
A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN 
APPROACH FOR THE AUTOMATIC GENERATION OF GRID 

APPLICATIONS 

David Manset1,2,3 
2 ETT Division, CERN 1211, Geneva 23, Switzerland 

Hervé Verjus3 
3 LISTIC, University of Savoie, Annecy, France 

Richard McClatchey1 
1 CCCS, University West of England, Bristol, UK 

Flavio Oquendo4 
4 VALORIA, University of South Brittany, Vannes, France 

Keywords:  MDE, Grid, Software Architectures, Model Transformation, Refinement, ADLs. 

Abstract:  This paper discusses the concept of model-driven software engineering applied to the Grid application 
domain.  As an extension to this concept, the approach described here, attempts to combine both formal 
architecture-centric and model-driven paradigms. It is a commonly recognized statement that Grid systems 
have seldom been designed using formal techniques although from past experience such techniques have 
shown advantages. This paper advocates a formal engineering approach to Grid system developments in an 
effort to contribute to the rigorous development of Grids software architectures. This approach addresses 
quality of service and cross-platform developments by applying the model-driven paradigm to a formal 
architecture-centric engineering method. This combination benefits from a formal semantic description 
power in addition to model-based transformations. The result of such a novel combined concept promotes 
the re-use of design models and facilitates developments in Grid computing. 

1 INTRODUCTION 

The Grid paradigm is described in (Foster et al, 
2001) as “a distributed computing infrastructure for 
advanced science and engineering” that can address 
the concept of “coordinated resource sharing and 
problem solving in dynamic, multi-institutional 
virtual organizations”. This coordinated sharing may 
be not only file exchange but can also provide direct 
access to computers, software, data and other system 
resources. Grid applications bundle different 
services using a heterogeneous pool of resources in 
a so-called virtual organization. This makes Grid 
applications very difficult to model and to 
implement.  
In addition, one of the major issues in today’s Grid 
engineering is that it often follows a code-driven 
approach. Although it has been proven from past 

experience that using structured engineering 
methods would ease the development process of any 
computing system and would reduce complexity, the 
inter-disciplinarily of Grid computing is still 
encouraging ‘brute-force’ coding and consequently 
a rather unstructured engineering process. This 
always leads to a loss of performance, 
interoperability problems and generally ends in very 
complex systems that only dedicated and expert 
developers can manage. As a direct consequence the 
resulting source code is neither re-usable nor does it 
promote dynamic adaptation facilities as if it were a 
true representation of the Service Oriented 
Architecture (SOA). Having no guidelines or rules 
in the design of a Grid-based application is a 
paradox since there are many existing, architectural 
approaches for distributed computing which could 
ease the engineering process, could enable rigorous 
engineering and could promote the re-use (Cox, 
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2004) of software components in future Grid 
developments.  
It is our belief that code-driven approaches and 
semi-formal engineering methods in current use are 
insufficient to tackle tomorrow’s Grid 
developments. This paper provides a set of Grid 
specific models enacted within a novel engineering 
approach that implements the model-driven 
philosophy. Inside a well-defined and adapted 
formal approach, we investigate the enactment of 
our model-driven engineering process providing the 
tools to build the next generation of Grid 
applications. Thus, this paper emphasizes different 
aspects, which are, in our view, essential to Grid 
engineering: 
• it offers a user-friendly vision to Grid architects 

by  providing re-usable conceptual building 
blocks,  

• it hides the complexity of the final execution 
platform through abstraction models,  

• it promotes design re-use to facilitate further 
developments. 

To achieve these objectives, we combine two 
approaches together and seek advantages from each. 
On the one hand, we use the formal semantic 
descriptive power to model Grid applications; on the 
other hand, we use a model-driven approach to 
promote model re-use, model transformations, to 
hide the platform complexity and to refine abstract 
software descriptions to concrete ones.  
The remainder of this paper is structured as follows. 
Part 2 presents the approaches used, (i.e. Model 
Driven Engineering and Architecture-centric 
approach). Part 3 explains how model-driven 
engineering is enacted to design Grid applications. 
Part 4 presents our formal architecture-centric 
model-driven approach and the means used to 
achieve it. Part 5 illustrates the presented paradigms 
with a concrete example. Finally, we conclude with 
identifying future work and state the benefits of 
using the presented concept. 

2 MODEL-DRIVEN AND 
ARCHITECTURE CENTRIC 
APPROACHES 

2.1 The MDE Approach 

Model Driven Engineering MDE (Kent, 2002), 
probably derived from the OMG Model Driven 
Architecture MDATM (Kleppe et al, 2003) initiative, 
tackles the problem of system development by 
promoting the usage of models as the primary 

artefact to be constructed and maintained.  
Enacting the model-driven paradigm is not an easy 
route to follow since as yet there are few available 
frameworks designed and most of them are 
combinations of existing tools. Despite the lack of 
proper MDE tools, there are clear advantages from 
using and enacting it. Among such benefits that are 
valuable for Grid applications is providing system 
developers the capability to design systems 
efficiently in a heterogeneous and rapidly changing 
environment. Indeed, models being decoupled from 
platform technologies, system descriptions remain 
relevant and re-usable. 

2.2 A Combination of Approaches 

By convention and in order to separate clearly the 
concept described here from that of the OMG 
MDATM, we call our approach a grid model-driven 
engineering approach (gMDE) and use a Grid-
specific terminology. The OMG describes a design 
method based on model transformations according 
to meta-models, which is generic enough to fulfil 
any requirements in terms of modelling and re-use. 
However, most existing implementations of this 
paradigm provide only model to source code 
transformations, based on UML, where the Platform 
Independent Models (PIMs) are translated to 
Platform Specific Models (PSMs). In Grid 
engineering, when mapping system models to 
concrete platforms, it is often necessary to include 
model to model transformations to fill the gap 
between the abstract description and its concrete 
representation. In addition, model optimization 
requires the generation of intermediate models to 
compute and synchronize different views of a 
system. Providing model to model transformations 
as well as model to code transformations along the 
development process makes the approach more 
modular and also facilitates the final source code 
generation. In order to support this approach, we 
combine the model-driven philosophy to a well-
established architecture-centric approach (Chaudet 
et al, 2000). 
Thus, we first define a set of key models to design a 
Grid application from the high level descriptions of 
each architectural element to its final deployment. In 
addition, we introduce the necessary semantics to 
generate, transform and check models along the 
design process. We consider architectural 
descriptions (from abstract to more concrete) as 
models. From this basis, transformations are applied 
to models and as a consequence to software 
architectures according to architect’s and platforms 
requirements. The end result of such iterative 
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modifications and mappings being the concrete 
deployed application. 
Focusing on the model transformation aspects, we 
can notice similarities with the refinement concepts 
found in formal architecture-centric software 
engineering developments. The MDE can benefit 
from refinement to handle some of the model 
transformations and to ensure the models’ 
correctness. From the OMG’s vision, we  use the 
basic idea that consists of starting from a PIM to go 
to a PSM by means of transformations. Our 
approach follows such an idea in implementing the 
architecture-centric refinement (see section 3).  

3 A FORMAL  
ARCHITECTURE-CENTRIC 
MDE APPROACH 

Following our gMDE paradigm (Manset et al, 
2005), we address the challenge of designing, 
optimizing and adapting Grid-abstract architectures, 
with respect to different criteria, in order to 
automatically generate a complete set of Grid 
services to be deployed on a physical grid of 
resources. From the work we conducted in Grid 
engineering (Amendolia et al, 2005) we consider the 
Grid as a SOA and provide the means to specify 
system properties related to the Quality of Services 
QoS (Land, 2002) and Grid middleware platforms. 
Using formal semantics, we build a set of major 
models and investigate their orchestration along the 
gMDE design process. 

3.1 The gMDE Key Models 

In Grid engineering, design is largely affected by 
many constraints; these constraints are of different 
types and are introduced either by the architect when 
implementing QoS related features or by the target 
execution platform. Thus the MDE process 
dedicated to Grid engineering must take into account 
all of these aspects in providing the necessary 
models and semantics. By proposing several models 
(see figure 1), our approach separates concerns and 
addresses different aspects of Grid applications. 
Thus expertise management and capture are better 
than in classical approaches e.g. (Medvidovic et al, 
1996). Each model represents an accurate aspect of 
the system, useful for conceptual understanding, 
analysis and refinement. Unlike the software 
engineering process where the system architecture is 
iteratively refined by the architect, most of the 
transformations in the gMDE are automated. The 

different models composing our process are defined 
as follows:  
• GEIM – Grid Environment Independent Model: 
an abstract description of the Grid application based 
on a formal ADL (Architecture Description 
Language) – using domain specific constructs, 
• GESM – Grid Environment Specific Model:  
a concrete architecture close to the final code and 
optimized according to a particular Grid middleware 
(execution platform) and QoS properties (a refined 
system description), 
• GECM – Grid Execution Constraint Model: a  
design pattern representing a particular QoS 
property, 
• GETM – Grid Environment Transformation  
Model: a design pattern representing a particular 
Grid platform.  
As a clarification of concept, we do not discuss in 
detail the other models composing our design 
process. However, these models can be defined as 
follows: 
• GEMM – Grid Environment Mapping Model: a  
model of translation between an architecture 
description language and an implementation 
language (i.e. that defines the mapping between the 
semantics of the GESM and a given programming 
language, for instance Java). 
• GERM – Grid Environment Resource Model: a  
model representing the physical constitution of the 
Grid. 
• GEDM – Grid Environment Deployment 

Model:  
a model specifying the distribution and deployment 
of the resulting application onto the grid set of 
resources, 
• GESA – Grid Environment Specific Application:  
the auto-generated source code of the application 
(i.e. obtained after GEMM translation). 
 

 
Figure 1: gMDE key models. 
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Figure 1 expresses the progressive design 
convergence of these models towards the generation 
of the final system source code (GESA) and its 
deployment over the physical infrastructure. This 
convergence is punctuated by different 
transformations (in nature and objectives). 
As is mentioned in section 2, our model-driven 
approach uses the architecture-centric refinement 
concept to decouple: 
• the abstract domain specific vision from the  
concrete implementation and 
• the architect’s functional specifications and 

non- 
functional requirements.  
As is depicted in figure 1, the models represent 
different views of the system.  Typically, non-
functional aspects – referred to as “Constraint View” 
- are defined inside the GECM and GETM models; 
unlike functional aspects – referred to as “Platform 
Independent View” - which are defined in the GEIM 
and GEIM’ (a specialized form of the GEIM) 
models.  
 

 
Figure 2: The gMDE development process. 

Each of these two views owns a proper meta-model 
introducing a Grid domain terminology to facilitate 
the domain representation. Once the concrete system 
specification (GESM) has been obtained, it is 
translated into source code (GESA) using a mapping 
expressed in the GEMM model. This transformation 
and corresponding models are referred to as part of 
the  “Concrete View”. Finally, the system 
distribution over a physical set of resources (an 
essential aspect of Grid computing) is also handled 
using models (the GEDM and the GERM) and 
transformations, constituting the “Physical View”.  
The GEIM, GETM and GESA are the only models 
visible and modifiable by the software architect 
during design, unlike others, which are 
automatically obtained from transformations.  

3.2 The gMDE Development Process 

Figure 2 introduces the orchestration of the 
previously presented models inside the gMDE 
design process. In the depicted process, a distinction 
is made between two major levels, one is the 
architecture level of transformation – above the 
broken lines - and the other is the implementation 
level of transformation – below the broken lines. 
Models and transformations can differ in nature and 
objectives. Thus models can be of two distinct types; 
either the model is manually created or it is 
automatically obtained by transformation. 
Transformations can then be of two different types; 
either the transformation is a composition of one or 
more refinement actions (model to model 
transformation) or it is a translation mapping (model 
to source code transformation). 
In the previous drawing, two different sets of QoS 
constraints were successively introduced (referred to 
as GECM 1 & 2). By introducing new models, the 
software architect can specialize an architecture 
progressively with respect to different sets of 
constraints. Once the system architecture complies 
with the expressed requirements, the software 
architect can specify a Grid execution platform. This 
is illustrated in figure 2 (referred to as the GETM for 
(gLite) and for (Globus) Grid platforms), two 
different middlewares were selected to obtain the 
adapted concrete system architecture, GESM.  
Figure 2 also details the models and transformation 
types. The depicted process demonstrates the 
integration of multiple constraints by the 
introduction of models. The gMDE approach covers 
both model to model transformations and model to 
code transformations, which makes it flexible 
enough to tackle other aspects. Indeed, the process is 
not limited to what is expressed in figure 2 but can 
be extended to any sets of constraints, provided the 
corresponding model is expressed. This scalability is 
the direct result of the underlying formal 
architecture-centric model-driven approach. 

4 ENACTING MDE, A 
CONCRETE FRAMEWORK 

4.1 ArchWare: Formal 
Architecture-centric Approach 
and Toolkit 

(ArchWare) is an engineering environment 
supporting the development of software systems 
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through the use of a formal architecture-centric 
approach. This formal architecture-centric method 
enables the support of critical correctness 
requirements and provides tools to guarantee system 
properties. ArchWare provides a set of formal 
languages to enable reliable design, amongst them: 
(1) the ArchWare Architecture Description 
Language ADL (Oquendo et al, 2002), defined as a 
layered language for supporting both structural and 
behavioural descriptions as well as property 
definitions. This language is based on the π-calculus 
(Milner, 1999) and µ-calculus (Kozen, 1983), (2) 
the ArchWare Architecture Refinement Language 
ARL (Oquendo et al, 2004), used to describe 
software architectures (based on the Component and 
Connector architectural style) and to refine them 
accordingly to transformation rules. 
These languages used together constitute the 
ArchWare environment framework. As mentioned 
in section 2, there are noticeable conceptual 
similarities between some of the gMDE model 
transformations and software architecture 
refinement operations. From our point of view, 
refinement is considered as an architecture-level 
transformation. Thus, the rest of this paper 
investigates the ArchWare refinement process 
,which is, we believe, essential to the enactment of 
our formal architecture-centric MDE approach. 

4.2 The ArchWare Refinement 
Concept 

Complex systems cannot be designed in one single 
step. In a stepwise architecture refinement, a 
sequence of modifications is applied on a system 
abstract model, which leads to a concrete, 
implementation-centred model of the architecture. 
These refinement steps can be carried out along two 
directions: “vertical” and “horizontal”. The concrete 
architecture of a large software system is often 
developed through a “vertical” hierarchy of related 
architectures. An architecture hierarchy is a linear 
sequence of two or more architectures that may 
differ with respect to a variety of aspects. In general, 
an abstract architecture is simpler and easier to 
understand, while a concrete architecture reflects 
more implementation concerns. “Vertical” 
refinement steps add more and more details to 
abstract models until the concrete architectural 
model has been described. A refinement step 
typically leads to a more detailed architectural model 
that increases the determinism while implying 
properties of the abstract model. “Horizontal” 
refinement concerns the application of different 

refinement actions on different parts of the same 
abstract architecture, for instance, by partitioning an 
abstract component into different pieces at the same 
abstraction level. The ArchWare ARL language is 
the formal expression of these refinement 
operations, which aims at preserving upper abstract 
architecture properties while modifying it. The 
ArchWare environment supports at each level of the 
design process the re-use of existing architectural 
models and, at the concrete level, architecture-based 
code generation. As is demonstrated in [24], the 
ArchWare approach handles an exhaustive set of 
refinement actions. The semantics of such actions 
are expressed as follows: 

refDefinition::=on a : architecture action actionName is refinement ( 
actionParameter0 , actionParametern ) 

{ 
[ pre is { condition } ] 
[ post is { condition } ] 
[ transformation is { refExpression } ] 

} [ assuming { property } ] 
Each refinement action, hereinbefore referred to as 
actionName, specifies a refinement action to apply 
on an architecture “a”, as well as pre- and post- 
conditions.  

4.3 A Refinement Process for gMDE  

The gMDE approach focuses on both directions of 
refinement i.e. the “vertical” and the “horizontal”. 
The intention is not only to refine an architecture to 
a concrete and “close to final” code form, but also to 
adapt it according to constraints. This paper 
proposes two ways of using the model 
transformations. One consists of optimizing a given 
system abstract architecture according to expressed 
developers’ requirements in terms of QoS. The 
second consists of adapting an architecture 
according to a Grid middleware. Respectively: 
- Each QoS property is represented by a design 
pattern. This representation is then adapted to the 
current software architecture by refinement. 
- Each platform is represented by a design pattern 
and corresponding architectural properties. The 
system software architecture is then adapted to this 
platform by refinement as well.  
To do so, the ARL expressiveness had to be 
extended with respect to the Grid domain. The next 
sections details our complementary semantic and its 
usage. 

4.4 Grid Domain Specific Language 

Enabling the gMDE requires the expression and 
consideration of new semantics. Indeed, as 
mentioned in section 3.1, the “Platform Independent 
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View” and “Constraint View” are based on 
different meta-models. Thus the gMDE approach 
uses a Domain Specific Language (DSL) based on 
the SOA paradigm, which is a specialisation of the 
ARL language.  
Figure 3 shows the different meta-models and their 
mapping, allowing the description of proper Grid 
services and their associated constraints. As a 
consequence the system architecture (GEIM) is 
respectively considered as a set of services by the 
software architect and is then mapped to the 
component-connector representation, which is 
computable. This paradigm mapping is a key 
element in our gMDE approach. The software 
architect can focus mainly on his domain 
requirements and benefits of the architecture-centric 
facilities to refine his system. 

 
Figure 3: The grid domain specific language. 

As an example, the following is a generic 
description of a Grid architecture (voluntary 
simplified): 

gridArchitectureRef is GridSOAArchitecture where { 
   structure is { 
      serviceName is style serviceTypeRef where { 
            structure is {… service internal structure description … } 
            connection is { … service connections descriptions … } 
            constraint is { … QoS and / or platform constraints mappings … } 
      } … 
   } 
   link is { 
            attach serviceName0 to serviceName1 . 
  }}   

The Grid architecture hereinbefore referred to as 
gridArchitectureRef is expressed in terms of services 
(e.g. referred to as serviceName), structure, 
connections and constraints.  
Like the GEIM model, the GECM and GETM 
models are expressed using the same semantic. 
Following is the meta-model representing a 
constraint (of type QoS or Grid middleware).  

constraintName is constraintTypeRef { 
           on a:architecture actions {  
                actionRef elemRef is typeRef {…  element description …         }         
           on b:architecturalElement actions { 
                actionRef b . 
                actionRef b . 
          …}}… 

The constraint, referred to as constraintName, is 
specified in terms of architectural elements (e.g. 

referred to as elemRef) providing its core 
functionalities and high-level refinement actions 
(e.g. referred to as actionRef) to be applied to one or 
more target elements “b”. Using this semantic, a 
wide variety of QoS and Grid platforms constraints 
can be expressed and concretely used along the 
gMDE design process. Given the flexibility of our 
formal model-driven approach and relying on the 
correctness of our models, the resulting technique is 
able to tackle every aspect of software architecture 
transformations needed in Grid developments. These 
models and the enacted gMDE design process 
constitute the core of our gMDE environment (called 
gMDEnv – not detailed in this paper). 

5 THE MDEGRID EXAMPLE 

In order to demonstrate the core gMDE concepts, 
we introduce here the mdeGrid system example. For 
clarification, this example only treats the application 
of one QoS constraint model.  
The mdeGrid system aims at providing clients, 
round-the-clock access to data stored in the Grid. 
 

 
Figure 4: The mdeGrid system architecture. 

 
To provide such functionality, the mdeGrid system 
software architecture has been described as a set of 
services with dedicated roles. As detailed in the 
figure 4, the system architecture features three main 
services: 
- The Portal : in charge of delivering data and 
answering to clients’ requests. This service handles 
interactions with other Grid services in order to 
satisfy the client’s request.  
- The DataCacheHandler : this service collects and 
caches data queried from the grid through the 
genericGridInterface service. It updates this data 
automatically by checking it periodically and 
downloading if necessary. 
- The genericGridInterface : this service represents 
the interface to a given grid middleware. (NB: this 
interface is considered as generic until the Grid 
platform is selected as explained later in the 
example). 
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archetype mdeGrid is architecture { 
  types is {…} 
  ports is {…} 
  behaviour is {  
    archetype Portal is component {…} . 
    archetype genericGridInterface is component{…} . 
    archetype DataCacheHandler is component { 
      types is { type Data is any . type resultSet is tuple [String, String] } 
      ports is { 
                   archetype ComsP0 is port { 
                      incoming is {ComsIncP0C0 is connection ( resultSet )} 
                      outgoing is {ComsOutP0C0 is connection ( Data )} 
                   } . 
                   archetype ComsP1 is port { 
                      incoming is {ComsIncC0 is connection (Data)} 
                      outgoing is {ComsOutC0 is connection (resultSet)} 
                   }  } 
      behaviour is { 
                  --<faulttolerance::priority:1,range:1>-- 
                  value resultSet is connection (Data); 
  value query := “the query expression…”; 
                  recursive value readGridDBEntries is abstraction(); 
                  { 
                     via ComsOutP0C0 send query; 
                     via ComsIncP0C0 receive res:resultSet; 
    updateLocalCachedDB(res); 
                     readGridDB(); 
                  }; 
                  recursive value clientDataRequest is abstraction(); 
                  { 
                     via ComsOutP1C0 receive clientRequest:request; 
                     res := processClientRequest(clientRequest); 
                     via ComsIncP1C0 send res; 
                     cacheClientResultSet(res); 
                     clientDataRequest(); 
                  }; ... 
                  compose { 
                     readGridDB() and clientDataRequest() 
                  }}}{  
unifies DataCacheHandler::ComsP1::ComsIncC1 
 with Portal::PortComsP0::PortComsOutC0 ...  }} 

Figure 5: The mdeGrid architecture specification. 

Using our DSL, the system software architecture is 
specified and then transformed into ARL (see figure 
5), which constitutes the GEIM model - presented in 
section 3.1. (NB: for clarification, the software 
architecture description is simplified, i.e. types, 
ports, connections and behaviours are not 
expressed). Once the system architecture is 
specified, the software architect can express non-
functional requirements. As an instance, it is 
relevant in the mdeGrid architecture to ensure fault-
tolerance over the DataCacheHandler service to 
guarantee uninterrupted data access to clients. To 
explicitly indicate that this service should be fault-
tolerant, the software architect assigns it a constraint 
mapping. The mapping declaration is split into three 
parts as detailed below. The first part specifies its 
nature, the second its priority with respect to other 
constraints and thirdly its range/level. This 
constraint mapping is attached to the architectural 
element as an annotation inside the GEIM model 
following this scheme: “--
<constraintRef::priority:#,range:#>--“ (see the 
DataCacheHandler architectural element 
description in figure 5 for a detailed example of 
mapping). Once analyzed during the gMDE design 
process, the corresponding constraint design pattern 
is selected by the system (see figure 6). The 
following definition is a simplified representation of 

the Fault-Tolerance design pattern: 
FT is qualityOfServiceProperty { 
    on mdeGrid:architecture actions { 
        include FTConnector is connector { 
             … connector architectural description …} 
        on DataCacheHandler :architecturalElement actions{ 
             replicate DataCacheHandler  to DataCacheHandlerClone0; 
             unify DataCacheHandler::ComsP0::ComsOutC0 with  
                FTConnector:: genericGridInterfaceComsP0::genericGridInterfaceIncC0 
. }}…              

Figure 6: The fault-tolerance GECM. 

Our engineering environment (gMDEnv) then 
proceeds to the elaboration of the transformation 
model needed to fix the non-functional requirement. 
This is what is shown in figure 7. Inside the 
gMDEnv, a model-driven approach is enacted for 
the predictive non-functional and functional analysis 
of architectural elements. From the original GEIM 
model, the system analyzes the different constraint 
mappings and generates a satisfactory model of 
atomic transformations to apply with respect to the 
corresponding constraint design pattern.  
The analysis conducted by the system is an heuristic 
method to determine constraint compatibilities and 
solutions among architectural elements and design 
patterns. The system tries to map constraints 
between architectural elements through inference 
rules and selects which transformation is the best 
suited. This iterative process leads progressively to 
the elaboration of a satisfactory transformation 
model applicable in context. This transformation is 
explained in figure 7 and constitutes an example of 
the first part of the gMDE design process. In the 
resulting architecture (the GEIM’), the fault-
tolerance has been provided by the introduction of a 
new connector “FTConnector” – a representation of 
a known pattern for fault-tolerance handling - and 
the replication of the DataCacheHandler 
architectural element as a recovery service. 
 

 
Figure 7: A gMDE model transformation. 
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Figure 8 details the obtained new mdeGrid system 
description: 

 
behaviour is { 
    archetype Portal is component {…} . 
    archetype genericGridInterface is component{…} . 
    archetype DataCacheHandlerClone0 is component {…} . 
    archetype DataCacheHandler is component { 
        behaviour is { 
         archetype FTConnector is connector { … 
            behaviour is { 
               recursive value availabilityChecking is abstraction(); 
               { 
                         if (serviceDown) value serviceRedirectionURL :=                                      

                                 DataCacheHandlerClone0; 
                         availabilityChecking(); 
               }; 
               compose { availabilityChecking() } 
            } . 
        recursive value readGridDBEntries is abstraction(); 
        {…}; 
        recursive value clientDataRequest is abstraction(); 
        {…}; ... 
     compose {readGridDB() and clientDataRequest()}... } 

Figure 8: The DataCacheHandler new behaviour. 

Thus, the clients’ requests (through the Portal 
service) are re-directed to the clone service in case 
of a service failure. The same approach is 
undertaken when adapting the specified system 
architecture to a particular Grid middleware. The 
genericGridInterface architectural element is refined 
by model transformation so that the system 
architecture satisfies the architectural constraints 
implied by the design pattern. 
As a conclusion, the model-driven paradigm enables 
the introduction of well-known design patterns for 
every aspect whether functional or not. For example, 
other patterns can be introduced for non-functional 
requirements like load balancing, security, 
performance, cost policies etc. However, for 
simplification matters, we do not discuss these in 
this paper although they are treated in our gMDE 
engineering environment (gMDEnv).  

6 OUTLOOK AND CONCLUSION 

In this paper we presented a technique for specifying 
Grid applications by modeling and by transforming 
these models to automate their adaptation to specific 
platforms and QoS constraints. We introduced an 
example to illustrate how the approach tackles QoS 
specifications in addition to platform requirements. 
Our investigation has lead to the elaboration of a 
wide range of frequently used Grid platforms and 
QoS constraint models. The efficiency of the 
approach relies strongly on the correctness of these 
models; consequently great care is being taken to 
ensure this. As a proof of concept, the engineering 
framework being developed (gMDEnv) enacts the 
combination of the formal architecture-centric and 

model-driven approaches introduced previously. In 
its current state, it is already capable of handling 
most of the presented models and transformations.  
Since this approach is based on the concepts of re-
use and execution platform independence, our 
engineering framework scope is not limited to the 
Grid domain. The same approach can tackle other 
developments based on the SOA vision such as web 
service-based applications (i.e. online traders, 
booking systems, video on demand systems etc). 
Thus, the benefits of using the gMDE are numerous. 
Formal application models designed using our 
framework are persistent and re-usable. For 
instance, one can use libraries and previously stored 
models to design new applications. The approach is 
scalable; one can extend the scope limitation of the 
framework by providing the corresponding new 
constraint and mapping models. From the 
establishment of well-known architectural concepts, 
the framework brings a high level of description to 
the user while promoting user-friendliness through a 
simple semi-automated graphical user interface (see 
figure 9).  

 
Figure 9: The gMDEnv graphical user interfaces. 

Finally, with respect to model transformations, an 
interesting area of future research is the 
development of a decision system to support users 
through model-driven transformations. Indeed, some 
of the adaptations required to satisfy platforms and 
QoS constraints can lead to critical decisions. We 
are using examples such as the one described in 
section 5 and the MammoGrid development 
experience (Amendolia et al, 2005), to elicit the 
framework requirements. The gMDEnv and the 
presented approach are currently in use to evaluate 
potential advantages in the development process of 
the MammoGrid application. There are clearly 
identified issues in the development of MammoGrid 
on which the gMDEnv emphasizes, such as adapting 
the system to other Grid platforms, improving the 
global application security level or porting the 
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system to different programming languages. From 
these case studies, the preliminary conclusions are 
encouraging and show the relevance of this formal 
model-driven paradigm applied to the Grid domain.  
This paper is a first investigation of the model-
driven paradigm enactment using established formal 
architecture-centric concepts. Besides supporting the 
usefulness of the ArchWare ARL language, we are 
able to draw a number of conclusions. We learned 
that the model-driven approach is a very useful 
paradigm when addressing cross-platform 
developments and problems of re-use but it must be 
dependent on a rigorous basis to be efficient. The 
formal dimension brought by ArchWare is one of 
the key points of our successful implementation, 
especially in using a formal refinement language. 
Similarly we learned that QoS attributes are not easy 
to quantify in models. There is a true lack of 
standards that could help significantly when 
considering resource comparisons. In the context of 
other engineering frameworks and given the 
concepts we have now in hand, our approach can 
provide relevant benefits to the practice of Grid 
system engineering. From our experience, we 
believe that the presented approach is an important 
contribution to the development of new Grid 
systems. 
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