
SAFETY OF CHECKPOINTING AND ROLLBACK-RECOVERY
PROTOCOL FOR MOBILE SYSTEMS WITH RYW SESSION

GUARANTEE∗

Jerzy Brzeziński, Anna Kobusińska, Jacek Kobusiński
Poznań University of Technology, Institute of Computing Science

ul. Piotrowo 2, 60-965 Poznań, Poland

Keywords: Rollback-recovery, mobile systems, Read Your Writes session guarantee.

Abstract: This paper presents rVsRYW checkpointing and rollback-recovery protocol, which preserves Read Your
Writes session guarantee and includes the proof of safety property of the proposed protocol. In order to
provide RYW guarantee required by mobile clients, despite failures of servers, in rVsRYW protocol semantics
of consistency protocol operations is exploited and build in recovery mechanisms.

1 INTRODUCTION

Mobile environments, by enabling motion and loca-
tion independence of clients, give the opportunity to
provide new services and allow supplementary infor-
mation access that may occur any time and any place.
In such environments, clients accessing the data may
not be bound to particular servers, but they can switch
from one server to another. This switching adds a
new dimension of complexity to the problem of con-
sistency, because after switching to another server,
client’s new operations should remain consistent with
ones previously issued. Therefore, a new class of
consistency models, called session guarantees, rec-
ommended for mobile environment, has been intro-
duced (Terry et al., 1994). Session guarantees, also
called client-centric consistency models, define re-
quired properties of the system observed from clients
point of view. Four session guarantees have been de-
fined: Read Your Writes (RYW), Monotonic Writes
(MW), Monotonic Reads (MR) and Writes Follow
Reads (WFR) and protocols implementing them have
been introduced (Terry et al., 1994; Kobusińska et al.,
2005; Sobaniec, 2005). However, according to our
knowledge, none of proposed consistency protocols is
resistant to servers’ failures. Such assumption might
be considered not plausible and too strong for certain
mobile distributed systems. Therefore, in this paper
checkpointing and rollback-recovery protocol rVsSG

∗This work was supported in part by the State Com-
mittee for Scientific Research (KBN), Poland, under grant
KBN 3 T11C 073 28

that preserves RYW session guarantee is introduced.
rVsRYW protocol ensures that after the server fail-
ure and its recovery, RYW session guarantee is pre-
served. In the proposed protocol the semantics of op-
erations of VsSG consistency protocol (Kobusińska
et al., 2005; Sobaniec, 2005) is exploited and build in
recovery mechanisms. As a result, rVsRYW protocol
offers the ability to overcome servers’ failures, at the
same time preserving RYW session guarantee.

2 BASIC DEFINITIONS

2.1 System Model

Throughout this paper, a replicated, distributed stor-
age system is considered. The system consists of
a number of servers holding a full copy of a set of
data items and clients running applications that ac-
cess these data items. Although all system compo-
nents (mobile clients, servers, communication links)
can be a subject of failures, in this paper we assume
that only servers are prone to failures, and thus we
do not consider failures of clients and network links.
Servers may crash at arbitrary moments and recover
after crashing a finite number of times, according
to crash-recovery model of failures (Guerraoui and
Rodrigues, 2004). Clients are mobile, i.e. they can
switch from one server to the other. Moreover, they
are separated from servers, i.e. a client’s application
may run on a separate computer than the server. To

118
Brzeziński J., Kobusińska A. and Kobusiński J. (2006).
SAFETY OF CHECKPOINTING AND ROLLBACK-RECOVERY PROTOCOL FOR MOBILE SYSTEMS WITH RYW SESSION GUARANTEE.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - SAIC, pages 118-123
DOI: 10.5220/0002446101180123
Copyright c© SciTePress



access shared data, the client selects a single server
and sends a direct request to this server. Operations
are issued by clients synchronously, i.e. a new oper-
ation may be issued after the results of the previous
one have been obtained.

The storage replicated by servers does not imply
the particular data model or organization. It is a set of
data items, which may be simple variables, files, ob-
jects of object-oriented programming language, etc.
Later in the paper, the data items are referred to as
objects. Operations performed on shared objects are
divided into reads and writes. Reads do not change
the state of objects, while writes does. Some clients
can concurrently submit conflicting writes at different
servers, e.g. writes that modify the overlapping parts
of data storage.

Operations on shared objects issued by client Ci

are ordered by relation
Ci⇁ called client issue order.

As client procecesses are sequential, relation
Ci⇁ de-

termines total order on the set of operations issued by
Ci. Operations performed by server Sj are ordered

by relation
Sj�, called server execution order. Since

operations are performed one at a time, the server ex-
ecution order is also totally ordered. Depending on
operation type (write, read or these whose type is ir-
relevant), operations on objects are denoted by w, r
or o. The operation performed by server Sj is denoted
by o|Sj

.

2.2 Session Guarantees

Session guarantees have been introduced in the con-
text of Bayou project (Terry et al., 1994). Informally,
RYW expresses the user expectation not to miss his
own modifications performed in the past. MW en-
sures that order of writes issued by a single client is
preserved. MR ensures that the client’s observations
of the data storage are monotonic, and finally WFR
keeps the track of causal dependencies resulting from
operations issued by a client.

In the paper, it is assumed that clients perceive the
data from the replicated storage according to Read
Your Writes session guarantee. Let us consider some
examples, how RYW session guarantee may be used
in practice.

First, let us consider a user writing a TODO list
to a file. After traveling to another location, the user
wants to recall the most urgent tasks, and reads TODO
list. Without RYW session guarantee the read may
return any previous (possibly empty) version of the
document.

Further, imagine that a user, after changing his
password, while logging to the system receives an
”invalid password” response. This problem would
arise in situation when the logging process contacted

a server to which a new password had not been prop-
agated. In this case RYW guarantee ensures that the
logging process will always read the most recent pass-
word. Formally RYW session guarantee is defined as
follows (Sobaniec, 2005):

DEFINITION 1. Read Your Writes (RYW) session
guarantee is a property meaning that:

∀Ci ∀Sj

[
w

Ci⇁ r|Sj
⇒ w

Sj� r

]

2.3 VsSG Coherency Protocol

Data consistency in the paper is managed by VsSG
consistency protocol (Kobusińska et al., 2005; Soban-
iec, 2005). The VsSG protocol uses a conception
of server-based version vectors for efficient represen-
tation of sets of writes required by clients. Server-
based version vectors have the following form: V =[
v1 v2 ... vNS

]
, where NS is a total number of

servers in the system and single position vi is the
number of writes performed by server Sj .

The server, which first obtains the write from the
client is responsible for assigning such a write a glob-
ally unique identifier, returned by a function T : O �→
V and set to the current value of the vector clock VSj

of server Sj performing the write for the first time.
The set of all writes performed by server Sj is de-
noted by OSj

. The sequence of past writes is called
history (Sobaniec, 2005). Formally:

DEFINITION 2. A history HSj
at time moment t, is a

linearly ordered set

(
OSj

,
Sj�

)
whereOSj

is a set of

writes performed by server Sj , till time t and relation
Sj� represents an execution order of writes.

During writes performed by server Sj , its ver-
sion vector VSj

is incremented in position j and a
timestamped operation is recorded in history HSj

. Fi-
nally, the current value of the server vector clock is
returned to the client and causes the update of the
client’s vector WCi

, representing writes issued by
the client. Servers occasionally synchronize states of
their replicas by exchanging information about writes
performed in the past. As a result, all writes submit-
ted by clients are eventually propagated and executed
by every server.

During synchronization of servers, their histories
are concatenated. The concatenation of histories HSj

and HSk
, denoted by HSj

⊕ HSk
is a sum of writes

from the first history and new writes from the second
history (Sobaniec, 2005).

SAFETY OF CHECKPOINTING AND ROLLBACK-RECOVERY PROTOCOL FOR MOBILE SYSTEMS WITH RYW
SESSION GUARANTEE

119



2.4 Checkpoint and Log Definitions

Below, we propose formal definitions of mechanisms
used by rVsRYW protocol:

DEFINITION 3. A log LogSj
is a set of triples:

{ 〈i1, o1, T (o1)〉 〈i2, o2, T (o2)〉 ... 〈in, on, T (on)〉} ,

where in represents the index of the client that issued
a write operation on, in ∈ 1..NC , and NC is a num-
ber of clients in the system. The operation on ∈ OSj

and T (on) is its timestamp.

During a rollback-recovery procedure, opera-
tions from the log are executed according to their
timestamps, from the earliest to the latest one.

DEFINITION 4. A checkpoint CkptSj
is a couple〈

VSj
,HSj

〉
, of a version vector VSj

and a history
HSj

maintained by server Sj at the time t, where t
is a moment of taking a checkpoint.

For the sake of recovery procedure, it is commonly
assumed that servers have access to a stable stor-
age, able to survive all failures (Elmootazbellah et al.,
2002). The log and the checkpoint are saved by the
server in the stable storage. The newly taken check-
point replaces the previous one, so just one check-
point for each server is stored.

3 rVsRYW PROTOCOL

3.1 The General Idea

To preserve RYW session guarantee the protocol must
ensure that every write request issued by the client
is not lost by the server. Checkpointing every single
write operation fulfills this requirement, but results
in frequent saving of server state in the stable stor-
age, which is time–consuming. Logging procedure
overcomes this disadvantage and takes less time than
checkpointing, as only the operation, its timestamp
and issuing client index are stored in the stable stor-
age. On the other hand, the log size may grow infi-
nitely and may turn out to be too large. Combining
these two approaches by joining logging and check-
pointing seems to be the best solution. While apply-
ing these known techniques, the semantics of oper-
ations, characteristic of session guarantees, is taken
into account, which is a novel feature of proposed
protocol. Consequently, in rVsSG, only operations
essential to provide session guarantees are logged, so
checkpoints are optimized with respect to required

session guarantee requirements. Moreover, in pro-
posed protocol, it is assumed that only the server,
which performs write operation issued directly by a
client, logs this request to stable storage. Writes re-
ceived from other servers during synchronization pro-
cedure only cause server’s state update, but they are
not logged. The checkpoint is taken when the server
obtains read operation from a client, and since the lat-
est checkpoint, it has performed any write operation
issued directly from this client. Taking a checkpoint
results in clearing servers’ logs.

After a failure occurrence, the failed server restarts
from the latest checkpoint and replays operations
from the log to restore the execution to a state that
occurred before the failure.

3.2 Protocol Implementation

The request sent from client Ci to server Sj carries
the operation that is to be performed and a vector W
that is calculated depending on the operation type. W
is set to 0 (line 1) or to WCi

(line 3) for writes and
reads respectively. Afterwards, the modified message
〈o,W 〉 is send to a server (line 5).

Server Sj obtains operations 〈o,W, i〉 issued di-
rectly by a client or operations 〈Sk,H〉 issued by
other servers in the result of synchronization proce-
dure. Upon receiving a new request from client Ci, Sj

checks whether it has performed all writes issued pre-
viously by Ci, by comparing version vectors VSj

and
W (line 6)(Sobaniec, 2005). If the state of server Sj

is not sufficiently up to date, the request is postponed,
because RYW session guarantee is not fulfilled (line
7). The request will be resumed after synchronization
with another server (line 40).

When the client requests to perform a write opera-
tion (line 9), then server Sj stores issuing client iden-
tifier by adding clients’ index to the set CWSj

(line
10). Further Sj updates its data structures: increases
the value of its version vector VSj

and timestamps the
operation o, to give o a unique identifier (lines 11-
12). Before performing operation o, Sj logs data nec-
essary to recover its state in case the failure occur-
rence (line 13). When the information necessary for
rollback-recovery is logged, the server performs the
client’s request (line 14) and adds it to its history of
performed writes (line 15).

When the read request from client Ci is received
by server Sj , the server checks first if, since the lat-
est checkpoint, it has performed any write operation
submitted by Ci (line 17). If not, the previously
taken checkpoint possesses all information necessary
to guarantee RYW to Ci and the new checkpoint does
not need to be taken. Otherwise, when at least one
write request issued by Ci has been performed by
Sj , the state of the server is checkpointed (line 19).

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

120



Checkpointing the server state causes clearing log
LogSj

and set CWSj
(lines 20-21).

After the failure, the server state is recovered ac-
cording to the information remembered in the latest
checkpoint CkptSj

of server Sj (line 41) and in log
LogSj

(lines 42-50). Recovered operations are added
to the vectors VSj

(line 46) and CWSj
(line 49), as

well as to history HSj
(line 48).

During rollback-recovery procedure it is important
that logging of write operations takes place before
performing them. Such an order is crucial because,
if the operation is performed but not logged, it could
be lost in the case of failure. When failures happen
during the rollback-recovery procedure, the recovery
action is just prolonged, as the server must be rolled
back again and operations from the log have to be exe-
cuted from the beginning. The repeated recovery pro-
cedure works correctly, as the content of the check-
point and the log is not changed.

4 PROOF OF SAFETY
PROPERTY

The safety property asserts that clients access object
replicas maintained by servers according to RYW ses-
sion guarantee, regardless of servers’ failures.

For the sake of the proof simplicity we introduce
some auxiliary lemmas. First, we state that every
write operation issued by a client and performed by
a server is not lost in the rVsRYW protocol.

LEMMA 1. Every write operation w issued by client
Ci and performed by server Sj that received w di-
rectly from client Ci, is kept in checkpoint CkptSj

or
in log LogSj

.

Proof. Let us consider a write operation w issued by
client Ci and obtained by server Sj .

1. From the algorithm, server Sj before performing
the request w, saves it in the stable storage by
adding it to log LogSj

(line 13). Because logging
of w takes place before performing it (line 14), then
even in the case of failure the operation w is not
lost, but remains in the log.

2. Log LogSj
is cleared after performing by Sj the

read operation. However, according to the algo-
rithm, reads cause storing the information on writes
by checkpointing the server’s version vector VSj

and history HSj
in CkptSj

(line 19). The check-
point is taken before the operation of clearing log
LogSj

(line 20). Therefore, the server failure that
occurs after clearing the log does not affect safety
of the algorithm, because writes from the log are
already stored in the checkpoint.

Upon sending a request 〈o〉 to server Sj at client Ci

1: W ← 0
2: if (not iswrite(o)) then
3: W ←WCi

4: end if
5: send 〈o, W 〉 to Sj

Upon receiving a request 〈o, W 〉 from client Ci at server Sj

6: while
�
VSj �≥W

�
do

7: wait()
8: end while
9: if iswrite(o) then

10: CWSj ← CWSj ∪ i
11: VSj [j]← VSj [j] + 1
12: timestamp o with VSj

13: LogSj ← LogSj ∪ 〈i, o, T (o)〉
14: perform o and store results in res
15: HSj ← HSj ⊕ {o}
16: end if
17: if (not iswrite(o)) then
18: if i ∈ CWSj then
19: CkptSj ← 〈VSj , HHj 〉
20: LogSj ← ∅
21: CWSj ← ∅
22: end if
23: perform o and store results in res
24: end if
25: send

�
o, res, VSj

�
to Ci

Upon receiving a reply 〈o, res, W 〉 from server Sj at client Ci

26: if iswrite(o) then
27: WCi ← max (WCi , W )
28: end if
29: deliver 〈res〉

Every ∆t at server Sj

30: foreach Sk �= Sj do
31: send

�
Sj , HSj

�
to Sk

32: end for

Upon receiving an update 〈Sk, H〉 at server Sj

33: foreach wi ∈ H do
34: if VSj �≥ T (wi) then
35: perform wi

36: VSj ← max
�
VSj , T (wi)

�

37: HSj ← HSj ⊕ {wi}
38: end if
39: end for
40: signal()

On rollback-recovery
41: 〈VSj , HSj 〉 ← CkptSj

42: vrecover ← 0
43: foreach o�

j ∈ Log�

Sj
do

44: choose 〈i�, o�

i, T (o�

i)〉 with minimal T (o�

j)

45: from Log�

Sj
where T (o�

j) > VSj

46: VSj [j]← VSj [j] + 1

47: perform o�

j

48: HSj ← HSj ⊕
�
o�

j

�

49: CWSj ← CWSj ∪ i�

50: vrecover ← T (o�

i)
51: end for

SAFETY OF CHECKPOINTING AND ROLLBACK-RECOVERY PROTOCOL FOR MOBILE SYSTEMS WITH RYW
SESSION GUARANTEE

121



3. After the checkpoint is taken, but before the log is
cleared (between lines 19 and 20) writes issued by
client Ci and performed by server Sj are stored in
both the checkpoint CkptSj

and the log LogSj
.

Hence, every write operation w before being per-
formed, but not yet checkpointed, is stored in the log
LogSj

(from 1). At the moment of clearing the log,
all operations from the log are already saved in the
checkpoint CkptSj

(from 2). There is a time, where
operations performed by Sj are saved in both data
structures: the checkpoint and the log (from 3). Data
stored in the log and the checkpoint are kept in the
stable storage. As a result, even in the case of server
Sj failure the write w received by Sj directly from
client Ci is not lost and is stored either in the log or in
the checkpoint, or in both these structures.

The checkpoint definition (Definition 4) leads us
to the observation, that all write operations issued
by client Ci and performed by server Sj , that have
been checkpointed in the latest checkpoint CkptSj

taken before the failure of Sj , are recovered during
the rollback-recovery procedure.

In contrast to recovery of checkpointed operations
(line 41), the recovery of operations saved in the log is
not made atomically (lines 43-49). Therefore, there is
a possibility that server failure may occur in the mid-
dle of recovery procedure, when some logged opera-
tions have been recovered, but others have not. Thus,
the recovery of all logged operations is not obvious.
For that reason below, in Lemma 2, we prove that also
all operations logged in log LogSj

, which have been
performed after the moment of taking checkpoint but
before the failure of Sj , are recovered during recovery
procedure.

LEMMA 2. The rollback-recovery procedure recovers
all write operations issued by client Ci and performed
by server Sj that were logged in log LogSj

in the mo-
ment of server failure.

Proof. According to the algorithm, all write opera-
tions issued by client Ci and performed by server Sj

are logged in log LogSj
before being performed (line

13).
Let us assume server Sj fails. The rollback-

recovery procedure after recovering values VSj
and

HSj
from a checkpoint, recovers all operations (line

43) performed by Sj before the failure occurred, but
after the checkpoint was taken. These operations are
recovered due to values remembered in the log (line
44 ) — from the log definition these are the issuing
client index, the operation and its timestamp. The
recovered operation updates version vector VSj

(line
46), it is performed by Sj (line 47) and added to the
server’s Sj history HSj

(line 48).

Assume now, that failures occur during the
rollback-recovery procedure. Due to such failures the
results of operations that have already been recovered
are lost again. However, since log LogSj

is cleared
only after the checkpoint is taken (line 20) and it is not
modified during the rollback-recovery procedure, the
log’s content is not changed. Hence, the recovery pro-
cedure can be started from the beginning without loss
of any operation issued by client Ci and performed by
server Sj after the moment of taking checkpoint.

To preserve RYW session guarantee, all write op-
erations performed by server Sj have to be recov-
ered before new read operation is obtained from client
Ci. Otherwise, there is a possibility that some writes
previously issued by Ci are still not recovered and
the read operation cannot be performed according to
RYW.

LEMMA 3. The server performs new read operation
issued by a client only after all writes performed be-
fore the failure are recovered.

Proof. By contradiction, let us assume that there is
write operation w performed by server Sj before the
failure occurrence, that has not been recovered yet,
and that the server has performed a new read oper-
ation issued by client Ci. According to underlying
VsSG protocol, for server Sj that performs the new
read operation, the condition

VSj
≥WCi

is fulfilled (lines 6-7).
Let us consider which actions are taken when a

write operation is issued by client Ci and performed
by server Sj .

On the server side, the receipt of the write operation
causes the update of vector VSj

in the following way:
Vsj

[j] ← V Sj
[j] + 1 and results in timestamping w

with the unique identifier (line 12). The server that
has performed write sends a reply that contains the
modified vector VSj

to the client.
At the client side, after the reply is received, vec-

tor WCi
is modified: WCi

← max (W,WCi
) . This

means that vector WCi
is updated at least at position

j: WCi
[j]← max[j] + 1.

If there is a write operation w performed by server
Sj before the failure that has not been recovered yet,
then VSj

[j] < WCi
[j] , which follows from the order-

ing of recovered operations (line 44). This is a contra-
diction with VSj

≥ WCi
. Hence, the read operation

cannot be performed until all previous writes are re-
covered.

THEOREM 1. RYW session guarantee is preserved by
rVsRYW protocol for clients requesting it, even in the
presence of server failures.

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

122



Proof. Let us consider operations w and r, issued by
client Ci, which requires RYW session guarantee. Let
read operation follows a write one in the client’s issue
order and let read be performed by server Sj .

It has been proven that VsSG protocol pre-
serves RYW session guarantee, when none of
servers fails, i.e. for any client Ci requir-
ing RYW and for any server Sj the relation

∀Ci ∀Sj

[
w

Ci⇁ r|Sj
⇒ w

Sj� r

]
holds. According to

Lemma 1, every write operation performed by server
Sj is saved in the checkpoint or in the log. After
the server failure, all operations from the checkpoint
are recovered. Further, all operations performed be-
fore the failure occurred, but after the checkpoint was
taken, are also recovered (according to Lemma 2).
According to Lemma 3, all recovered operations are
applied before new ones.

Hence, for any client Ci and any server Sj , RYW
session guarantee is preserved by the rollback- recov-
ery and checkpointing rVsRYW algorithm.

5 CONCLUSIONS

The growing attention paid to mobile systems, re-
sults in their increased reliability requirements. Most
of rollback-recovery protocols which take into con-
sideration characteristics of mobile environment, pay
special attention to increasing efficiency of the proto-
col. The efficiency is usually increased through min-
imization of the amount of messages exchanged be-
tween mobile hosts during taking a checkpoint. On
the other hand, the protocol efficiency can also be in-
creased by data replication. However, in this approach
the problem of replica consistency during the recov-
ery process is faced and should be solved. Accord-
ing to our knowledge, although several studies have
examined the issues of checkpointing, logging and
rollback-recovery in mobile environment, none of the
existing solutions integrates these issues with the con-
sistency protocols. Especially client-centric consis-
tency models, regarding consistency from the client’s
point of view, have not been considered in the context
of rollback-recovery.

Therefore, this paper addresses a problem of inte-
grating the consistency management of mobile sys-
tems with the recovery mechanisms. We introduce
rVsRYW rollback-recovery protocol for distributed
mobile systems, which provides Read Your Writes
session guarantee. The proposed recovery protocol
is integrated with the underlying VsSG consistency
protocol. Additionally, the proof of safety property of
rVsRYW protocol is included.

The rVsRYW protocol, takes into account the se-
mantics of operations during the rollback-recovery

procedure. This results in checkpointing only results
of write operations. As a result, rVsRYW protocol
offers the ability to overcome the servers’ failures
and ensures RYW session guarantee, in the optimized
way.

REFERENCES

Alvasi, L. and Marzullo, K. (1998). Message logging: pes-
simistic, optimistic, causal and optimal. IEEE Trans.
Softw. Eng, 24(2):149–159.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).
Concurrency Control and Recovery in Database Sys-
tems. Addison Wesley.

Duchamp, D., Feiner, S., and Jr, G. M. (1991). Software
technology for wireless mobile computing. IEEE Net-
work Magazine, pages 2–18.

Elmootazbellah, N., Elnozahy, Lorenzo, A., Wang, Y.-
M., and Johnson, D. (2002). A survey of rollback-
recovery protocols in message-passing systems. ACM
Computing Surveys, 34(3):375–408.

Elnozahy, E. and Zwaenepoel, W. (1992). Manetho: Trans-
parent rollback-recovery with low overhead, limited
rollback, and fast output commit. IEEE Transactions
on Computer, 41(5):526–531.

Guerraoui, R. and Rodrigues, L. (2004). Introduction to
distributed algorithms. Springer-Verlag.

Kobusińska, A., Libuda, M., Sobaniec, C., and Wawrzy-
niak, D. (2005). Version vector protocols implement-
ing session guarantees. Proc. of Int. Symp. on Cluster
Computing and the Grid (CCGrid 2005).

Pradhan, D., P.Krishna, and Vaidya, N. (1996). Recovery in
mobile environments: Design and trade-off analysis.
Proc. of the 26th International Symposium on Fault-
Tolerant Computing, pages 16–25.

Sergent, N., Dfago, X., and Schiper, A. (1999). Failure
detectors: Implementation issues and impact on con-
sensus performance. Technical Report SSC/1999/019,
cole Polytechnique Fdrale de Lausanne, Switzerland.

Sobaniec, C. (2005). Consistency Protocols of Session
Guarantees in Distributed Mobile Systems. PhD the-
sis, Institute of Computing Science, Poznan Univer-
sity of Technology.

Szychowiak, M. (2003). Replication of checkpoints in DSM
systems with read-write objects. PhD thesis, Institute
of Computing Science, Poznan University of Technol-
ogy.

Tanaka, K., Higaki, H., and Takizawa, M. (1998). Object-
based checkpoints in distributed systems. Journal of
computer system science and Engineering, 13(3):125–
131.

Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M.,
Theimer, M., and Welch, B. W. (1994). Session guar-
antees for weakly consistent replicated data. Proc. of
the Third Int. Conf. on Parallel and Distributed Infor-
mation Systems (PDIS 94), pages 140–149.

SAFETY OF CHECKPOINTING AND ROLLBACK-RECOVERY PROTOCOL FOR MOBILE SYSTEMS WITH RYW
SESSION GUARANTEE

123


