
OWL-BASED KNOWLEDGE DISCOVERY USING
DESCRIPTION LOGICS REASONERS

Dimitrios A. Koutsomitropoulos, Dimitrios P. Meidanis, Anastasia N. Kandili
and Theodore S. Papatheodorou

High Performance Information Systems Laboratory,School of Engineering, University of Patras, Buidling B,
26500 Patras-Rio, Greece

Keywords: Inference, OWL, Semantic Web, Reasoning, Description Logics.

Abstract: The recent advent of the Semantic Web has given rise to the need for efficient and sound methods that
would provide reasoning support over the knowledge scattered on the Internet. Description Logics and DL-
based inference engines in particular play a significant role towards this goal, as they seem to have
overlapping expressivity with the Semantic Web de facto language, OWL. In this paper we argue that DLs
currently constitute one of the most tempting available formalisms to support reasoning with OWL. Further,
we present and survey a number of DL based systems that could be used for this task. Around one of them
(Racer) we build our Knowledge Discovery Interface, a web application that can be used to pose intelligent
queries to Semantic Web documents in an intuitive manner. As a proof of concept, we then apply the KDI
on the CIDOC-CRM reference ontology and discuss our results.

1 INTRODUCTION

Regarding the success of the Semantic Web, it may
be encouraging that relevant applications and
systems that utilize its standardized “toolkit” of
languages and specifications tend to proliferate day
by day. Even these very specifications are subject to
ongoing research that attempts to push the limits of
the current Semantic Web idea some steps further.
Nevertheless, measuring the success of the Semantic
Web could also be regarded by the point of view of
the goals achieved so far: Web knowledge
management; semantic resource description; and
distributed knowledge discovery, as one of the most
prominent. In order for this promise not to be failed,
Semantic Web surely could only benefit from
efficient and sound methods that would provide
reasoning support for its underlying knowledge.

Description Logics and DL-based inference
engines in particular play a significant role towards
this goal, as they seem to have overlapping
expressivity with the Semantic Web de facto
language, OWL (Bechhofer et al. 2003). In addition,
implemented algorithms and reasoning systems for
DLs already exist that could be used to provide
knowledge discovery facilities on the Semantic

Web. Combined, these two facts make the use of
DLs one of the most tempting available formalisms
to typically support reasoning with OWL.

In this paper we first compare DL-based systems
with alternatives based on other formalisms, like
rule based systems and theorem provers, and argue
that DLs are currently the most suitable means to
build reasoning services for the Semantic Web.
Then, we present and survey four popular systems
from the DLs world and evaluate them in terms of
their availability, expressivity and ability to reason
with individuals (ABox support): Cerebra, FaCT,
FaCT++ and RACER. In order to demonstrate the
ability to perform Semantic Web reasoning using
DL based systems, we have chosen one of the
inference engines above as the core of our
Knowledge Discovery Interface (KDI). The KDI is a
web application that can be used to pose intelligent
queries to Semantic Web documents in an intuitive
manner. In order to answer these queries, the KDI
relies on the reasoning services provided by the
underlying inference engine. Finally we construct
and use some instances of the CIDOC-CRM
ontology, which we then feed in to the KDI and
discuss the results from a series of intelligent queries
posed.

43
A. Koutsomitropoulos D., P. Meidanis D., N. Kandili A. and S. Papatheodorou T. (2006).
OWL-BASED KNOWLEDGE DISCOVERY USING DESCRIPTION LOGICS REASONERS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - SAIC, pages 43-50
DOI: 10.5220/0002441400430050
Copyright c© SciTePress

The rest of this paper is organized as follows: In
section 2 we review and discuss some previous work
on information retrieval and knowledge discovery
on the Web. Then, in section 3, we compare
available reasoning formalisms, survey the DL-
based systems and explain our evaluation criteria.
The KDI is presented in section 4; we describe its
functionality and architecture followed by some
experimental results on the CIDOC-CRM ontology
that demonstrate its capabilities. Finally, section 5
summarizes the conclusions from our work.

2 APPROACHES TOWARDS
KNOWLEDGE DISCOVERY ON
THE WEB

Even though the idea of the Semantic Web has only
recently begun to standardize, the need for inference
extraction and intelligent behaviour on the Internet
has long been a research goal. As expected, there
have been some efforts in that direction. Such efforts
include ontology description languages, inference
engines and systems and implementations, based on
them.

SHOE (Heflin et al. 1998), was initially
developed as an extension to HTML. It enables web
page authors to annotate their web documents with
machine-readable knowledge. In that way, these
documents can be more efficiently retrieved by
knowledge-based search engines and then
manipulated by agents. Although SHOE has a
number of features, some of which are not present in
other languages (e.g. n-ary relations), it lacks the
expressiveness needed by the Semantic Web (for
example see Gomez-Perez & Corcho 2002).

Knowing the constraints of knowledge discovery
in a random environment like the Internet, and
taking in to account the advantages of information
retrieval, recent research has tried to combine these
two approaches. OWLIR (Mayfield & Finin 2003)
for instance, is a system conducting retrieval of
documents that are enriched with markup in RDF,
DAML+OIL or OWL. A text editing and extraction
system is used to enrich the documents, based on an
upper level ontology. This extra information is
processed by a rule-based inference system. Search
is conducted using classical retrieval methods;
however, the results are refined using the inference
system results.

The TAP framework (Guha & McCool 2003)
seeks as well to improve the quality of search results
by utilizing the semantic relationships of web

documents and entities. However, no inference takes
place here. Instead, the RDF / OWL documents are
treated as structured metadata sets. These sets can be
represented as directed graphs, whose edges
correspond to relations, and vertices correspond to
existing internet resources. This representation is
conducted based on the information of a local
knowledge base.

The growth and maintenance of a knowledge
base is a strenuous procedure, often demanding a
great extent of manual intervention. The Artequakt
system (Alani et al. 2003) tries to overcome this
obstacle following an automated knowledge
extraction approach. Artequakt applies natural
language processing on Web documents in order to
extract information and uses CIDOC-CRM as its
knowledge base conceptual schema. Nevertheless, it
should be noted that no inference - and thus
knowledge discovery - takes place.

The Wine Agent system (Hsu & McGuinness
2003) was developed as a demonstration of the
knowledge discovery capabilities of the Semantic
Web. This system uses a certain domain ontology
written in DAML+OIL / OWL and performs
inferences on it. The Wine Agent employs a first
order logic theorem prover (JTP).

The need for formal querying methods with
induction capabilities, has led to DQL (Fikes et al.
2002), as well as OWL-QL (Fikes et al. 2003a).
DQL and OWL-QL play an important role in terms
of interoperability, expansion and enablement of
intelligent systems on the Semantic Web.
Nevertheless, they do not provide a direct answer to
the knowledge discovery issue. Instead, they serve
mainly as communication protocols between agents.

3 INFERENCE SYSTEMS FOR
THE SEMANTIC WEB

In this section we first briefly compare some
inference methods for the Semantic Web, alternative
to DLs, with DL-based systems. We present the
formal relation of DLs with OWL and then discuss a
number of systems based either on full First Order
Logic (FOL) or rule-based systems. Next we review
and evaluate four inference engines that are based on
Description Logics and could be used to provide
reasoning services in OWL ontologies. Our most
important criteria for this evaluation include the
expressivity supported by these systems, as well as
their ability to reason with the ontology instance
space as well. As reasoning in OWL Full is

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

44

undecidable, we at least seek a system that could
properly support OWL DL.

3.1 Available Formalisms

Choosing an underlying logical formalism for
performing reasoning is crucial, as it will greatly
determine the expressiveness to be achieved. In this
subsection we will attempt to examine some
available formalisms, as well as a number of existing
tools for each of them.
Description Logics (DLs) form a well defined
subset of First Order Logic (FOL). OWL Lite and
OWL DL are in fact very expressive description
logics, using RDF syntax (Horrocks et al. 2003).
Therefore, the semantics of OWL, as well as the
decidability and complexity of basic inference
problems in it, can be determined by existing
research on DLs. OWL Full is even more tightly
connected to RDF, but its typical attributes are less
comprehensible, and the basic inference problems
are harder to compute (because OWL Full is
undecidable). Inevitably, only the examination of the
relation between OWL Lite/DL with DLs may lead
to useful conclusions. On the other hand, even the
limited versions of OWL differ from DLs, in certain
points, including the use of namespaces and the
ability to import other ontologies.

It has been shown (Horrocks & Patel-Schneider
2003) that OWL DL can be reduced in polynomial
time into SHOIN(D), while there exists an
incomplete translation of SHOIN(D) to SHIN(D).
This translation can be used to develop a partial,
though powerful reasoning system for OWL DL. A
similar procedure is followed for the reduction of
OWL Lite to SHIF(D), which is completed in
polynomial time as well. In that manner, inference
engines like FaCT and RACER can be used to
provide reasoning services for OWL Lite/DL.

The selection of a DL system to conduct
knowledge discovery is not the only option. A fairly
used alternative are inference systems that achieve
reasoning using applications based in FOL
(theorem provers). Such systems are Hoolet, using
the Vampire theorem prover, Surnia, using the
OTTER theorem prover and JTP (Fikes et al. 2003b)
used by the Wine Agent. Inference takes place using
axioms reflecting the semantics of statements in
OWL ontologies. Unfortunately, these axioms often
need to be inserted manually. This procedure is
particularly difficult not only because the modeling
axioms are hard to conceive, but also because of
their need for thorough verification. In fact, there are
cases where axiom construction depends on the
specific contents of the ontology (Hsu &
McGuinness 2003).

Another alternative is given by rule based
reasoning systems. Such systems include
DAMLJessKB (Kopena & Regli 2003) and
OWLLisaKB. The first one uses Jess rule system to
conduct inference on DAML ontologies, whereas the
second one uses the Lisa rule system to conduct
inference on OWL ontologies. As in the case of
theorem provers, rule based systems demand manual
composition of rules that reflect the semantics of
statements in OWL ontologies. This can also be a
possible reason why such systems can presently
support inference only up to OWL Lite.

Rule based inference services are also included in
the Jena framework (McBridge 2002), developed by
Hewlett-Packard. Jena provides a programming
environment for web ontologies and supports
inference up to OWL Lite level. IBM’s
corresponding solution is the SNOBASE ontology
management system, featuring similar reasoning
capabilities. The popular Protégé environment is
also capable of processing ontology documents.
Protégé’s recent support for OWL enables its
interconnection with inference systems, but only to
provide classification and subsumption services in
the class hierarchy.

On the other hand, neither the currently available
Description Logic systems nor the algorithms they
implement, support the full expressiveness of OWL
DL. Even if such algorithms are implemented, their
efficiency will be doubtful, since the corresponding
problems are solved in non deterministic exponential
time.

Nevertheless, DLs seem to constitute the most
appropriate available formalism for ontologies
expressed in DAML+OIL or OWL. This fact also
derives from the designing process of these
languages. In fact, the largest decidable subset of
OWL, OWL DL, was explicitly intended to show
well studied computational characteristics and
feature inference capabilities similar to those of
DLs. Furthermore, existing DL inference engines
seem to be powerful enough to carry out the
inferences we need.

3.2 DL Systems Evaluation

Having discussed the pros and cons of DLs as the
underlying reasoning formalism for the Semantic
Web we will now examine four inference engines
based on DLs: Cerebra, FaCT, FaCT++ and
RACER. Our evaluation, summarized in Table 1, is
carried out in terms of their availability,
expressiveness, support for OWL, reasoning about
ABox and interconnection capabilities provided.

OWL-BASED KNOWLEDGE DISCOVERY USING DESCRIPTION LOGICS REASONERS

45

3.2.1 Cerebra

Cerebra, by Cerebra Inc. (formerly Network
Inference) is a recent commercial system, providing
reasoning as well as ontology management features.
Cerebra differs from traditional DL based systems,
in that it provides some extra features that may be
desirable in a production environment. Nevertheless,
its expressive power is by no means exceedingly
different.

Indeed, one interesting feature of Cerebra is the
ability to add persistency to the knowledge bases
that is able to process. Cerebra can load OWL
documents either from the local file system or
directly from the Web, provided the corresponding
URL. The ontology information is stored, following
an internal data model, in a relational database and
can then be reloaded if needed.

Cerebra provides for connecting with client
applications written in Java or .NET. Further, any
web service may use its functionality through its
SOAP interface. Clients written in Java can connect
to the system either through RMI or SOAP, by using
the classes provided by Cerebra for this purpose. For
.NET, Cerebra provides a .dll library which can be
used to connect with the SOAP interface. In both
cases there is an API that provides for processing,
managing and posing queries to ontologies. Query
composition, especially when involving instances,
follows to some extent the XQuery standard.

To our knowledge, there is no formal
documentation for Cerebra’s expressive power. It is
known however that Cerebra’s internal semantic
model for conducting inferences is based on DLs.
Our experimental evaluation of the system has
shown that, for the taxonomic part of the ontology
(the TBox), Cerebra supports nearly all constructors
and axioms for classes and roles (including set-
theoretic operations) that would normally classify it
to OWL DL expressiveness level. However, further
experimentation with the system has revealed the
following:

 Symmetric roles cannot be recognized. This
was confirmed as a system’s bug.

 Minimum cardinality greater than 1 cannot

be expressed (e.g. minCardinality=2), which
is especially useful when modelling number
restrictions.The most important, inference
based on instances (ABox) is not supported.
One possible exception is the
instanceProperty function. However, given a
class and a role, instanceProperty returns all
the instance pairs that are inferred to be
related through the given role, and its left
argument comes from the given class.

The above rank Cerebra’s expressiveness at SHIQ
level, at most. On the other hand, the relational
model used by Cerebra allows the submission of
very powerful instance-retrieval queries, based on
XQuery syntax. These queries may involve data
types as well, like strings and numbers, as well as
operands between them (equation, comparison).
Still, the results are based only on the explicitly
expressed information of the ontology, and not on
information that could be inferred.

3.2.2 FaCT

FaCT (Horrocks & Sattler 2002) is a freely available
reasoning software, that is being developed at
Manchester University under Prof. Ian Horrocks.
Initially, FaCT supported the SHF DL and then
evolved to include SHIF and finally SHIQ. FaCT’s
latest versions allow its interconnection with other
applications following the client – server model
through a CORBA interface. Furthermore, they
support the DIG/1.0 standard, which prescribes a
simple communication protocol through the
exchange of XML requests and responses over
HTTP.

FaCT implements optimized complete and sound
algorithms to solve the subsumption problem in the
Description Logics mentioned. Even though a
pioneering system in its age, whose performance
used to rank it very high among other traditional DL
systems, FaCT’s lack of support for inference in the
ABox renders it inappropriate for OWL. Indeed,
during our evaluation we attempted to convert a
simple OWL ontology to the intermediate form
supported by FaCT. This conversion has been

 Availability Connectivity Reasoning
Strength

Native OWL
support
(syntax)

Reasoning with
instances (ABox)

Cerebra Commercial RMI, SOAP SHIQ Yes No

FaCT Free CORBA,
DIG/1.0 SHIQ No No

FaCT++ Free DIG/1.1 SHIN(D) No No

RACER Free(before 1.8) TCP, DIG/1.0 SHIQ(D) Yes Yes

Table 1: Comparison summary of some DL-based inference engines.

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

46

achieved using a tool available through the
WonderWeb IST project, under which the next
version of the system (FaCT++) is also developed.
This conversion had the following results:

 Individuals are transformed into primitive
concepts.

 Relations between individuals are not
preserved.

 The new concepts that were created to
represent individuals are now subsumed by
the concepts the individuals initially
belonged to.

Besides the lack of support for ABox and data
types (concrete domains), the system is also
syntactically incompatible with OWL. Apart from
the intermediate, lisp-like knowledge base format,
FaCT also supports ontologies in XML format,
following a proprietary schema. Naturally however,

the transition to and from OWL would result in
significant information loss.

3.2.3 FaCT++

Many of FaCT’s disadvantages are being coped with
in the system’s next version, FaCT++ (Tsarkov &
Horrocks 2003), which is developed as a part of the
Wonderweb project. FaCT++ differs from FaCT in
many aspects. It is a re-implementation of FaCT in
C++, featuring however greater expressivity, aiming
ulimately to support OWL DL.

Specifically, full support for concrete domains is
added, while the underlying logic is SHIF(D). OWL
syntax is not supported; however a transformation
tool to the Lisp intermediate form supported by
FaCT++ is provided. Individuals (and thus
nominals) survive this transformation, but they are
not yet fully supported, as they are all approximated
as primitive concepts.

FaCT++ document version could only run in
Linux and provides no communication interface
with other applications. Further it can be used only
in “batch mode”: The user has first to include in a
configuration file information about the inp`t
ontology and the requested inferences, along with
preferred parameters and then let it to be processed
by the system. System’s next version however (ver.
0.99) appears to support DIG/1.1 plus unqualified
number restrictions.

3.2.4 RACER

RACER (Haarslev & Möller 2003) is an inference
engine for very expressive DLs. It is the first system
in its category to support reasoning in ABox as well
as TBox, and this is its main asset in comparison to
the other inference engines.

RACER is being developed by profs. Volker
Haarslev and Ralf Moeller in Concordia University
and Hamburg Technical University respectively. It is
freely available for research purposes, while only
recently a corporation has been established for the
commercial exploitation of the system (Racer v1.8+
aka RacerPro).

RACER’s communication with other applications
is achieved through the TCP/IP interface provided or
through HTTP, since the system supports the
DIG/1.1 standard. For TCP communication there are
APIs available in C++ as well as in Java. In addition,
RACER can been run in “file mode”, where the
ontology and queries files are given as parameters in
the command line.

Apart from the lisp-like knowledge base format,
RACER can load and process natively ontologies
written in XML, RDF, RDFS, DAML+OIL and
finally OWL (since version 1.7.7). The underlying
DL is SHIQ(D), including instances (ABox). In fact,
RACER expressiveness is superior to OWL DL as
regards to qualified number restrictions and concrete
domains.

Indeed, RACER implements algorithms for
conducting inferences based on min/max relations
between integers, linear polynomial equalities and
inequalities of reals, non-linear polynomial
equations of complex numbers and string
comparison. On the other hand, OWL allows only
expressing equality between an individual and an
instance of the concrete domain.

However, OWL semantics are more expressive
than the RACER language as far as nominals are
concerned, because they are not supported by the
system. This seems to be the main problem that
prevents full compatibility with OWL DL. RACER
deals with nominals by creating a new concept for
each of them and making the corresponding
individual an instance of this new concept.

Despite these limitations RACER seems to be
closer to the expressiveness needed by the Semantic
Web mostly because of its enhanced support for
OWL and its clear ability to reason about the ABox.
Its utilisation in the KDI produced a number of
interesting results, some of which are presented in
subsection 4.2.

4 DL-BASED KNOWLEDGE
DISCOVERY

In this section we demonstrate the use of DLs for
knowledge discovery on the Semantic Web. First we
give a general description of the KDI and the main
technologies that were used, along with a brief
description of its functionality. Then, using the KDI,

OWL-BASED KNOWLEDGE DISCOVERY USING DESCRIPTION LOGICS REASONERS

47

we present two experimental inferences on CIDOC-
CRM instances expressed in OWL DL, and their
results.

4.1 The Knowledge Discovery
Interface

The KDI is a web application, providing intelligent
query submission services on Web ontology
documents. We use the word Interface in order to
emphasize the fact that the user is offered a simple
and intuitive way to compose and submit queries. In
addition, the KDI interacts with RACER to conduct
inferences. The interface design follows the
traditional 3-tier model, with an important variation:
Where a database server would be typically used, we
now use a knowledge base management system
(Figure 1). Note that each of the three levels may be
physically located on different computer systems.

Figure 1: The three levels of the Knowledge Discovery
Interface.

The interface can load OWL documents that are
available either on the local file system, or on the
Internet. A temporary copy of every document is
stored locally on the application server and is then
loaded by the knowledge base server (RACER).
RACER creates and stores in memory an internal
model for each ontology that it classifies.
Classification takes place once for each ontology,
during its initial loading. Furthermore, other
documents imported by the ontology may be loaded
too.

The Interface business logic was implemented
using the Java programming language, as well as
JSP, JavaBeans and Java Servlets technologies.
Tomcat (version 5.0) was used as an application
server. Business logic is mostly responsible for
document loading, proper rendering of the
ontological information to the user, composition and
submission of queries and formulation and

formatting of results. Ontological data and reasoning
results are fetched by interacting with RACER over
the TCP/IP protocol. This interaction is greatly
facilitated through the JRacer API. The latter has
been modified in places, mainly in regard to the
processing of web documents links and to the
processing of synonym concepts.

The user interacts with the client level, where the
appropriate JSP pages are rendered by his browser.
Communication with the application layer is
conducted over the HTTP protocol, using forms. At
the same time, servlets are used for the
administration of multiple user requests and for
controlling simultaneous access. Furthermore, when
a loaded ontology is not used any more, it is erased
from memory, in order to improve the utilisation of
system resources.

After connection to RACER has successfully
been established, the ontology is loaded and its
information is shown on the browser. The user may
navigate through the concept hierarchy, which is
visualised in a tree form, and select any of the
available classes. Upon selection, the page is
reloaded, now containing in two drop down menus
all of the instances of the selected class, as well as
all of the roles whose domain is in this class. The
user is able to select an instance and a role and then
submit his query by pressing a button. Note that an
option is available to invert the selected role, thus
resulting in a different query.

The Interface helps the user compose a query by
selecting a concept, an instance and a role in a user
friendly manner. After the query is composed, it is
decomposed into several lower level functions that
are then submitted to RACER. This procedure is
transparent to the user, withholding the details of the
knowledge base actual querying.

4.2 Results

In the following we present the results from two
different inference actions performed using the KDI,
so as to demonstrate its capabilities as well as its
limitations. In order to conduct these inferences we
use the CIDOC Conceptual Reference Model (Crofts
et al. 2003) as our knowledge base.

Firstly, we ported version 3.4 of the CRM to
OWL format. Secondly we semantically enriched
and extended CRM with concrete instances and
more expressive structures, available only in OWL
(like cardinality restrictions, inverse roles, existential
and universal quantifications and so on). We then
created a document named mondrian.owl that
includes CRM concept and role instances which
model facts from the life and work of the Dutch
painter Piet Mondrian. In this document we also

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

48

i1 i2

∃R.{i2}

T

i1 i2

∃R.I2

T

?

I2

R

i1 i2

∀R.D

T

R

C

D
∀R.D

T

C

D

i1 i2
R

included axiom and fact declarations that OWL
allows to be expressed, as well as new roles and
concepts making use of this expressiveness.

Figure 2: Inference Example using Value Restriction.

The following code is a fragment from
mondrian.owl stating that a “Painting_Event” is in
fact a “Creation_Event” that “has_created”
“Painting” objects only:

<owl:Class rdf:ID="Painting_Event">
<rdfs:subClassOf rdf:resource=
"&crm;E65.Creation_Event"/>
 <rdfs:subClassOf>
 <owl:Restriction>

<owl:onProperty rdf:resource=
"&crm;P94F.has_created"/>
<owl:allValuesFrom
rdf:resource="#Painting"/>

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<Painting_Event rdf:ID=
"Creation of Mondrian's composition">
<crm:P94F.has_created rdf:resource=
"#Mondrian's composition"/>
</Painting_Event>
The above fragment is graphically depicted in the

left part of Figure 2.
 “Creation of Mondrian’s Composition” (i1) is an

explicitly stated “Painting_Event” that
“has_created” (R) “Mondrian’s composition” (i2).
Now, asking the KDI to infer “what is a painting?” it
infers that i2 is indeed a painting (right part of Figure
2), correctly interpreting the value restriction on role
R.

Let’s now examine another example that involves
the use of nominals. The following fragment from
mondrian.owl states that a “Painting” is a “Visual_
Item” that its “Type” is “painting_composition”.

<owl:Class rdf:ID="Painting">
<owl:subClassOf rdf:resource=
"&crm;E36.Visual_Item"/>

 <owl:equivalentClass>
 <owl:Restriction>

<owl:onProperty rdf:resource=
"&crm;P2F.has_type"/>
<owl:hasValue rdf:resource=
"#painting_composition"/>

 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>
<crm:E55.Type rdf:ID=
"painting_composition"/>
<Painting rdf:ID=
"Mondrian's composition" />
The above fragment is graphically depicted in the

left part of Figure 3.

Top Concept: Τ
P2F.has_type: R
Painting_Composition: i2
Mondrian’s Composition: i1

Figure 3: Inference Example using Existential
Quantification and Nominals.

 “Mondrian’s Composition” (i1) is explicitly
declared as a “Painting” instance which in turn is
defined as a hasValue restriction on “has_type” (R).
“Painting_composition” (i2) is declared as a “Type”
object. While the fact that “Mondrian’s
Composition” “has_type” “Painting” is
straightforward, the KDI is unable to infer so and
returns null when asked “what is the type of
Mondrian’s composition?”

This example clearly demonstrates the inability of
RACER as well as every other current DL based
system to reason about nominals. Given the {i2}
nominal, RACER creates a new synonym concept I2
and makes i2 an instance of I2. It then actually
replaces the hasValue restriction with an existential
quantifier on concept I2 and thus is unable to infer
that R(i1,i2) really holds.

5 CONCLUSIONS

In this paper we have primarily argued about how a
well-studied logical formalism, Description Logics,
can be utilized in order to enable intelligent querying

Top Concept: Τ
P94F.has_created: R
Painting_Event: C
Painting: D
Creation of Mondrian’s Composition: i1
Mondrian’s Composition: i2

OWL-BASED KNOWLEDGE DISCOVERY USING DESCRIPTION LOGICS REASONERS

49

of Semantic Web documents. In order to achieve
this, a key step was the review of available AI
formalisms and system families that could be used to
ground reasoning services upon. As the scene is
currently set, DL-based systems appear to be the
most promising choice to achieve streamlined
inference results even in the short term. At the same
time, DLs show adequate compatibility and
corresponding systems tend to exploit the greatest
part out of the Semantic Web ontological formalism
expressiveness, as it is now standardized in OWL.

We believe that our hands-on experimentation
with a number of state-of-the-art DL inference
engines has produced at least two lessons learned:
First, the need for instance-based reasoning, which
we have shown to be of crucial importance for the
Semantic Web environment, is not self-evident in
the majority of the systems reviewed; second, we
confirmed that even the most advanced DL-systems
have problems fully supporting OWL’s decidable
expressivity.

The potential as well as the limits of the DL-
based approach are clearly demonstrated through our
“wrapper prototype”, the KDI: On the one hand, we
have succeeded in demonstrating tangible and
meaningful knowledge discovery results on
Semantic Web documents. On the other hand, we
found that the KDI is greatly hampered by the
limited expressiveness and scalability of current DL
inference engines, regarding the use of nominals and
the processing of large ontology documents
respectively. We trust though that at the near future
most of the difficulties and incompatibilities
identified throughout our work would be overridden
by the evolution of systems and the refinement and
possibly enrichment of the Ontology Web Language.

REFERENCES

H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall, P.
H. Lewis and N. R. Shadbolt. Automated Ontology-
Based Knowledge Extraction from Web Documents.
IEEE Intelligent Systems, 18(1): 14-21, 2003.

S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.
L. McGuinness, P. F. Patel-Schneider and L. A.
Stein. OWL Web Ontology Language Reference.
W3C Recommendation, 2004. http://www.w3.org/
TR/owl-ref/

N. Crofts, M. Doerr and T. Gill. The CIDOC Conceptual
Reference Model: A standard for communicating
cultural contents. Cultivate Interactive, issue 9, 2003.
http://www.cultivate-int.org/issue9/chios/

R. Fikes, P. Hayes and I. Horrocks. DQL - A Query
Language for the Semantic Web. KSL TR 02-05,
2002.

R. Fikes, P. Hayes and I. Horrocks. OWL-QL: A
Language for Deductive Query Answering on the
Semantic Web. KSL TR 03-14, 2003.

R. Fikes, J. Jenkins, and F. Gleb. JTP: A System
Architecture and Component Library for Hybrid
Reasoning. In Proc. of the 7th World Multiconference
on Systemics, Cybernetics, and Informatics, 2003.

A. Gomez-Perez and O. Corcho. Ontology Languages for
the Semantic Web. IEEE Intelligent Systems,
17(1):54-60, 2002.

R. Guha, R. McCool. TAP: A Semantic Web Platform.
Computer Networks, 42(5):557-577, 2003.

V. Haarslev and R. Möller. Racer: A Core Inference
Engine for the Semantic Web. In Proc. of the 2nd
International Workshop on Evaluation of Ontology-
based Tools (EON2003), pp. 27-36, 2003.

J. Heflin, J. Hendler and S. Luke. Reading between the
Lines: Using SHOE to Discover Implicit Knowledge
from the Web. In AI and Information Integration:
Papers from the 1998 Workshop, pp.51-57. AAAI
Press, 1998.

I. Horrocks and P. F. Patel-Schneider. Reducing OWL
entailment to description logic satisfiability. In D.
Fensel, K. Sycara, and J. Mylopoulos (eds.): Proc. of
the 2nd Int. Semantic Web Conference (ISWC 2003),
pp. 17-29. Springer, 2003.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.
From SHIQ and RDF to OWL: The making of a web
ontology language. Journal of Web Semantics,
1(1):7-26, 2003.

I. Horrocks and U. Sattler. Optimised reasoning for SHIQ.
In Proc. of the 15th Eur. Conf. on Artificial
Intelligence (ECAI 2002), pp. 277-281, 2002.

E. Hsu and D. McGuinness. Wine Agent: Semantic Web
Testbed Application. In Proc. Of Workshop on
Description Logics, 2003.

J. Kopena and W. C. Regli. DAMLJessKB: A tool for
reasoning with the Semantic Web. IEEE Intelligent
Systems, 18(3): 74-77, 2003.

J. Mayfield and T. Finin. Information retrieval on the
Semantic Web: Integrating inference and retrieval. In
Proc. of SIGIR Workshop on the Semantic Web,
2003.

B. McBridge. Jena: A Semantic Web Toolkit. IEEE
Internet Computing, 6(6):55-59, 2002.

D. Tsarkov and I. Horrocks, Reasoner Prototype:
Implementing new reasoner with datatype support.
IST-2001-33052 WonderWeb Del. 13,
http://wonderweb. semanticweb.org

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

50

