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Abstract: The recent advent of the Semantic Web has given rise to the need for efficient and sound methods that 
would provide reasoning support over the knowledge scattered on the Internet. Description Logics and DL-
based inference engines in particular play a significant role towards this goal, as they seem to have 
overlapping expressivity with the Semantic Web de facto language, OWL. In this paper we argue that DLs 
currently constitute one of the most tempting available formalisms to support reasoning with OWL. Further, 
we present and survey a number of DL based systems that could be used for this task. Around one of them 
(Racer) we build our Knowledge Discovery Interface, a web application that can be used to pose intelligent 
queries to Semantic Web documents in an intuitive manner. As a proof of concept, we then apply the KDI 
on the CIDOC-CRM reference ontology and discuss our results. 

1 INTRODUCTION 

Regarding the success of the Semantic Web, it may 
be encouraging that relevant applications and 
systems that utilize its standardized “toolkit” of 
languages and specifications tend to proliferate day 
by day. Even these very specifications are subject to 
ongoing research that attempts to push the limits of 
the current Semantic Web idea some steps further. 
Nevertheless, measuring the success of the Semantic 
Web could also be regarded by the point of view of 
the goals achieved so far: Web knowledge 
management; semantic resource description; and 
distributed knowledge discovery, as one of the most 
prominent. In order for this promise not to be failed, 
Semantic Web surely could only benefit from 
efficient and sound methods that would provide 
reasoning support for its underlying knowledge. 

Description Logics and DL-based inference 
engines in particular play a significant role towards 
this goal, as they seem to have overlapping 
expressivity with the Semantic Web de facto 
language, OWL (Bechhofer et al. 2003). In addition, 
implemented algorithms and reasoning systems for 
DLs already exist that could be used to provide 
knowledge discovery facilities on the Semantic 

Web. Combined, these two facts make the use of 
DLs one of the most tempting available formalisms 
to typically support reasoning with OWL.  

In this paper we first compare DL-based systems 
with alternatives based on other formalisms, like 
rule based systems and theorem provers, and argue 
that DLs are currently the most suitable means to 
build reasoning services for the Semantic Web. 
Then, we present and survey four popular systems 
from the DLs world and evaluate them in terms of 
their availability, expressivity and ability to reason 
with individuals (ABox support): Cerebra, FaCT, 
FaCT++ and RACER. In order to demonstrate the 
ability to perform Semantic Web reasoning using 
DL based systems, we have chosen one of the 
inference engines above as the core of our 
Knowledge Discovery Interface (KDI). The KDI is a 
web application that can be used to pose intelligent 
queries to Semantic Web documents in an intuitive 
manner. In order to answer these queries, the KDI 
relies on the reasoning services provided by the 
underlying inference engine. Finally we construct 
and use some instances of the CIDOC-CRM 
ontology, which we then feed in to the KDI and 
discuss the results from a series of intelligent queries 
posed.  
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The rest of this paper is organized as follows: In 
section 2 we review and discuss some previous work 
on information retrieval and knowledge discovery 
on the Web. Then, in section 3, we compare 
available reasoning formalisms, survey the DL-
based systems and explain our evaluation criteria. 
The KDI is presented in section 4; we describe its 
functionality and architecture followed by some 
experimental results on the CIDOC-CRM ontology 
that demonstrate its capabilities. Finally, section 5 
summarizes the conclusions from our work. 

2 APPROACHES TOWARDS 
KNOWLEDGE DISCOVERY ON 
THE WEB 

Even though the idea of the Semantic Web has only 
recently begun to standardize, the need for inference 
extraction and intelligent behaviour on the Internet 
has long been a research goal. As expected, there 
have been some efforts in that direction. Such efforts 
include ontology description languages, inference 
engines and systems and implementations, based on 
them. 

SHOE (Heflin et al. 1998), was initially 
developed as an extension to HTML. It enables web 
page authors to annotate their web documents with 
machine-readable knowledge. In that way, these 
documents can be more efficiently retrieved by 
knowledge-based search engines and then 
manipulated by agents. Although SHOE has a 
number of features, some of which are not present in 
other languages (e.g. n-ary relations), it lacks the 
expressiveness needed by the Semantic Web (for 
example see Gomez-Perez & Corcho 2002). 

Knowing the constraints of knowledge discovery 
in a random environment like the Internet, and 
taking in to account the advantages of information 
retrieval, recent research has tried to combine these 
two approaches. OWLIR (Mayfield & Finin 2003) 
for instance, is a system conducting retrieval of 
documents that are enriched with markup in RDF, 
DAML+OIL or OWL. A text editing and extraction 
system is used to enrich the documents, based on an 
upper level ontology. This extra information is 
processed by a rule-based inference system. Search 
is conducted using classical retrieval methods; 
however, the results are refined using the inference 
system results. 

The TAP framework (Guha & McCool 2003) 
seeks as well to improve the quality of search results 
by utilizing the semantic relationships of web 

documents and entities. However, no inference takes 
place here. Instead, the RDF / OWL documents are 
treated as structured metadata sets. These sets can be 
represented as directed graphs, whose edges 
correspond to relations, and vertices correspond to 
existing internet resources. This representation is 
conducted based on the information of a local 
knowledge base. 

The growth and maintenance of a knowledge 
base is a strenuous procedure, often demanding a 
great extent of manual intervention. The Artequakt 
system (Alani et al. 2003) tries to overcome this 
obstacle following an automated knowledge 
extraction approach. Artequakt applies natural 
language processing on Web documents in order to 
extract information and uses CIDOC-CRM as its 
knowledge base conceptual schema. Nevertheless, it 
should be noted that no inference - and thus 
knowledge discovery - takes place. 

The Wine Agent system (Hsu & McGuinness 
2003) was developed as a demonstration of the 
knowledge discovery capabilities of the Semantic 
Web. This system uses a certain domain ontology 
written in DAML+OIL / OWL and performs 
inferences on it. The Wine Agent employs a first 
order logic theorem prover (JTP). 

The need for formal querying methods with 
induction capabilities, has led to DQL (Fikes et al. 
2002), as well as OWL-QL (Fikes et al. 2003a). 
DQL and OWL-QL play an important role in terms 
of interoperability, expansion and enablement of 
intelligent systems on the Semantic Web. 
Nevertheless, they do not provide a direct answer to 
the knowledge discovery issue. Instead, they serve 
mainly as communication protocols between agents. 

3 INFERENCE SYSTEMS FOR 
THE SEMANTIC WEB 

In this section we first briefly compare some 
inference methods for the Semantic Web, alternative 
to DLs, with DL-based systems. We present the 
formal relation of DLs with OWL and then discuss a 
number of systems based either on full First Order 
Logic (FOL) or rule-based systems. Next we review 
and evaluate four inference engines that are based on 
Description Logics and could be used to provide 
reasoning services in OWL ontologies. Our most 
important criteria for this evaluation include the 
expressivity supported by these systems, as well as 
their ability to reason with the ontology instance 
space as well. As reasoning in OWL Full is 
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undecidable, we at least seek a system that could 
properly support OWL DL. 

3.1 Available Formalisms  

Choosing an underlying logical formalism for 
performing reasoning is crucial, as it will greatly 
determine the expressiveness to be achieved. In this 
subsection we will attempt to examine some 
available formalisms, as well as a number of existing 
tools for each of them. 
Description Logics (DLs) form a well defined 
subset of First Order Logic (FOL). OWL Lite and 
OWL DL are in fact very expressive description 
logics, using RDF syntax (Horrocks et al. 2003). 
Therefore, the semantics of OWL, as well as the 
decidability and complexity of basic inference 
problems in it, can be determined by existing 
research on DLs. OWL Full is even more tightly 
connected to RDF, but its typical attributes are less 
comprehensible,  and the basic inference problems 
are harder to compute (because OWL Full is 
undecidable). Inevitably, only the examination of the 
relation between OWL Lite/DL with DLs may lead 
to useful conclusions. On the other hand, even the 
limited versions of OWL differ from DLs, in certain 
points, including the use of namespaces and the 
ability to import other ontologies. 

It has been shown (Horrocks & Patel-Schneider 
2003) that OWL DL can be reduced in polynomial 
time into SHOIN(D), while there exists an 
incomplete translation of SHOIN(D) to SHIN(D). 
This translation can be used to develop a partial, 
though powerful reasoning system for OWL DL. A 
similar procedure is followed for the reduction of 
OWL Lite to SHIF(D), which is completed in 
polynomial time as well. In that manner, inference 
engines like FaCT and RACER can be used to 
provide reasoning services for OWL Lite/DL.  

The selection of a DL system to conduct 
knowledge discovery is not the only option. A fairly 
used alternative are inference systems that achieve 
reasoning using applications based in FOL 
(theorem provers). Such systems are Hoolet, using 
the Vampire theorem prover, Surnia, using the 
OTTER theorem prover and JTP (Fikes et al. 2003b) 
used by the Wine Agent. Inference takes place using 
axioms reflecting the semantics of statements in 
OWL ontologies. Unfortunately, these axioms often 
need to be inserted manually. This procedure is 
particularly difficult not only because the modeling 
axioms are hard to conceive, but also because of 
their need for thorough verification. In fact, there are 
cases where axiom construction depends on the 
specific contents of the ontology (Hsu & 
McGuinness 2003). 

Another alternative is given by rule based 
reasoning systems. Such systems include 
DAMLJessKB (Kopena & Regli 2003) and 
OWLLisaKB. The first one uses Jess rule system to 
conduct inference on DAML ontologies, whereas the 
second one uses the Lisa rule system to conduct 
inference on OWL ontologies. As in the case of 
theorem provers, rule based systems demand manual 
composition of rules that reflect the semantics of 
statements in OWL ontologies. This can also be a 
possible reason why such systems can presently 
support inference only up to OWL Lite. 

Rule based inference services are also included in 
the Jena framework (McBridge 2002), developed by 
Hewlett-Packard. Jena provides a programming 
environment for web ontologies and supports 
inference up to OWL Lite level. IBM’s 
corresponding solution is the SNOBASE ontology 
management system, featuring similar reasoning 
capabilities. The popular Protégé environment is 
also capable of processing ontology documents. 
Protégé’s recent support for OWL enables its 
interconnection with inference systems, but only to 
provide classification and subsumption services in 
the class hierarchy. 

On the other hand, neither the currently available 
Description Logic systems nor the algorithms they 
implement, support the full expressiveness of OWL 
DL. Even if such algorithms are implemented, their 
efficiency will be doubtful, since the corresponding 
problems are solved in non deterministic exponential 
time. 

Nevertheless, DLs seem to constitute the most 
appropriate available formalism for ontologies 
expressed in DAML+OIL or OWL. This fact also 
derives from the designing process of these 
languages. In fact, the largest decidable subset of 
OWL, OWL DL, was explicitly intended to show 
well studied computational characteristics and 
feature inference capabilities similar to those of 
DLs. Furthermore, existing DL inference engines 
seem to be powerful enough to carry out the 
inferences we need. 

3.2 DL Systems Evaluation 

Having discussed the pros and cons of DLs as the 
underlying reasoning formalism for the Semantic 
Web we will now examine four inference engines 
based on DLs: Cerebra, FaCT, FaCT++ and 
RACER. Our evaluation, summarized in Table 1, is 
carried out in terms of their availability, 
expressiveness, support for OWL, reasoning about 
ABox and interconnection capabilities provided.  
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3.2.1 Cerebra 

Cerebra, by Cerebra Inc. (formerly Network 
Inference) is a recent commercial system, providing 
reasoning as well as ontology management features. 
Cerebra differs from traditional DL based systems, 
in that it provides some extra features that may be 
desirable in a production environment. Nevertheless, 
its expressive power is by no means exceedingly 
different. 

Indeed, one interesting feature of Cerebra is the 
ability to add persistency to the knowledge bases 
that is able to process. Cerebra can load OWL 
documents either from the local file system or 
directly from the Web, provided the corresponding 
URL. The ontology information is stored, following 
an internal data model, in a relational database and 
can then be reloaded if needed. 

Cerebra provides for connecting with client 
applications written in Java or .NET. Further, any 
web service may use its functionality through its 
SOAP interface. Clients written in Java can connect 
to the system either through RMI or SOAP, by using 
the classes provided by Cerebra for this purpose. For 
.NET, Cerebra provides a .dll library which can be 
used to connect with the SOAP interface. In both 
cases there is an API that provides for processing, 
managing and posing queries to ontologies. Query 
composition, especially when involving instances, 
follows to some extent the XQuery standard. 

To our knowledge, there is no formal 
documentation for Cerebra’s expressive power. It is 
known however that Cerebra’s internal semantic 
model for conducting inferences is based on DLs. 
Our experimental evaluation of the system has 
shown that, for the taxonomic part of the ontology 
(the TBox), Cerebra supports nearly all constructors 
and axioms for classes and roles (including set-
theoretic operations) that would normally classify it 
to OWL DL expressiveness level. However, further 
experimentation with the system has revealed the 
following: 

 Symmetric roles cannot be recognized. This 
was confirmed as a system’s bug. 

 Minimum cardinality greater than 1 cannot 

be expressed (e.g. minCardinality=2), which 
is especially useful when modelling number 
restrictions.The most important, inference 
based on instances (ABox) is not supported. 
One possible exception is the 
instanceProperty function. However, given a 
class and a role, instanceProperty returns all 
the instance pairs that are inferred to be 
related through the given role, and its left 
argument comes from the given class. 

The above rank Cerebra’s expressiveness at SHIQ 
level, at most. On the other hand, the relational 
model used by Cerebra allows the submission of 
very powerful instance-retrieval queries, based on 
XQuery syntax. These queries may involve data 
types as well, like strings and numbers, as well as 
operands between them (equation, comparison). 
Still, the results are based only on the explicitly 
expressed information of the ontology, and not on 
information that could be inferred. 

3.2.2 FaCT 

FaCT (Horrocks & Sattler 2002) is a freely available 
reasoning software, that is being developed at 
Manchester University under Prof. Ian Horrocks. 
Initially, FaCT supported the SHF DL and then 
evolved to include SHIF and finally SHIQ. FaCT’s 
latest versions allow its interconnection with other 
applications following the client – server model 
through a CORBA interface. Furthermore, they 
support the DIG/1.0 standard, which prescribes a 
simple communication protocol through the 
exchange of XML requests and responses over 
HTTP. 

FaCT implements optimized complete and sound 
algorithms to solve the subsumption problem in the 
Description Logics mentioned. Even though a 
pioneering system in its age, whose performance 
used to rank it very high among  other traditional DL 
systems, FaCT’s lack of support for inference in the 
ABox renders it inappropriate for OWL. Indeed, 
during our evaluation we attempted to convert a 
simple OWL ontology to the intermediate form 
supported by FaCT. This conversion has been 

 Availability Connectivity Reasoning 
Strength 

Native OWL 
support 
(syntax) 

Reasoning with 
instances (ABox) 

Cerebra Commercial RMI, SOAP SHIQ Yes No 

FaCT Free CORBA, 
DIG/1.0 SHIQ No No 

FaCT++ Free DIG/1.1 SHIN(D) No No 

RACER Free(before 1.8) TCP, DIG/1.0 SHIQ(D) Yes Yes 

Table 1: Comparison summary of some DL-based inference engines.
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achieved using a tool available through the 
WonderWeb IST project, under which the next 
version of the system (FaCT++) is also developed. 
This conversion had the following results: 

 Individuals are transformed into primitive 
concepts. 

 Relations between individuals are not 
preserved. 

 The new concepts that were created to 
represent individuals are now subsumed by 
the concepts the individuals initially 
belonged to.  

Besides the lack of support for ABox and data 
types (concrete domains), the system is also 
syntactically incompatible with OWL. Apart from 
the intermediate, lisp-like knowledge base format, 
FaCT also supports ontologies in XML format, 
following a proprietary schema. Naturally however,  

the transition to and from OWL would result in 
significant information loss. 

3.2.3 FaCT++ 

Many of FaCT’s disadvantages are being coped with 
in the system’s next version, FaCT++ (Tsarkov & 
Horrocks 2003), which is developed as a part of the 
Wonderweb project.  FaCT++ differs from FaCT in 
many aspects. It is a re-implementation of FaCT in 
C++, featuring however greater expressivity, aiming 
ulimately to support OWL DL.  

Specifically, full support for concrete domains is 
added, while the underlying logic is SHIF(D). OWL 
syntax is not supported; however a transformation 
tool to the Lisp intermediate form supported by 
FaCT++ is provided. Individuals (and thus 
nominals) survive this transformation, but they are 
not yet fully supported, as they are all approximated 
as primitive concepts.  

FaCT++ document version could only run in 
Linux and provides no communication interface 
with other applications. Further it can be used only 
in “batch mode”: The user has first to include in a 
configuration file information about the inp`t 
ontology and the requested inferences, along with 
preferred parameters and then let it to be processed 
by the system. System’s next version however (ver. 
0.99) appears to support DIG/1.1 plus unqualified 
number restrictions. 

3.2.4 RACER 

RACER (Haarslev & Möller 2003) is an inference 
engine for very expressive DLs. It is the first system 
in its category to support reasoning in ABox as well 
as TBox, and this is its main asset in comparison to 
the other inference engines.  

RACER is being developed by profs. Volker 
Haarslev and Ralf Moeller in Concordia University 
and Hamburg Technical University respectively. It is 
freely available for research purposes, while only 
recently a corporation has been established for the 
commercial exploitation of the system (Racer v1.8+ 
aka RacerPro).  

RACER’s communication with other applications 
is achieved through the TCP/IP interface provided or 
through HTTP, since the system supports the 
DIG/1.1 standard. For TCP communication there are 
APIs available in C++ as well as in Java. In addition, 
RACER can been run in “file mode”, where the 
ontology and queries files are given as parameters in 
the command line. 

Apart from the lisp-like knowledge base format, 
RACER can load and process natively ontologies 
written in XML, RDF, RDFS, DAML+OIL and 
finally OWL (since version 1.7.7). The underlying 
DL is SHIQ(D), including instances (ABox). In fact, 
RACER expressiveness is superior to OWL DL as 
regards to qualified number restrictions and concrete 
domains.  

Indeed, RACER implements algorithms for 
conducting inferences based on min/max relations 
between integers, linear polynomial equalities and 
inequalities of reals, non-linear polynomial 
equations of complex numbers and string 
comparison. On the other hand, OWL allows only 
expressing equality between an individual and an 
instance of the concrete domain. 

However, OWL semantics are more expressive 
than the RACER language as far as nominals are 
concerned, because they are not supported by the 
system. This seems to be the main problem that 
prevents full compatibility with OWL DL. RACER 
deals with nominals by creating a new concept for 
each of them and making the corresponding 
individual an instance of this new concept. 

Despite these limitations RACER seems to be 
closer to the expressiveness needed by the Semantic 
Web mostly because of its enhanced support for 
OWL and its clear ability to reason about the ABox. 
Its utilisation in the KDI produced a number of 
interesting results, some of which are presented in 
subsection 4.2. 

4 DL-BASED KNOWLEDGE 
DISCOVERY  

In this section we demonstrate the use of DLs for 
knowledge discovery on the Semantic Web. First we 
give a general description of the KDI and the main 
technologies that were used, along with a brief 
description of its functionality. Then, using the KDI, 
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we present two experimental inferences on CIDOC-
CRM instances expressed in OWL DL, and their 
results.  

4.1 The Knowledge Discovery 
Interface 

The KDI is a web application, providing intelligent 
query submission services on Web ontology 
documents. We use the word Interface in order to 
emphasize the fact that the user is offered a simple 
and intuitive way to compose and submit queries. In 
addition, the KDI interacts with RACER to conduct 
inferences. The interface design follows the 
traditional 3-tier model, with an important variation: 
Where a database server would be typically used, we 
now use a knowledge base management system 
(Figure 1). Note that each of the three levels may be 
physically located on different computer systems. 

Figure 1: The three levels of the Knowledge Discovery 
Interface. 

The interface can load OWL documents that are 
available either on the local file system, or on the 
Internet. A temporary copy of every document is 
stored locally on the application server and is then 
loaded by the knowledge base server (RACER). 
RACER creates and stores in memory an internal 
model for each ontology that it classifies. 
Classification takes place once for each ontology, 
during its initial loading. Furthermore, other 
documents imported by the ontology may be loaded 
too.  

The Interface business logic was implemented 
using the Java programming language, as well as 
JSP, JavaBeans and Java Servlets technologies. 
Tomcat (version 5.0) was used as an application 
server. Business logic is mostly responsible for 
document loading, proper rendering of the 
ontological information to the user, composition and 
submission of queries and formulation and 

formatting of results. Ontological data and reasoning 
results are fetched by interacting with RACER over 
the TCP/IP protocol. This interaction is greatly 
facilitated through the JRacer API. The latter has 
been modified in places, mainly in regard to the 
processing of web documents links and to the 
processing of synonym concepts. 

The user interacts with the client level, where the 
appropriate JSP pages are rendered by his browser. 
Communication with the application layer is 
conducted over the HTTP protocol, using forms. At 
the same time, servlets are used for the 
administration of multiple user requests and for 
controlling simultaneous access. Furthermore, when 
a loaded ontology is not used any more, it is erased 
from memory, in order to improve the utilisation of 
system resources. 

After connection to RACER has successfully 
been established, the ontology is loaded and its 
information is shown on the browser. The user may 
navigate through the concept hierarchy, which is 
visualised in a tree form, and select any of the 
available classes. Upon selection, the page is 
reloaded, now containing in two drop down menus 
all of the instances of the selected class, as well as 
all of the roles whose domain is in this class. The 
user is able to select an instance and a role and then 
submit his query by pressing a button. Note that an 
option is available to invert the selected role, thus 
resulting in a different query. 

The Interface helps the user compose a query by 
selecting a concept, an instance and a role in a user 
friendly manner. After the query is composed, it is 
decomposed into several lower level functions that 
are then submitted to RACER. This procedure is 
transparent to the user, withholding the details of the 
knowledge base actual querying. 

4.2 Results 

In the following we present the results from two 
different inference actions performed using the KDI, 
so as to demonstrate its capabilities as well as its 
limitations. In order to conduct these inferences we 
use the CIDOC Conceptual Reference Model (Crofts 
et al. 2003) as our knowledge base.  

Firstly, we ported version 3.4 of the CRM to 
OWL format. Secondly we semantically enriched 
and extended CRM with concrete instances and 
more expressive structures, available only in OWL 
(like cardinality restrictions, inverse roles, existential 
and universal quantifications and so on). We then 
created a document named mondrian.owl that 
includes CRM concept and role instances which 
model facts from the life and work of the Dutch 
painter Piet Mondrian. In this document we also 
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included axiom and fact declarations that OWL 
allows to be expressed, as well as new roles and 
concepts making use of this expressiveness. 

Figure 2: Inference Example using Value Restriction. 

The following code is a fragment from 
mondrian.owl stating that a “Painting_Event” is in 
fact a “Creation_Event” that “has_created” 
“Painting” objects only: 

<owl:Class rdf:ID="Painting_Event"> 
<rdfs:subClassOf  rdf:resource= 
"&crm;E65.Creation_Event"/>   
  <rdfs:subClassOf>     
    <owl:Restriction>       

<owl:onProperty rdf:resource= 
"&crm;P94F.has_created"/>        
<owl:allValuesFrom 
rdf:resource="#Painting"/> 

    </owl:Restriction>   
  </rdfs:subClassOf> 
</owl:Class> 
<Painting_Event rdf:ID= 
"Creation of Mondrian's composition">   
<crm:P94F.has_created rdf:resource= 
"#Mondrian's composition"/> 
</Painting_Event> 
The above fragment is graphically depicted in the 

left part of Figure 2.  
 “Creation of Mondrian’s Composition” (i1) is an 

explicitly stated “Painting_Event” that 
“has_created” (R) “Mondrian’s composition” (i2). 
Now, asking the KDI to infer “what is a painting?” it 
infers that i2 is indeed a painting (right part of Figure 
2), correctly interpreting the value restriction on role 
R.  

Let’s now examine another example that involves 
the use of nominals. The following fragment from 
mondrian.owl states that a “Painting” is a “Visual_ 
Item” that its “Type” is “painting_composition”. 

<owl:Class rdf:ID="Painting"> 
<owl:subClassOf rdf:resource= 
"&crm;E36.Visual_Item"/> 

  <owl:equivalentClass> 
    <owl:Restriction> 

<owl:onProperty rdf:resource= 
"&crm;P2F.has_type"/> 
<owl:hasValue rdf:resource= 
"#painting_composition"/> 

    </owl:Restriction> 
  </owl:equivalentClass> 
</owl:Class> 
<crm:E55.Type rdf:ID= 
"painting_composition"/> 
<Painting rdf:ID= 
"Mondrian's composition" /> 
The above fragment is graphically depicted in the 

left part of Figure 3. 
  

Top Concept: Τ 
P2F.has_type: R 
Painting_Composition: i2 
Mondrian’s Composition: i1 

 

Figure 3: Inference Example using Existential 
Quantification and Nominals. 

 “Mondrian’s Composition” (i1) is explicitly 
declared as a “Painting” instance which in turn is 
defined as a hasValue restriction on “has_type” (R). 
“Painting_composition” (i2) is declared as a “Type” 
object. While the fact that “Mondrian’s 
Composition” “has_type” “Painting” is 
straightforward, the KDI is unable to infer so and 
returns null when asked “what is the type of 
Mondrian’s composition?” 

This example clearly demonstrates the inability of 
RACER as well as every other current DL based 
system to reason about nominals. Given the {i2} 
nominal, RACER creates a new synonym concept I2 
and makes i2 an instance of I2. It then actually 
replaces the hasValue restriction with an existential 
quantifier on concept I2 and thus is unable to infer 
that R(i1,i2) really holds. 

5 CONCLUSIONS 

In this paper we have primarily argued about how a 
well-studied logical formalism, Description Logics, 
can be utilized in order to enable intelligent querying 

  

Top Concept: Τ 
P94F.has_created: R 
Painting_Event: C 
Painting: D 
Creation of Mondrian’s Composition: i1 
Mondrian’s Composition: i2 
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of Semantic Web documents. In order to achieve 
this, a key step was the review of available AI 
formalisms and system families that could be used to 
ground reasoning services upon. As the scene is 
currently set, DL-based systems appear to be the 
most promising choice to achieve streamlined 
inference results even in the short term. At the same 
time, DLs show adequate compatibility and 
corresponding systems tend to exploit the greatest 
part out of the Semantic Web ontological formalism 
expressiveness, as it is now standardized in OWL.  

We believe that our hands-on experimentation 
with a number of state-of-the-art DL inference 
engines has produced at least two lessons learned: 
First, the need for instance-based reasoning, which 
we have shown to be of crucial importance for the 
Semantic Web environment, is not self-evident in 
the majority of the systems reviewed; second, we 
confirmed that even the most advanced DL-systems 
have problems fully supporting OWL’s decidable 
expressivity.  

The potential as well as the limits of the DL-
based approach are clearly demonstrated through our 
“wrapper prototype”, the KDI: On the one hand, we 
have succeeded in demonstrating tangible and 
meaningful knowledge discovery results on 
Semantic Web documents. On the other hand, we 
found that the KDI is greatly hampered by the 
limited expressiveness and scalability of current DL 
inference engines, regarding the use of nominals and 
the processing of large ontology documents 
respectively. We trust though that at the near future 
most of the difficulties and incompatibilities 
identified throughout our work would be overridden 
by the evolution of systems and the refinement and 
possibly enrichment of the Ontology Web Language. 
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