A visitor to a museum attaches a tag to
the chest that records his/her characteristics, such as
gender, age, mother tongue, etc. Also payment
information for special exhibition rooms is
important for access control. This tag for a museum
illustrates the importance of data security. General
discussions of RFID are given in the recent issue of
the Communications of the ACM, especially the
example of museum (Hsi, et. al., 2005), data security
(Ohkubo, et. al., 2005), and access control (Basker,
et. al., 2005).

In this paper we develop a public-key
cryptosystem suitable for RFID applications.
Important features of the tag are

(1) Processing speed
(2) Its size, i.e., memory requirement
(3) Privacy and authenticity
While it is hard to achieve all of these features to

a great satisfaction, we achieve (1) and (3) by our
proposed cryptosystem while (2) is kept at a
reasonable level.

Since the concept of public-key crypto-systems
was published (Diffie and Hellman, 1976), there
have been several concrete systems. They are
classified into three categories. The first is based on
the difficulty of factoring the product of two large
prime numbers. The most famous is the RSA system
invented by Rivest, Shamir and Adelman (Rivest, et.
al, 1978). The second is based on the difficulty of
discrete logarithm computation. A typical system
here is the cryptosystem by (ElGamal, 1985). The
difficulties of factoring and discrete logarithm are
necessary conditions for the security of those
systems; they have never been proven to be
sufficient conditions, that is, those systems might be
broken without factoring or discrete logarithm. The
third is the knapsack cryptosystem suggested by
Merkle and Hellman (Merkle and Hellman, 1978).
This system is based on the NP-completeness of the
linear knapsack problem. The systems in the first

524
Kiriyama A., Nakagawa Y., Takaoka T. and Tu Z. (2006).
A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 524-529
DOI: 10.5220/0002451105240529
Copyright c© SciTePress

two categories survived crypto attacks, and said to
be safe for practical use. After the knapsack
cryptosystem was first published, it was broken by
Shamir’s algorithm (Shamir, 1982), and later by the
LLL algorithm (Lenstra, et. al., 1982), and (Lagarias
and Odlyzko, 1985). To save the knapsack system,
there have been many modifications for this system,
such as (Adelman, 1983) and (Chor and Rivest,
1985). Unfortunately most of them have been
broken by the above mentioned methods.

In this paper we propose a public-key
cryptosystem based on the non-linear knapsack
problem, a general form of which is known to be
NP-complete. Although factoring and discrete
logarithm are believed to be difficult, we have more
evidence that NP-complete problems are difficult,
which may boost the security of our proposed
system. Also the non-linear property of the system
will resist crypto attacks on the linear knapsack
cryptosystems. However we have not proven that
breaking our cryptosystem is NP-complete.
Although our system is a general purpose one, we
focus on its use for authentication, especially as
application to access control. The authentication
method to which we compare our system is the
batching version by (Genaro et. al., 2004) of
Schnorr’s authentication scheme (Schnorr, 1991).

In terms of computing time, ignoring the
alphabet size, our system can encrypt and decrypt
the given message in O(n2) time where n is the size
of the message. The RSA system and Schnorr’s
authentication system require O(n3) time to deal with
n-bit integers if we use the standard O(n2) algorithm
for multiplication and division of n-bit integers.

2 LINEAR KNAPSACK
CRYPTOSYSTEM

Let a1,…,an be n positive integers and x be a binary
vector x=x1x2…xn. Given an integer C, compute x
that satisfies
 n
 C = Σ aixi (1)
 i=1

If xi=(0) 1, we see ai is (not) chosen to make C.
This is like we pack some of items i whose size is ai
into a knapsack of size C. This problem is known to
be NP-complete. Note that ai are large integers given
by n bits. Sequence {ai} is said to be super
increasing if

 i-1
 Σ aj < ai for i=1, …, n
 j=1

A super increasing sequence {ai} is chosen for a
secret key. If {ai} is super increasing, the knapsack
problem becomes easy and can be solved in O(n2)
time as follows: We examine ai for i=n,n-1,…,1. If
an>C, we cannot choose an. Otherwise we need to
choose an and decrease C by an, since we cannot
make C with a1,…,an-1. The same reasoning proceeds
for n-1,…,1 with C decreased as necessary.

The time of this algorithm is O(n2) as C:=C-ai is
executed at most n times, and each takes O(n) time.
A multiplier w and a prime number p are chosen as
part of secret key such that gcd(w, p)=1. The
sequence {ai} is converted to {ai’} by ai’=aiw mod p.

After this conversion, sequence {ai’} is no longer
super increasing, looking like random. This
sequence {ai’} is published as the public key. The
sender encrypts his binary message x=x1x2…xn as
follows: Compute

 n
 C’ = Σ ai’xi (2)
 i=1

This knapsack problem seems difficult. After
receiving C’, the receiver computes C=C’w-1 mod p
and solve (1) for x=x1x2…xn by the decryption
algorithm.

3 NON-LINEAR KNAPSACK
CRYPTOSYSTEM

To overcome the weakness of the linear knapsack
cryptosystem, we propose a non-linear cryptosystem
in this section. Let fi(x) be a non-linear function of x,
and x be an m-ary vector x=x1x2…xn, that is, each xi
is regarded as a symbol of the alphabet {1,2,…,m}.
Given an integer C, compute x that satisfies
 n
 C = Σ fi(xi) (3)
 i=1

This problem is known to be NP-complete. In the
linear knapsack problem, our decision was a binary
one like whether to choose item i. In the present
non-linear one, each item has m kinds such that the
size of the j-th kind of item i is fi(j). The problem is
to make C by choosing appropriate kinds of items
1,…,n.

We first make an easy knapsack problem, by
creating integer values fi(x) from bit patterns. We
prepare mask patterns using the following
parameters:

 n : number of items
 m : number of kinds of each item
 l : number of mask bits for each item.

A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS

525

The block size for encryption corresponds to n,
and m plays the role of alphabet size for the plain
text. The mask pattern of item i, mask(i), has ln bits
of which l bits are 1 and the rest are 0, and satisfies
the following condition. Let “&” be the bit-wise
“and” operation in the following.

 mask(i) & mask(j) = (000 … 0), all 0 for i≠j.
 bitwise union of all mask(i), i=1,…,n, is

(111…1), all 1.
Let value(i, j) be a vector not greater than

mask(i) as a binary vector, where order x<=y for
x=x1…xn and y=y1…yn is defined by xi<=yi for
i=1,..,n. This mapping from j to value(i, j) is denoted
by fi(j). We use the same notation for its numerical
value. That is, fi(j) = value(i, j).

Lemma. mask(i) & fi(j) = fi(j).
 mask(i) & fk(j) = (00…0), all 0, for

k≠i.
Example. n=4, m=3, l=2. There are four items

(1, 2, 3, 4).
mask(1) = (01001000), mask(2) = (10010000)
mask(3) = (00100001), mask(4) = (00000110)
item {kind} --->{value(i, j) in binary sequence}
 {numerical value in decimal}

1 {1, 2, 3}--->{00001000, 01001000, 01000000}
 {8, 72, 64}
2 {1, 2, 3}--->{10010000, 10000000, 00010000}
 {144,128, 16}
3 {1, 2, 3}--->{00000001, 00100000, 00100001}
 {1, 32, 33}
4 {1, 2, 3}--->{00000100, 00000110, 00000010}
 {4, 6, 2}

A secret key is chosen as mn integers as follows:
 A = (f1(1), f1(2), …, f1(m))
 (f2(1), f2(2), …, f2(m))
 …
 (fn(1), fn(2), …, fn(m))
The knapsack problem with this definition of fi(j)

is easy, since the kind of each item can be sieved by
the mask of the item.

Example. A = (8, 72, 64)
 (144, 128, 16)
 (1, 32, 33)
 (4, 6, 2)
Let p > 2ln be a prime number, w be such that

gcd(w, p)=1, and w-1 be the multiplicative inverse of
w mod p. Let B be obtained by operating “w times
mod p” on each component of A. We express this by
B = Aw mod p, and thus A = Bw-1 mod p.

Example. p=283, w=200, w-1 mod p = 75.
 B = (185, 250, 65)
 (217, 130, 87)
 (200, 174, 91)

 (234, 68, 117)
The correspondence from kinds to values in B is

denoted by f’i(j)=value’(i, j). That is, f’i(j)=fi(j)w
mod p and fi(j)=f’i(j)w-1 mod p.

Example. f’1(1) = value’(1, 1) = 185, etc.
Encryption. Let x=x1x2…xn be an m-ary

sequence of length n to be encrypted. The
cryptogram C is computed by

 n
 C = Σ f’i(xi)
 i=1
Decryption. Compute M=Cw-1 mod p

Compute yi=fi
-1(mask(i)&M) for i=1,…,n.

Let y=(y1, …, yn) be the decrypted message. It is
straightforward to prove y = x. The inverse function
fi

-1 is implemented by a hash table.
Example. x = 1 2 3 1. This message is encrypted

as follows:
 C’=f1’(1)+f2‘(2)+f3‘(3)+f4’(1)
 =185+130+91+234 = 640
 C = C'w-1 mod p = 640*75 mod 283 = 173
 Binary expansion of 173 = 10101101

173&72 = 8 kind 1, 173&144 = 128 kind 2
173&33 = 33 kind 3, 173&6 = 4 kind 1

We note that the bit pattern in each mask must be
random and that it will be safe not to use all binary
vectors covered by the masks, as small values such
as 1 will expose the multiplier w. More security
considerations will be given in Section 5.

4 ENCRYPTED SECRET
SHARING

(Encrypted) secret sharing is the property of a group
that only when the members of the group agree, they
can (decrypt) read some messages.

Let a message X be embedded in a vector x = (X,
R1,…,Rn-1), where Ri are random messages. We
assume all are integers less than a large prime p, and
all operations are done with “mod p”. If we multiply
this vector with a regular (n, n) matrix S to compute
c=xS, where c=(C1,…,Cn), we can distribute the
secrecy of X into n pieces of information c. By
putting them together, and computing x=cS-1, we can
read X. If any Ci is missing, we can not read X. In
this framework, there is no encryption; if c and S are
intercepted, X can be read by outsiders. Normally
shares are not encrypted. See (Shamir, 1979).

We combine our non-linear knapsack
cryptosystem and the above mentioned secret
sharing in this section. We first describe our method
for two members A1 and A2 in the group. Let f1

i(j)
and f2

i(j) be defined by

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

526

f1
i(j) = fi(j)w1 mod p, f2

i(j) = fi(j)w2 mod p
f1

i(j) and f2
i(j) are the public keys for A1 and A2.

{fi(j)} corresponds to the master key and w1 and w2
correspond to sub keys. The sender can use these
public keys, regarding A1 or A2 as single users. A1
and A2 can decrypt their incoming messages using
w1 and w2, and {fi(j)}. Note that {fi(j)}, w1, w2 , and
p are co-owned within the group. Suppose the sender
wants to send an encrypted message for the group
members to read at the same time. The sender
chooses a random number (or random message) R.
Let message x=x1x2…xn be encrypted into two
cryptograms C1 and C2 by

 n n
 C1 = Σ f1

i(xi) + R ≡ (Σ fi(xi)w1 + R) mod p
 i=1 i=1
 n n
 C2 = Σ f2

i(xi) + R ≡ (Σ fi(xi)w2 + R) mod p
 i=1 i=1
In the above, the right-hand side of “≡” is given

only for explanation purpose; the sender does not
know p, and the “mod p” operation is done at the
receiver side. From this simultaneous linear
equation, the receivers compute

 n
 M = Σ fi(xi) = (C1 – C2)(w1 – w2)-1 mod p
 i =1
This can be done only when w1 and w2 are

known. After this, using the previous decryption
procedure, the receivers, namely the group members,
recover x = x1x2…xn.

Example. w2=190, p=283, w2

-1=213, R=100
 {fi(j)} = (8, 72, 64)
 (144, 128, 16)
 (1, 32, 33)
 (4, 6, 2)
 {f1

i(j)}= (185, 250, 65)
 (217, 130, 87)
 (200, 174, 91)
 (234, 68, 117)
 {f2

i(j)}= (105, 96, 274)
 (192, 265, 210)
 (190, 137, 44)
 (194, 8, 97)
Let x = (1, 2, 3, 1)
 C1 = 185 + 130 + 91 + 234 + 100 = 640 + 100
 = 740 = 200M + R mod 283
 C2 = 105 + 265 + 44 + 194 + 100 = 608 + 100
 = 708 = 190M + R mod 283
 32 = 10M mod 283, M = 32*10-1 mod 283
 = 32*85 mod 283 = 173

This two-member secret sharing system can be

generalized into k members in the following. We go

with k=3 for illustration. Let us have one more
multiplier w3, and public key f3

i(x), derived from
fi(j). After choosing a plain text x=x1x2…xn, the
sender computes

 n
C1=Σ f1

i(xi) +R1 + R2 ≡(Σ fi(xi)w1+R1+R2)mod p
 i=1
 n
C2=Σ f2

i(xi)+R1+2R2 ≡(Σfi(xi)w2+R1+2R2)mod p
 i=1
 n
C3=Σ f3

i(xi) +R1+3R2 ≡(Σfi(xi)w3+R1+3R2)mod p
 i=1
From this the receivers compute

C1 -2C2 + C1 ≡ (w1 -2w2 + w3)M mod p
M ≡ (C1 -2C2 + C3)(w1 -2w2 + w3)-1 mod p

Using the matrix/vector notation and omitting
“mod p”, we have

 C1 = Mw1+ R1 + R2
 C2 = Mw2+ R1 + 2R2
 C3 = Mw3+ R1 + 3R2
(C1, C2, C3) = (M, R1, R2) | w1 w2 w3 |
 | 1 1 1 |
 | 1 2 3 |
We call this matrix the verification matrix and

denote it by V. Vertical bars are used for expressing
matrices. The verification matrix minus the first row,
denoted by V*, is shared by the sender and the
receivers. V* = | 1 1 1 |

 | 1 2 3 |
This V* is chosen just for illustration. As long as

its rank is k-1, any matrix will do.
Plain text x, and random messages R1 and R2 are

generated by the sender. In V, we have w1,…,wk in
the first row, and some constant values for the rest.
The verification matrix must be regular. If the rank
of V* is k-1 and we generate w1,…,wk random, the
probability that the matrix is singular is low. The
users can check this in advance.

The inverse matrix V-1 is given by
| 1 2w3 -3w2 w2 - w3 | (w1 -2w2 + w3)-1
| -2 3w1 - w3 w3 - w1 |
| 1 w2 -2w1 w1 - w2 |

Let dij be the (i, j) cofactor of the verification
matrix V. Then V-1 = (dij)T|V|-1, where |V| is the
determinant of V. Thus the first column, (I1,…,Ik)T,
of the inverse matrix is given by

 (d11, …, d1k)T|V|-1. (“T” for transposition)
If (I1,…,Ik) is pre-computed, we can compute M

by the inner product of (C1,…,Ck) and (I1,…,Ik)T,
taking O(k) operations of multiple precision
numbers. To compute M we do not need the whole
inverse matrix.

A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS

527

The rank of the (k-1, k) sub-matrix, V*, must be
k-1. Otherwise M can be computed with less than k
equations.

Example. C1 = Mw1+ R1 + R2
 C2 = Mw2+ R1 + R2
 C3 = Mw3+ R1 + 3R2
We have C1 – C2 = (w1 – w2)M and M = (w1 –

w2)-1(C1 – C2). That is, we can compute M without
the knowledge of C3.

We can use this system for secret sharing with
threshold. That is, if an encrypted message is sent to
k receivers, and they can decrypt the message only
when t members agree. We make the matrix V* of
rank t-1. Then we can solve the simultaneous
equation of size t, and get M.

Example. C1 = Mw1+ R
 C2 = Mw2+ R
 C3 = Mw3+ R
If any two of the three members agree, M can be

solved.
 We can use the above secret sharing for access

control. A user is granted several access rights, by
receiving w1,w2,…. A typical application is entrance
fees in a museum. If a customer pays fees for
entering several exhibition rooms, those
w1,w2,…will be provided. The server at each door
will challenge the visitor with some secret message
to see if it is decrypted and sent back to the server.

5 ANALYSIS

We define the size of a number by the number of bits
or digits to express it. To prevent crypto-attack by
exhaustive search, we propose to have the size of n
around 50 or larger. The size of mask is given by
O(ln). The size of modulus p and multiplier w is of
the same order.

The summation in (3) takes O(ln2) time. The
bitwise “and” operation for decryption takes O(ln)
time each, resulting in O(ln2) time in total. The
multiplication and division take O(l2n2) time, which
is dominant. For the choice of secret keys, we
suggest to choose random l/2 bits for 1 and the rest
for 0 for each fi(j). The number of kinds, m, cannot
be large to avoid the equal-sum event described later
in this section. In the experiment, we set m=l/2.

Possible attack on our system can be considered
from two angles. The first is to compute the secret
key from the public key. If we try all possible w-1 on
B, and see if each row can represent some mask
pattern, it will take at least O(2ln) time, which is not
practical. If l is small, say 2 or 3, we generate all
possible secret keys in polynomial time, and by
comparing those with public ones, we can guess p

and w in polynomial time, whereby secret keys can
be guessed.

 The other attack would be to solve the difficult
knapsack problem. Although our non-linear
knapsack problem has low density solutions, the
attacking methods such as the LLL method are
based on the linearity of the knapsack problem, and
not directly applicable to our system. The direct
exhaustive search will cost O(mn) time.

 Now we discuss how to set up the secret key. If
we use just a few of 2l bit patterns except all 0 in the
mask(i) for the kinds of item i, that is, we use them
sparsely, we introduce a super-increasing property
on some of those kinds, which may become
vulnerable to Shamir’s crypto-attack. For example,
if there is only one 1 in the l-bit pattern for fi(j)’s,
they are super-increasing.

If we have l mask bits, it would be safe to use l/2
ones for the function fi(j) for each item i and kind j.
If we use all such bit patterns, we invite crypto-
attack in the following way. Suppose we have four
values (a, b, c, d) for fi(j) such that

a+b=c+d (*).
Let (a’, b’, c’, d’) be the corresponding public

key values. It is straightforward to see
a’+b’-(c’+d’)=kp (**)

for some k. Let us call this situation where we have
several secret key at the left-hand side and right-
hand side of the above equation (*), the equal-sum
event. If we find another set of such four public key
values with k’p for the right-hand side of the above
equation (**), the value of p can be revealed by the
Euclidian algorithm, which will in turn break the
whole system. To prevent this situation from
happening, we suggest to choose random l/2 bits for
1 and the rest for 0 for each fi(j). The number of
kinds, m, cannot be large to avoid the above
situation.. This is because the number of the equal-
sum events is given by

 m m-i
 Σ Σ C(m, i)C(m-i, j) = 3m,
 i=0 j=0
where C(m, i) is the binomial co-efficient of i out

of m. The probability of two l-bit sequences are
equal is 2-1, and the probability of one equal-sum
event is bounded by this value. Thus the probability
of the above situation is bounded by (3m2-l)2= (21.58m

– l)2. For l=20 and m=10, this probability is about
1/300. We need to multiply this probability by n, the
number of items. Then the probability is about ¼.
For security we would need to exhaustively check
the equal-sum event after the secret key is set up. In
this parameter setting, we hit an equal-sum event
once every four attempts, in which case we generate
the secret again until we have no equal-sum event.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

528

6 EXPERIMENTAL RESULTS

As we mentioned above, we can use the secret
sharing scheme for access control with multiple
identities authentication. The following are our
experiments on timing results based on the method
in Section 4, compared with the timing results on the
batch Schnorr scheme (Genaro, et. al., 2004) with
the same number of identities. As for the selections
of security parameters, they chose the following
setting:
 Number of identities: d = 32
 Prime number q: let q be 200 bits
 Prime number p: let p be about 1500 bits
 Microchip PIC16LF628 microcontroller
 Runnig time: about 2 seconds on

The implementation of our scheme is in the C
language on a Linux machine with a Celeron
processor with 2.2 GHz. In order to treat two
schemes under the same condition, our selections of
security parameters are set as follows:

 Number of identities: d = 32
 Number of items: n = 75
 Number of kinds: m = 10
 Number of mask bits for each item: l = 20
Each mask pattern’s length: ln = 20*75 = 1500
Prime number p: p > 2ln. So p > 21500, p is of 451

decimal digits, which has a comparable size with the
batch Schnorr scheme.

Those parameters are set to match the
performance measurement of the batch Schnorr. For
our experiment we did encryption/decryption of a
file with about 50 characters as a challenge with the
total time of 0.057 sec. The memory requirement for
the above selections of security parameters is 0.134
MB.

7 CONCLUDING REMARKS

We presented a new crypto-system based on the
non-linear knapsack problem. At the moment, there
is no attacking method for this crypto-system. The
computational complexity of our system is low, and
thus very efficient in practice. Also the simple
structure is suitable for hardware implementation,
especially as the bitwise “and” operation can be
executed by a logic array in parallel. Only one
problem is that the key size is rather large, that is,
O(lmn2), whereas that of RSA is O(n). As the cost of
memory chip is going down, this disadvantage will
not be a great obstacle to our system.

We extended our system for encrypted secret
sharing. This became possible as our non-linear

system is not exactly “non-linear”, but “super-
linear”, in the sense that we have non-linear
functions at the bottom, which are gathered by the
linear operation of summation. We incorporated
linear algebra into this linear part at the top. There
can be more generalizations from various angles.

REFERENCES

Adelman, L., 1983. On breaking generalized knapsack
public-key cryptosystems, Porc. ACM Symp. On
Theory of Computing 1983, pp402-412

Borovoy, R et. al., 1996. Things that blink:
Computationally augmented name tags, IBM System
Journal, vol. 35, no. 3 & 4, pp488-493

Chor, B. and R. L. Rivest. A, 1985. Knapsack type public
key cryptosystem based on arithmetic finite fields,
IEEE Trans. on Information Theory, IT-34, 1988,
pp901-909

Diffie, W. and M. Hellman, 1976. New directions in
cryptography, IEEE Trans. on Information Theory, IT-
22, 6, pp644-654

ElGamal, T., 1985. A public key cryptosystem based on
discrete logarithms, IEEE Trans. On Information
Theory, IT-31, 4, pp469-472

Gennaro, R., D. Leigh, R. Sundaram, and William, 2004.
Batching Schnorr identification scheme with
applications to privacy-preserving authorization and
low-bandwidth communication devices, AsiaCrypt 04,
LNCS 3329, pp276-292

Hsi, S and Fait, H., 2005. RFID enhances visitors’
museum experience at the exploratorium, CACM vol.
48, no. 9, pp 60-65

Lagarias, J. C., A. M. Odlyzko, 1985. Solving low density
subset sum problems, JACM, vol. 32, 229- 246

Lenstra, A. K., H. W. Lenstra, Jr. and L. Lovasz, 1982,
Factoring polynomials with rational coefficients,
Math. Ann. 261

Merkle, L. C. and M. E. Hellman, 1978. Hiding
information and signatures in trapdoor knapsacks,
IEEE Trans. on Inf. Theory, 24, pp525-530

Ohkubo, M., Suzuki, K., and Kinoshita, S., 2005. RFID
privacy issues and technical challenges, CACM vol
48, no 9, pp 66-71

Raskar, R, Beardsley, P, Dietz, P, and van Baar, J, 2005.
Photosensing wireless tags for geometric procesures,
CACM vol 48, no. 9, pp 46-51

Rivest, R. L., A. Shamir and L. Adelman, 1978. A method
for obtaining digital signatures and public-key
cryptosystems, CACM, 21, 2, pp120-126

Schnorr, C. P., 1991. Efficient signature generation by
smart cards, J. of Cryptology, 4, 3, pp161-174,

Shamir, A, 1979. How to share a secret, CACM vol. 22,
no. 11, pp612-613

Shamir, A., 1982. A polynomial time algorithm for
breaking the basic Merkle-Hellman cryptosystem,
FOCS 1982: 145-152

A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS

529

