
A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN
APPROACH FOR THE AUTOMATIC GENERATION OF GRID

APPLICATIONS

David Manset1,2,3
2 ETT Division, CERN 1211, Geneva 23, Switzerland

Hervé Verjus3
3 LISTIC, University of Savoie, Annecy, France

Richard McClatchey1
1 CCCS, University West of England, Bristol, UK

Flavio Oquendo4
4 VALORIA, University of South Brittany, Vannes, France

Keywords: MDE, Grid, Software Architectures, Model Transformation, Refinement, ADLs.

Abstract: This paper discusses the concept of model-driven software engineering applied to the Grid application
domain. As an extension to this concept, the approach described here, attempts to combine both formal
architecture-centric and model-driven paradigms. It is a commonly recognized statement that Grid systems
have seldom been designed using formal techniques although from past experience such techniques have
shown advantages. This paper advocates a formal engineering approach to Grid system developments in an
effort to contribute to the rigorous development of Grids software architectures. This approach addresses
quality of service and cross-platform developments by applying the model-driven paradigm to a formal
architecture-centric engineering method. This combination benefits from a formal semantic description
power in addition to model-based transformations. The result of such a novel combined concept promotes
the re-use of design models and facilitates developments in Grid computing.

1 INTRODUCTION

The Grid paradigm is described in (Foster et al,
2001) as “a distributed computing infrastructure for
advanced science and engineering” that can address
the concept of “coordinated resource sharing and
problem solving in dynamic, multi-institutional
virtual organizations”. This coordinated sharing may
be not only file exchange but can also provide direct
access to computers, software, data and other system
resources. Grid applications bundle different
services using a heterogeneous pool of resources in
a so-called virtual organization. This makes Grid
applications very difficult to model and to
implement.
In addition, one of the major issues in today’s Grid
engineering is that it often follows a code-driven
approach. Although it has been proven from past

experience that using structured engineering
methods would ease the development process of any
computing system and would reduce complexity, the
inter-disciplinarily of Grid computing is still
encouraging ‘brute-force’ coding and consequently
a rather unstructured engineering process. This
always leads to a loss of performance,
interoperability problems and generally ends in very
complex systems that only dedicated and expert
developers can manage. As a direct consequence the
resulting source code is neither re-usable nor does it
promote dynamic adaptation facilities as if it were a
true representation of the Service Oriented
Architecture (SOA). Having no guidelines or rules
in the design of a Grid-based application is a
paradox since there are many existing, architectural
approaches for distributed computing which could
ease the engineering process, could enable rigorous
engineering and could promote the re-use (Cox,

322
Manset D., Verjus3 H., McClatchey R. and Oquendo F. (2006).
A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN APPROACH FOR THE AUTOMATIC GENERATION OF GRID APPLICATIONS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 322-330
DOI: 10.5220/0002443503220330
Copyright c© SciTePress

2004) of software components in future Grid
developments.
It is our belief that code-driven approaches and
semi-formal engineering methods in current use are
insufficient to tackle tomorrow’s Grid
developments. This paper provides a set of Grid
specific models enacted within a novel engineering
approach that implements the model-driven
philosophy. Inside a well-defined and adapted
formal approach, we investigate the enactment of
our model-driven engineering process providing the
tools to build the next generation of Grid
applications. Thus, this paper emphasizes different
aspects, which are, in our view, essential to Grid
engineering:
• it offers a user-friendly vision to Grid architects

by providing re-usable conceptual building
blocks,

• it hides the complexity of the final execution
platform through abstraction models,

• it promotes design re-use to facilitate further
developments.

To achieve these objectives, we combine two
approaches together and seek advantages from each.
On the one hand, we use the formal semantic
descriptive power to model Grid applications; on the
other hand, we use a model-driven approach to
promote model re-use, model transformations, to
hide the platform complexity and to refine abstract
software descriptions to concrete ones.
The remainder of this paper is structured as follows.
Part 2 presents the approaches used, (i.e. Model
Driven Engineering and Architecture-centric
approach). Part 3 explains how model-driven
engineering is enacted to design Grid applications.
Part 4 presents our formal architecture-centric
model-driven approach and the means used to
achieve it. Part 5 illustrates the presented paradigms
with a concrete example. Finally, we conclude with
identifying future work and state the benefits of
using the presented concept.

2 MODEL-DRIVEN AND
ARCHITECTURE CENTRIC
APPROACHES

2.1 The MDE Approach

Model Driven Engineering MDE (Kent, 2002),
probably derived from the OMG Model Driven
Architecture MDATM (Kleppe et al, 2003) initiative,
tackles the problem of system development by
promoting the usage of models as the primary

artefact to be constructed and maintained.
Enacting the model-driven paradigm is not an easy
route to follow since as yet there are few available
frameworks designed and most of them are
combinations of existing tools. Despite the lack of
proper MDE tools, there are clear advantages from
using and enacting it. Among such benefits that are
valuable for Grid applications is providing system
developers the capability to design systems
efficiently in a heterogeneous and rapidly changing
environment. Indeed, models being decoupled from
platform technologies, system descriptions remain
relevant and re-usable.

2.2 A Combination of Approaches

By convention and in order to separate clearly the
concept described here from that of the OMG
MDATM, we call our approach a grid model-driven
engineering approach (gMDE) and use a Grid-
specific terminology. The OMG describes a design
method based on model transformations according
to meta-models, which is generic enough to fulfil
any requirements in terms of modelling and re-use.
However, most existing implementations of this
paradigm provide only model to source code
transformations, based on UML, where the Platform
Independent Models (PIMs) are translated to
Platform Specific Models (PSMs). In Grid
engineering, when mapping system models to
concrete platforms, it is often necessary to include
model to model transformations to fill the gap
between the abstract description and its concrete
representation. In addition, model optimization
requires the generation of intermediate models to
compute and synchronize different views of a
system. Providing model to model transformations
as well as model to code transformations along the
development process makes the approach more
modular and also facilitates the final source code
generation. In order to support this approach, we
combine the model-driven philosophy to a well-
established architecture-centric approach (Chaudet
et al, 2000).
Thus, we first define a set of key models to design a
Grid application from the high level descriptions of
each architectural element to its final deployment. In
addition, we introduce the necessary semantics to
generate, transform and check models along the
design process. We consider architectural
descriptions (from abstract to more concrete) as
models. From this basis, transformations are applied
to models and as a consequence to software
architectures according to architect’s and platforms
requirements. The end result of such iterative

A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN APPROACH FOR THE AUTOMATIC GENERATION
OF GRID APPLICATIONS

323

modifications and mappings being the concrete
deployed application.
Focusing on the model transformation aspects, we
can notice similarities with the refinement concepts
found in formal architecture-centric software
engineering developments. The MDE can benefit
from refinement to handle some of the model
transformations and to ensure the models’
correctness. From the OMG’s vision, we use the
basic idea that consists of starting from a PIM to go
to a PSM by means of transformations. Our
approach follows such an idea in implementing the
architecture-centric refinement (see section 3).

3 A FORMAL
ARCHITECTURE-CENTRIC
MDE APPROACH

Following our gMDE paradigm (Manset et al,
2005), we address the challenge of designing,
optimizing and adapting Grid-abstract architectures,
with respect to different criteria, in order to
automatically generate a complete set of Grid
services to be deployed on a physical grid of
resources. From the work we conducted in Grid
engineering (Amendolia et al, 2005) we consider the
Grid as a SOA and provide the means to specify
system properties related to the Quality of Services
QoS (Land, 2002) and Grid middleware platforms.
Using formal semantics, we build a set of major
models and investigate their orchestration along the
gMDE design process.

3.1 The gMDE Key Models

In Grid engineering, design is largely affected by
many constraints; these constraints are of different
types and are introduced either by the architect when
implementing QoS related features or by the target
execution platform. Thus the MDE process
dedicated to Grid engineering must take into account
all of these aspects in providing the necessary
models and semantics. By proposing several models
(see figure 1), our approach separates concerns and
addresses different aspects of Grid applications.
Thus expertise management and capture are better
than in classical approaches e.g. (Medvidovic et al,
1996). Each model represents an accurate aspect of
the system, useful for conceptual understanding,
analysis and refinement. Unlike the software
engineering process where the system architecture is
iteratively refined by the architect, most of the
transformations in the gMDE are automated. The

different models composing our process are defined
as follows:
• GEIM – Grid Environment Independent Model:
an abstract description of the Grid application based
on a formal ADL (Architecture Description
Language) – using domain specific constructs,
• GESM – Grid Environment Specific Model:
a concrete architecture close to the final code and
optimized according to a particular Grid middleware
(execution platform) and QoS properties (a refined
system description),
• GECM – Grid Execution Constraint Model: a
design pattern representing a particular QoS
property,
• GETM – Grid Environment Transformation
Model: a design pattern representing a particular
Grid platform.
As a clarification of concept, we do not discuss in
detail the other models composing our design
process. However, these models can be defined as
follows:
• GEMM – Grid Environment Mapping Model: a
model of translation between an architecture
description language and an implementation
language (i.e. that defines the mapping between the
semantics of the GESM and a given programming
language, for instance Java).
• GERM – Grid Environment Resource Model: a
model representing the physical constitution of the
Grid.
• GEDM – Grid Environment Deployment

Model:
a model specifying the distribution and deployment
of the resulting application onto the grid set of
resources,
• GESA – Grid Environment Specific Application:
the auto-generated source code of the application
(i.e. obtained after GEMM translation).

Figure 1: gMDE key models.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

324

Figure 1 expresses the progressive design
convergence of these models towards the generation
of the final system source code (GESA) and its
deployment over the physical infrastructure. This
convergence is punctuated by different
transformations (in nature and objectives).
As is mentioned in section 2, our model-driven
approach uses the architecture-centric refinement
concept to decouple:
• the abstract domain specific vision from the
concrete implementation and
• the architect’s functional specifications and

non-
functional requirements.
As is depicted in figure 1, the models represent
different views of the system. Typically, non-
functional aspects – referred to as “Constraint View”
- are defined inside the GECM and GETM models;
unlike functional aspects – referred to as “Platform
Independent View” - which are defined in the GEIM
and GEIM’ (a specialized form of the GEIM)
models.

Figure 2: The gMDE development process.

Each of these two views owns a proper meta-model
introducing a Grid domain terminology to facilitate
the domain representation. Once the concrete system
specification (GESM) has been obtained, it is
translated into source code (GESA) using a mapping
expressed in the GEMM model. This transformation
and corresponding models are referred to as part of
the “Concrete View”. Finally, the system
distribution over a physical set of resources (an
essential aspect of Grid computing) is also handled
using models (the GEDM and the GERM) and
transformations, constituting the “Physical View”.
The GEIM, GETM and GESA are the only models
visible and modifiable by the software architect
during design, unlike others, which are
automatically obtained from transformations.

3.2 The gMDE Development Process

Figure 2 introduces the orchestration of the
previously presented models inside the gMDE
design process. In the depicted process, a distinction
is made between two major levels, one is the
architecture level of transformation – above the
broken lines - and the other is the implementation
level of transformation – below the broken lines.
Models and transformations can differ in nature and
objectives. Thus models can be of two distinct types;
either the model is manually created or it is
automatically obtained by transformation.
Transformations can then be of two different types;
either the transformation is a composition of one or
more refinement actions (model to model
transformation) or it is a translation mapping (model
to source code transformation).
In the previous drawing, two different sets of QoS
constraints were successively introduced (referred to
as GECM 1 & 2). By introducing new models, the
software architect can specialize an architecture
progressively with respect to different sets of
constraints. Once the system architecture complies
with the expressed requirements, the software
architect can specify a Grid execution platform. This
is illustrated in figure 2 (referred to as the GETM for
(gLite) and for (Globus) Grid platforms), two
different middlewares were selected to obtain the
adapted concrete system architecture, GESM.
Figure 2 also details the models and transformation
types. The depicted process demonstrates the
integration of multiple constraints by the
introduction of models. The gMDE approach covers
both model to model transformations and model to
code transformations, which makes it flexible
enough to tackle other aspects. Indeed, the process is
not limited to what is expressed in figure 2 but can
be extended to any sets of constraints, provided the
corresponding model is expressed. This scalability is
the direct result of the underlying formal
architecture-centric model-driven approach.

4 ENACTING MDE, A
CONCRETE FRAMEWORK

4.1 ArchWare: Formal
Architecture-centric Approach
and Toolkit

(ArchWare) is an engineering environment
supporting the development of software systems

A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN APPROACH FOR THE AUTOMATIC GENERATION
OF GRID APPLICATIONS

325

through the use of a formal architecture-centric
approach. This formal architecture-centric method
enables the support of critical correctness
requirements and provides tools to guarantee system
properties. ArchWare provides a set of formal
languages to enable reliable design, amongst them:
(1) the ArchWare Architecture Description
Language ADL (Oquendo et al, 2002), defined as a
layered language for supporting both structural and
behavioural descriptions as well as property
definitions. This language is based on the π-calculus
(Milner, 1999) and µ-calculus (Kozen, 1983), (2)
the ArchWare Architecture Refinement Language
ARL (Oquendo et al, 2004), used to describe
software architectures (based on the Component and
Connector architectural style) and to refine them
accordingly to transformation rules.
These languages used together constitute the
ArchWare environment framework. As mentioned
in section 2, there are noticeable conceptual
similarities between some of the gMDE model
transformations and software architecture
refinement operations. From our point of view,
refinement is considered as an architecture-level
transformation. Thus, the rest of this paper
investigates the ArchWare refinement process
,which is, we believe, essential to the enactment of
our formal architecture-centric MDE approach.

4.2 The ArchWare Refinement
Concept

Complex systems cannot be designed in one single
step. In a stepwise architecture refinement, a
sequence of modifications is applied on a system
abstract model, which leads to a concrete,
implementation-centred model of the architecture.
These refinement steps can be carried out along two
directions: “vertical” and “horizontal”. The concrete
architecture of a large software system is often
developed through a “vertical” hierarchy of related
architectures. An architecture hierarchy is a linear
sequence of two or more architectures that may
differ with respect to a variety of aspects. In general,
an abstract architecture is simpler and easier to
understand, while a concrete architecture reflects
more implementation concerns. “Vertical”
refinement steps add more and more details to
abstract models until the concrete architectural
model has been described. A refinement step
typically leads to a more detailed architectural model
that increases the determinism while implying
properties of the abstract model. “Horizontal”
refinement concerns the application of different

refinement actions on different parts of the same
abstract architecture, for instance, by partitioning an
abstract component into different pieces at the same
abstraction level. The ArchWare ARL language is
the formal expression of these refinement
operations, which aims at preserving upper abstract
architecture properties while modifying it. The
ArchWare environment supports at each level of the
design process the re-use of existing architectural
models and, at the concrete level, architecture-based
code generation. As is demonstrated in [24], the
ArchWare approach handles an exhaustive set of
refinement actions. The semantics of such actions
are expressed as follows:

refDefinition::=on a : architecture action actionName is refinement (
actionParameter0 , actionParametern)

{
[pre is { condition }]
[post is { condition }]
[transformation is { refExpression }]

} [assuming { property }]
Each refinement action, hereinbefore referred to as
actionName, specifies a refinement action to apply
on an architecture “a”, as well as pre- and post-
conditions.

4.3 A Refinement Process for gMDE

The gMDE approach focuses on both directions of
refinement i.e. the “vertical” and the “horizontal”.
The intention is not only to refine an architecture to
a concrete and “close to final” code form, but also to
adapt it according to constraints. This paper
proposes two ways of using the model
transformations. One consists of optimizing a given
system abstract architecture according to expressed
developers’ requirements in terms of QoS. The
second consists of adapting an architecture
according to a Grid middleware. Respectively:
- Each QoS property is represented by a design
pattern. This representation is then adapted to the
current software architecture by refinement.
- Each platform is represented by a design pattern
and corresponding architectural properties. The
system software architecture is then adapted to this
platform by refinement as well.
To do so, the ARL expressiveness had to be
extended with respect to the Grid domain. The next
sections details our complementary semantic and its
usage.

4.4 Grid Domain Specific Language

Enabling the gMDE requires the expression and
consideration of new semantics. Indeed, as
mentioned in section 3.1, the “Platform Independent

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

326

View” and “Constraint View” are based on
different meta-models. Thus the gMDE approach
uses a Domain Specific Language (DSL) based on
the SOA paradigm, which is a specialisation of the
ARL language.
Figure 3 shows the different meta-models and their
mapping, allowing the description of proper Grid
services and their associated constraints. As a
consequence the system architecture (GEIM) is
respectively considered as a set of services by the
software architect and is then mapped to the
component-connector representation, which is
computable. This paradigm mapping is a key
element in our gMDE approach. The software
architect can focus mainly on his domain
requirements and benefits of the architecture-centric
facilities to refine his system.

Figure 3: The grid domain specific language.

As an example, the following is a generic
description of a Grid architecture (voluntary
simplified):

gridArchitectureRef is GridSOAArchitecture where {
 structure is {
 serviceName is style serviceTypeRef where {
 structure is {… service internal structure description … }
 connection is { … service connections descriptions … }
 constraint is { … QoS and / or platform constraints mappings … }
 } …
 }
 link is {
 attach serviceName0 to serviceName1 .
 }}

The Grid architecture hereinbefore referred to as
gridArchitectureRef is expressed in terms of services
(e.g. referred to as serviceName), structure,
connections and constraints.
Like the GEIM model, the GECM and GETM
models are expressed using the same semantic.
Following is the meta-model representing a
constraint (of type QoS or Grid middleware).

constraintName is constraintTypeRef {
 on a:architecture actions {
 actionRef elemRef is typeRef {… element description … }
 on b:architecturalElement actions {
 actionRef b .
 actionRef b .
 …}}…

The constraint, referred to as constraintName, is
specified in terms of architectural elements (e.g.

referred to as elemRef) providing its core
functionalities and high-level refinement actions
(e.g. referred to as actionRef) to be applied to one or
more target elements “b”. Using this semantic, a
wide variety of QoS and Grid platforms constraints
can be expressed and concretely used along the
gMDE design process. Given the flexibility of our
formal model-driven approach and relying on the
correctness of our models, the resulting technique is
able to tackle every aspect of software architecture
transformations needed in Grid developments. These
models and the enacted gMDE design process
constitute the core of our gMDE environment (called
gMDEnv – not detailed in this paper).

5 THE MDEGRID EXAMPLE

In order to demonstrate the core gMDE concepts,
we introduce here the mdeGrid system example. For
clarification, this example only treats the application
of one QoS constraint model.
The mdeGrid system aims at providing clients,
round-the-clock access to data stored in the Grid.

Figure 4: The mdeGrid system architecture.

To provide such functionality, the mdeGrid system
software architecture has been described as a set of
services with dedicated roles. As detailed in the
figure 4, the system architecture features three main
services:
- The Portal : in charge of delivering data and
answering to clients’ requests. This service handles
interactions with other Grid services in order to
satisfy the client’s request.
- The DataCacheHandler : this service collects and
caches data queried from the grid through the
genericGridInterface service. It updates this data
automatically by checking it periodically and
downloading if necessary.
- The genericGridInterface : this service represents
the interface to a given grid middleware. (NB: this
interface is considered as generic until the Grid
platform is selected as explained later in the
example).

A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN APPROACH FOR THE AUTOMATIC GENERATION
OF GRID APPLICATIONS

327

archetype mdeGrid is architecture {
 types is {…}
 ports is {…}
 behaviour is {
 archetype Portal is component {…} .
 archetype genericGridInterface is component{…} .
 archetype DataCacheHandler is component {
 types is { type Data is any . type resultSet is tuple [String, String] }
 ports is {
 archetype ComsP0 is port {
 incoming is {ComsIncP0C0 is connection (resultSet)}
 outgoing is {ComsOutP0C0 is connection (Data)}
 } .
 archetype ComsP1 is port {
 incoming is {ComsIncC0 is connection (Data)}
 outgoing is {ComsOutC0 is connection (resultSet)}
 } }
 behaviour is {
 --<faulttolerance::priority:1,range:1>--
 value resultSet is connection (Data);
 value query := “the query expression…”;
 recursive value readGridDBEntries is abstraction();
 {
 via ComsOutP0C0 send query;
 via ComsIncP0C0 receive res:resultSet;
 updateLocalCachedDB(res);
 readGridDB();
 };
 recursive value clientDataRequest is abstraction();
 {
 via ComsOutP1C0 receive clientRequest:request;
 res := processClientRequest(clientRequest);
 via ComsIncP1C0 send res;
 cacheClientResultSet(res);
 clientDataRequest();
 }; ...
 compose {
 readGridDB() and clientDataRequest()
 }}}{
unifies DataCacheHandler::ComsP1::ComsIncC1
 with Portal::PortComsP0::PortComsOutC0 ... }}

Figure 5: The mdeGrid architecture specification.

Using our DSL, the system software architecture is
specified and then transformed into ARL (see figure
5), which constitutes the GEIM model - presented in
section 3.1. (NB: for clarification, the software
architecture description is simplified, i.e. types,
ports, connections and behaviours are not
expressed). Once the system architecture is
specified, the software architect can express non-
functional requirements. As an instance, it is
relevant in the mdeGrid architecture to ensure fault-
tolerance over the DataCacheHandler service to
guarantee uninterrupted data access to clients. To
explicitly indicate that this service should be fault-
tolerant, the software architect assigns it a constraint
mapping. The mapping declaration is split into three
parts as detailed below. The first part specifies its
nature, the second its priority with respect to other
constraints and thirdly its range/level. This
constraint mapping is attached to the architectural
element as an annotation inside the GEIM model
following this scheme: “--
<constraintRef::priority:#,range:#>--“ (see the
DataCacheHandler architectural element
description in figure 5 for a detailed example of
mapping). Once analyzed during the gMDE design
process, the corresponding constraint design pattern
is selected by the system (see figure 6). The
following definition is a simplified representation of

the Fault-Tolerance design pattern:
FT is qualityOfServiceProperty {
 on mdeGrid:architecture actions {
 include FTConnector is connector {
 … connector architectural description …}
 on DataCacheHandler :architecturalElement actions{
 replicate DataCacheHandler to DataCacheHandlerClone0;
 unify DataCacheHandler::ComsP0::ComsOutC0 with
 FTConnector:: genericGridInterfaceComsP0::genericGridInterfaceIncC0
. }}…

Figure 6: The fault-tolerance GECM.

Our engineering environment (gMDEnv) then
proceeds to the elaboration of the transformation
model needed to fix the non-functional requirement.
This is what is shown in figure 7. Inside the
gMDEnv, a model-driven approach is enacted for
the predictive non-functional and functional analysis
of architectural elements. From the original GEIM
model, the system analyzes the different constraint
mappings and generates a satisfactory model of
atomic transformations to apply with respect to the
corresponding constraint design pattern.
The analysis conducted by the system is an heuristic
method to determine constraint compatibilities and
solutions among architectural elements and design
patterns. The system tries to map constraints
between architectural elements through inference
rules and selects which transformation is the best
suited. This iterative process leads progressively to
the elaboration of a satisfactory transformation
model applicable in context. This transformation is
explained in figure 7 and constitutes an example of
the first part of the gMDE design process. In the
resulting architecture (the GEIM’), the fault-
tolerance has been provided by the introduction of a
new connector “FTConnector” – a representation of
a known pattern for fault-tolerance handling - and
the replication of the DataCacheHandler
architectural element as a recovery service.

Figure 7: A gMDE model transformation.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

328

Figure 8 details the obtained new mdeGrid system
description:

behaviour is {
 archetype Portal is component {…} .
 archetype genericGridInterface is component{…} .
 archetype DataCacheHandlerClone0 is component {…} .
 archetype DataCacheHandler is component {
 behaviour is {
 archetype FTConnector is connector { …
 behaviour is {
 recursive value availabilityChecking is abstraction();
 {
 if (serviceDown) value serviceRedirectionURL :=

 DataCacheHandlerClone0;
 availabilityChecking();
 };
 compose { availabilityChecking() }
 } .
 recursive value readGridDBEntries is abstraction();
 {…};
 recursive value clientDataRequest is abstraction();
 {…}; ...
 compose {readGridDB() and clientDataRequest()}... }

Figure 8: The DataCacheHandler new behaviour.

Thus, the clients’ requests (through the Portal
service) are re-directed to the clone service in case
of a service failure. The same approach is
undertaken when adapting the specified system
architecture to a particular Grid middleware. The
genericGridInterface architectural element is refined
by model transformation so that the system
architecture satisfies the architectural constraints
implied by the design pattern.
As a conclusion, the model-driven paradigm enables
the introduction of well-known design patterns for
every aspect whether functional or not. For example,
other patterns can be introduced for non-functional
requirements like load balancing, security,
performance, cost policies etc. However, for
simplification matters, we do not discuss these in
this paper although they are treated in our gMDE
engineering environment (gMDEnv).

6 OUTLOOK AND CONCLUSION

In this paper we presented a technique for specifying
Grid applications by modeling and by transforming
these models to automate their adaptation to specific
platforms and QoS constraints. We introduced an
example to illustrate how the approach tackles QoS
specifications in addition to platform requirements.
Our investigation has lead to the elaboration of a
wide range of frequently used Grid platforms and
QoS constraint models. The efficiency of the
approach relies strongly on the correctness of these
models; consequently great care is being taken to
ensure this. As a proof of concept, the engineering
framework being developed (gMDEnv) enacts the
combination of the formal architecture-centric and

model-driven approaches introduced previously. In
its current state, it is already capable of handling
most of the presented models and transformations.
Since this approach is based on the concepts of re-
use and execution platform independence, our
engineering framework scope is not limited to the
Grid domain. The same approach can tackle other
developments based on the SOA vision such as web
service-based applications (i.e. online traders,
booking systems, video on demand systems etc).
Thus, the benefits of using the gMDE are numerous.
Formal application models designed using our
framework are persistent and re-usable. For
instance, one can use libraries and previously stored
models to design new applications. The approach is
scalable; one can extend the scope limitation of the
framework by providing the corresponding new
constraint and mapping models. From the
establishment of well-known architectural concepts,
the framework brings a high level of description to
the user while promoting user-friendliness through a
simple semi-automated graphical user interface (see
figure 9).

Figure 9: The gMDEnv graphical user interfaces.

Finally, with respect to model transformations, an
interesting area of future research is the
development of a decision system to support users
through model-driven transformations. Indeed, some
of the adaptations required to satisfy platforms and
QoS constraints can lead to critical decisions. We
are using examples such as the one described in
section 5 and the MammoGrid development
experience (Amendolia et al, 2005), to elicit the
framework requirements. The gMDEnv and the
presented approach are currently in use to evaluate
potential advantages in the development process of
the MammoGrid application. There are clearly
identified issues in the development of MammoGrid
on which the gMDEnv emphasizes, such as adapting
the system to other Grid platforms, improving the
global application security level or porting the

A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN APPROACH FOR THE AUTOMATIC GENERATION
OF GRID APPLICATIONS

329

system to different programming languages. From
these case studies, the preliminary conclusions are
encouraging and show the relevance of this formal
model-driven paradigm applied to the Grid domain.
This paper is a first investigation of the model-
driven paradigm enactment using established formal
architecture-centric concepts. Besides supporting the
usefulness of the ArchWare ARL language, we are
able to draw a number of conclusions. We learned
that the model-driven approach is a very useful
paradigm when addressing cross-platform
developments and problems of re-use but it must be
dependent on a rigorous basis to be efficient. The
formal dimension brought by ArchWare is one of
the key points of our successful implementation,
especially in using a formal refinement language.
Similarly we learned that QoS attributes are not easy
to quantify in models. There is a true lack of
standards that could help significantly when
considering resource comparisons. In the context of
other engineering frameworks and given the
concepts we have now in hand, our approach can
provide relevant benefits to the practice of Grid
system engineering. From our experience, we
believe that the presented approach is an important
contribution to the development of new Grid
systems.

ACKNOWLEDGMENTS

The authors wish to thank their Home Institutions
and the European Commission for financial support
in the current research.

REFERENCES

Foster, I. Kesselman, C. Tuecke, S. 2001. The Anatomy of
the Grid – Enabling Scalable Virtual Organisations, In
Int. Journal of Supercomputer Applications,

SOA – Service-Oriented Architectures An Introduction.
See
http://www.developer.com/services/article.php/10143
71.

Cox, A. 2004. An Exploration of the Application of
Software Reuse Techniques to the Location of
Services in a Distributed Computing Environment, In
Thesis report, University of Dublin.

Kent, S. 2002. Model Driven Engineering, In IFM 2002,
volume 2335 of LNCS. Springer-Verlag.

Kleppe, A. Warmer, J. Bast, W. 2003. MDA Explained:
The Model Driven Architecture™: Practice and
Promise. Addison-Wesley, Paperback, ISBN
032119442X.

Chaudet, C. Megzari, K. Oquendo, F. 2000. A Formal
Architecture-Driven Approach for Designing and
Generating Component-Based Software Process
Models. In Proceedings of the 2000 International
Conference on Information Systems Analysis and
Synthesis (ISAS’00), Track on Process Support for
Distributed Teambased Software Development.

Amendolia, S.R. Estrella, F. Del Frate, C. Galvez, J.
Hassan, W. Hauer, T. Manset, D. McClatchey, R.
Odeh, M. Rogulin, D. Solomonides, T. Warren, R.
2005. Deployment of a Grid-based Medical Imaging
Application, In Proceedings of the 2005 HealthGrid
Conference.

Land, R. 2002. Improving Quality Attributes of a
Complex System Through Architectural Analysis – A
Case Study, In Proceedings of the International
Engineering of Computer-Based Systems Conference,
p 167-174, IEEE Press.

Medvidovic, N., Oreizy, P. Robbins, J.E. Taylor, R.N.
1996. Using object-oriented typing to support
architectural design in the C2 Style. In Proceedings of
4th ACM Symposium on the Foundations of Software
Engineering (SIGSOFT).

EGEE gLite : see http://egee-jra1.web.cern.ch/egee-jra1/
Globus : see http://www.globus.org/
ArchWare. The EU funded ArchWare IST 2001-32360 –

Architecting Evolvable Software - project:
http://www.arch-ware.org.

Oquendo F. Cimpan S. Verjus H. 2002. The ArchWare
ADL: Definition of the Abstract Syntax and Formal
Semantics. Deliverable D1.1b. ARCHWARE
European RTD Project IST-2001-32360.

Milner R. 1999. Communicating and Mobile Systems: the
pi-calculus. ISBN 052164320, Cambridge University
Press.

Kozen D. 1983. Results on the Propositional Mu-Calculus,
Theoretical Computer Science 27:333-354.

Oquendo F. 2004. π-ARL: an Architecture Refinement
Language for Formally Modelling the Stepwise
Refinement of Software Architecture. In ACM
SIGSOFT Software Engineering Notes archive
Volume 29, Issue 5, ACM Press.

Manset, D. Verjus, H. McClatchey, R. Oquendo, F. 2005.
A Model Driven Approach for Grid Services
Engineering. In Proceedings of the 2005 International
Conference on Software Engineering and their
Applications.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

330

