

CONTEXT-DRIVEN POLICY ENFORCEMENT AND
RECONCILIATION FOR WEB SERVICES

S. Sattanathan1, N. C. Narendra2, Z. Maamar3 and G. Kouadri Mostéfaoui4
1National Institute of Technology Karnataka, Surathkal, India

2IBM India Research Lab, Bangalore, India
3Zayed University, Dubai, UAE

4University of Montreal, Montreal, Canada

Keywords: Policy, Context, Security, Web service.

Abstract: Security of Web services is a major factor to their successful integration into critical IT applications. An
extensive research in this direction concentrates on low level aspects of security such as message secrecy,
data integrity, and authentication. Thus, proposed solutions are mainly built upon the assumption that
security mechanisms are static and predefined. However, the dynamic nature of the Internet and the
continuously changing environments where Web services operate require innovative and adaptive security
solutions. This paper presents our solution for securing Web services based on adaptive policies, where
adaptability is satisfied using the contextual information of the Web services. The proposed solution
includes a negotiation and reconciliation protocol for security policies.

1 INTRODUCTION

1.1 Motivation

Web services are emerging as a major technology
for deploying automated interactions between
distributed and heterogeneous systems. With
services relying on the insecure Internet for mission-
critical transactions, security turns out to be a major
concern to the adoption of Web services by the IT
community and the reliability of these transactions.
In a previous work (Maamar et al., 2004), we argued
that because services require computing resources
on which they operate, it was deemed appropriate
guaranteeing that neither the Web services misuse
the resources (e.g., blocking a resource for longer
time periods) nor the resources affect the integrity of
Web services (e.g., altering sensitive data of a Web
service). Currently, a battery of security techniques
permits protecting Web services at the levels of
authentication, message safety, and data integrity
(Lilly, 2004). However, these techniques are
statically determined at design-time and cannot be
adjusted during the life-cycle of Web services
without going through an error-prone programming
exercise.

In order to develop adaptive security strategies
for Web services that are inline with the dynamic
nature of the Internet, we propose, in this paper, a

dynamic approach that combines first, a context
management driven by the requirements of security
and second, policies dedicated to achieving this
security. While the security context, as presented in
this proposal, takes advantage of our prior work on
context ontology for Web services (Maamar et al.,
2005), the value-added of policies to Web services
security is detailed throughout this paper. The
expected use of policies is to take actions according
to the occurring threats and detected attacks that put
in risk the security of Web services. Policies are to
be loaded and triggered with respect to the current
context, which features the environment that
surrounds a Web service (e.g., user location, day
time, attack type). Some of the elements that are
tracked using a security context are multiple
including the identification of the security violations,
the alteration situations that affected the integrity of
Web services, and the corrective actions to address
attempts of resource misuse. In (Kouadri Mostefaoui
and Brezillon, 2004), the authors employed context-
based security to adapt the security strategy
depending on a set of relevant information collected
from the dynamic environment. By promoting a
security context we aim at tracking all the concerns
and threats that affect contexts of Web services and
at deploying appropriate measures based on previous
security contexts. Figure 1 illustrates how the
connection between security policies, service
contexts, and security contexts is deployed. The

93
Sattanathan S., C. Narendra N., Maamar Z. and Kouadri Mostéfaoui G. (2006).
CONTEXT-DRIVEN POLICY ENFORCEMENT AND RECONCILIATION FOR WEB SERVICES.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - SAIC, pages 93-99
DOI: 10.5220/0002441000930099
Copyright c© SciTePress

configuration of a security policy is progressively
tuned using the information that security contexts
cater. This information is obtained after assessing
the integrity of the content of service contexts. The
content of a service context has been detailed in
(Maamar et al., 2005), and permits for instance to
track the participation of a Web service in the
execution of a composite service. In case the content
of a service context was subject to attacks, it would
be deemed appropriate reporting these attacks at the
level of the security context, so the concerned
security policies are reviewed. In this paper, we
adopt Ponder as a language for specifying security
policies (Damianou et al., 2001). We selected
Ponder for policy specification in compliance with
some requirements that need to be satisfied like
expressiveness, simplicity, and scalability.

Web service

Sec
uri

ty
context

Security

policy

Service

co
nt

ex
t

Figure 1: Collaboration of contexts and policies.

Each service, Web or composite, dynamically
determines its security mechanisms based on the
guidelines that it receives from its respective
security context. Initially, a set of security policies
are by default set according to an initial state of the
content of a service context. This is done by domain
applications’ administrators after an initial threat
assessment. When a change in a service context
takes place, required changes in the security context
are reported and policies are triggered if needed.

Because of the heterogeneity of the Internet, it is
unlikely that a certain provider would deliver all
types of context information and all types of security
policies. Therefore, contexts and policies have a
content of different granularities and structures as
well. To manage this heterogeneity, there is a need
for a common security policy on which providers
agree. Policy reconciliation is achieved using a
policy negotiation protocol to be shown in this
paper. For context heterogeneity, readers are
referred to our previous work (Maamar et al., 2005).

1.2 Contributions

Our contributions revolve around two major aspects:
security context for tracking threats, breaches, and
alterations (Maamar et al., 2005), and context-driven
security policy for addressing the elements of the
first aspect (this paper’s focus). In the rest of this

paper we present some background information in
Section 2. Our approach towards securing Web
services is discussed in Section 3. In Section 4, we
illustrate this approach via an example. The paper
concludes and discusses our future work in Section
5.

2 BACKGROUND

2.1 Rationale of Adopting Policies

Two reasons motivate our adoption of policies for
securing Web services and their intrinsic context
content. First, policies permit managing Web
services at a higher level where guidelines for
conducting composition of Web services are
separated from guidelines for securing contexts of
Web services. On the one hand, composition
guidelines concern among others how to look for the
relevant Web services, how to integrate user
preferences into Web services, how to track the
execution progress of Web services, and last but not
least how to assess the context of Web services. On
the other hand, guidelines for the security of Web
services concern among others how to secure the
incoming and outgoing messages received and sent
out by Web services, how to authenticate requests of
users, and how to suspend executions in case of risks
of behavior alteration, information interception, or
constraint violation.

The second reason for adopting policies is the
opportunity of changing policies without affecting
specifications of compositions. This separation of
concerns is important; it permits working on security
issues at composition and component levels. By
changing policies, Web services can be continuously
adjusted to accommodate variations in
environments.

2.2 Related Work

Context-based security as a general paradigm is
discussed in (Kouadri Mostefaoui, 2004) where the
author gives a formal definition of both context-
based security and security context. The definition is
“a state of the working environment that requires
taking one or more security actions. A security
context is formed by a set of information collected
from the user’s environment and the application
environment and that is relevant to the security
infrastructure of both the user and the application.”
The mentioned contribution, also, presents a worth
discussion of the need for adaptive -context-based-

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

94

policies for emerging applications such as Web
services.

In (Bhatti et al., 2004), Bhatti et al. argue that
traditional identity and capability based schemes for
access control do not scale well with Web services
architectures and therefore, propose the
incorporation of trust and context in access control
to Web services. As a first step, Bhatti et al. offer an
XML-based Generalized Temporal Role-Based
Access Control (X-GTRBAC), which allows policy
enforcement in heterogeneous, distributed
environments. As a second step, they make use of
trust management credentials in order to allow
distributed authentication.

In (Hu and Weaver, 2004), Hu and Weaver
describe a dynamic authorization enforcement
scheme for Web services-based healthcare systems.
This scheme makes authorization decisions based on
runtime parameters rather than simply the user role.
In (Agarwal and Sprick, 2004), Agarwal and Sprick
present the requirements for an access control
system for semantic Web services, and present an
algebra for composing access control policies for
composite Web services from those of their
components. This idea is further extended in
(Agarwal et al., 2004) with the specification of a
distributed credential-based access control system,
which unifies concepts from SPKI/SDSI and
DAML-S (forerunner of OWL-S).

In (Damiani et al., 2004), Damiani et al. show
how access control policies for semantic Web
services can be expressed using XACML
(eXtensible Access Control Markup Language)
thereby, creating a semantics-aware access control
language. More fine-grained access control is
investigated in (Damiani et al., 2001), where the
authors present a technique to enforce fine-grained
access control restrictions on individual XML
elements that make up a SOAP call made by one
Web service to another.

Our proposal for developing context-driven
security policies differs from the research projects
mentioned above. First, we handle the aspects
related to security in a dynamic way by updating the
security policies on a regular basis and based on the
information that security contexts cater over the
content of service contexts. Second, we provide a
negotiation protocol to achieve the reconciliation
between conflicting security policies. Interesting
point to note, that this protocol can be used for
dynamically modifying the security mechanisms
without extensive reprogramming. This modification
is achieved using service contexts and security
contexts, which are separately specified via context
ontologies. Separate specification of these contexts

allows for their modification without affecting the
base functionality of Web services execution.

To illustrate via a simple example, if a travel
agent service has to make payments to a payment
service, both services need to authenticate
themselves to each other. Plus, the messages passed
by each service need to be encrypted to the
satisfaction of both parties. Similarly, mutually
acceptable hashing algorithms need to be
implemented in order to ensure the integrity of the
messages sent. These security techniques are
dynamically set/updated based on the service and
security contexts, without disturbing the core
functionality of each service.

3 SECURITY OF WEB SERVICES

3.1 Support Architecture

In (Maamar et al., 2005), the context model
associated with Web services composition spreads
over three levels (composite service, Web service,
and Web service instance, details on Web services
instantiation are given in (Maamar et al., 2004).
Since composition involves many Web services (in
fact instances), interactions between the three levels
happens according to the following patterns:
between service instances of the same composite
service; from service instances to Web services and
vice-versa; from service instances to composite
services and vice-versa; and from Web services to
composite services and vice-versa. To secure these
interactions, we decompose the threats into three
types (Maamar et al., 2005): identity threats where
an attacker impersonates a legitimate Web service or
user; content-borne threats where an attacker attacks
Web services directly; and operational threats that
render Web services unusable.

Figure 2 illustrates our model for securing the
interactions between contexts of Web services. The
model presents three security contexts: ISec-context
for Web service instance, WSec-context for Web
service, and CSec-context for composite service.
These security contexts are defined along with the
regular service contexts as reported in (Sattanathan
et al., 2005) (i.e., I/W/C-context). A security context
highlighting the security strategy that a service
adopts. Any change in this strategy is automatically
reflected on the security context so other peers can
be aware of the change in case of compliance
reasons.

To keep the paper self-contained, we only list the
arguments of ISec-context, WSec-context, and
CSec-context. Readers are referred to (Maamar et

CONTEXT-DRIVEN POLICY ENFORCEMENT AND RECONCILIATION FOR WEB SERVICES

95

al., 2005) for more details. The arguments of ISec-
context are Label, Signature, Security mechanism,
security status, security violation, corrective actions,
and date. WSec-context is designed to take care of
the security of a Web Service. Some arguments
featuring WSec-context are as follows: label,
signature, security mechanism, security status,
security violation, corrective actions, security
status/service instances, and date. Finally, CSec-
context is designed to take care of the security of a
composite service. Some arguments featuring CSec-
context are as follows: label, signature, security
mechanism, corrective actions, security per previous
Web service instances, security of current Web
service instances, security per next Web service
instances, and date.

3.2 Context-driven Policies

Figure 2 shows the way service context and security
context are gathered. In (Sattanathan et al., 2005),
we reported that an unawareness or poor
consideration of the security challenges during Web
services composition and execution result in a lack
of the quality and relevance of information that
permits tracking the composition, monitoring the
execution, and handling exceptions. The side-effects
of this unawareness or poor consideration are
multiple like adopting a wrong strategy for selecting
a component Web service (e.g., favoring execution-
cost over reliability criterion instead of the
opposite), delaying the triggering of some urgent

component Web services, or wrongly assessing the
exact execution status of a Web service (e.g., being
suspended instead of being thought as under
execution). Therefore, the security of Web services
and their associated contexts need to be dealt with
according to the environment wherein these Web
services operate.
Figure 3 is about the interactions between service
contexts, security contexts, and security policies
repository. Interaction (1) is about sensing the
environment so that context data are collected for
the purpose of populating the content of service
contexts (I/W/C-Contexts). The sensing and
collection mechanisms are described in (Maamar et
al., 2005). Once completed, there is a flow of
contextual information from service context to
security context (Figure 3, (2)). Security contexts
initially report on the security mechanisms that are
by default set according to an initial state of the
content of I/W/C-contexts. This default set-up is
reported at the security-context level. The security
mechanisms and thus, the security contexts will be
changed on the fly according to the changes of the
service contexts. Changes in service contexts (Figure
3, (3)) are detected as per the context sensing and
collection mechanism described in (Maamar et al.,
2005). The security policy will be
determined/updated according to the security
contexts (the security information flow is shown in
Figure 3, (4-5)). Finally this feedback will be sent
back to service contexts (Figure 3, (6)).

Web service 1
Provider 1

Web service 2
Provider 2

Composite service

Web service
instance 12

Web service
instance 21

Interactions Interactions

 ISec-context
I-context

Interactions

Context
repository

C-level

Context
repository

I-level

Context
repository

I-level

Context
repository

W-level

Context
repository

W-level

 ISec-context
I-context

 WSec-context
W-context

 WSec-context
W-context

CSec-context
C-context

Interactions

Figure 2: Context interactions during Web services composition.

1. Environment
sensing/detection

I/W/C-context 2. Information
flow

3. Security mechanism
selection/adaptation

I/W/CSec-context 4. Security
information flow

5. Security policy
selection/triggering

of security
policies

6. Feedback on execution

Repository

Figure 3: Interactions between contexts and security policy.

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

96

2 31

MD5SHA

2 31 21

Kerberos PKI Password AES DES Blowfish

Authentication
Encryption

Integrity

Security policy
(1)

MD5PKI DES

Authentication
Encryption

Integrity

a. SSP-Instance1

SHAPassword AES

Authentication
Encryption

Integrity

b. SSP-Instance2

(2)

Security policy Security policy

Figure 4: Sample structure of a security policy proposal
and an SPP-Instance.

Setting up default policies for security
requirements is motivated by the partial
observability that features a Web services
composition scenario. It is in general not obvious to
exactly know all types of threats that a Web service
will be subject to. Limited means of sensing and
lack of information inhibit removing this
uncertainty. As an alternative, a Web service has to
consider the potential states in which it will be after
initiating interactions or performing actions. Subject
to these states, a reevaluation of the security policies
is undertaken.

In general, every provider has an independent
security policy for protecting its Web services and
their contexts. Because composite services have
component Web services from independent origins,
conflicts could emerge including those related to
policies. This calls for a reconciliation strategy.
During service composition, interactions happen
between Web services and thus, need to be secured.
For this purpose establishing a common security-
policy at design time is not feasible; service
requirements are dynamic and change over time.
Our solution is based on a Security Policy Proposal
(SPP). It is assumed that each composite service will
be associated with a SPP to be represented as a
directed acyclic graph. Before triggering any
composite service, policies of component services
are reconciled through negotiation (Section 4). Each
negotiation session generates an SPP of type
instance. An SPP instance depicts the agreed upon
security policies that will be followed by the
participating Web services.

In Figure 4-(1), we show a sample structure of a
security-policy proposal so that an initial agreement
between providers of Web services can be reached.
The values in Figure 4-(1) are the default policies
originally set up as described in Figure 3. In Figure
4-(1), the graph structure shows a security policy

that is dedicated to authentication (Kerberos, PKI,
password), encryption (AES, DES, or Blowfish),
and integrity (SHA or MD5) of a Web service.
Authentication, encryption, and integrity algorithm
priorities are mentioned in the form of numerical
values (e.g., 1 has more priority than 2). In Figure 4-
(2), we depict the structure of an SPP-Instance,
which complies with its respective SPP. For
example, SPP-Instance1 adopts PKI for
authentication, DES for encryption, and MD5 for
Integrity. With regard to SPP-Instance2,
authentication type is password, encryption type is
AES, and integrity type is SHA.

3.3 Security Policy Definition

We discuss the policies that are defined along with
the security of contexts of services. To this end, a
policy definition language is deemed appropriate.
The selection of this language is guided by some
requirements that need to be satisfied as Tonti et al.
report in (Tonti et al., 2003): expressiveness,
simplicity, enforceability, and scalability. In this
paper, we employ Ponder (Damianou et al., 2001).

In Ponder, authorization policies define what
activities a member of a subject domain can perform
on objects in the target domain. In this paper, subject
maps onto composite service (e.g., travel) and target
maps onto Web service (e.g., payment). For the sake
of simplicity, we depict one security policy of type
authorization, each associated with a function for
authentication, integrity and encryption.
Security policy of Travel composite service:
inst auth+ airlinesecuritypolicy{

subject s = /travelservice;
target t= /paymentservice;
action authorize_payment(),check_balance(),
airticket_details();
when s.authentication_algorithm("Kerberos",1)
and
s.integrity_algorithm("MD5",1) and
s.encryption_algorithm("AES-128",1) and
t.authentication_algorithm("PKI",2) and
t.integrity_algorithm("SHA1",2) and
t.encryption_algorithm("3DES",2);}

In Ponder a policy comprises several arguments.
We focus, hereafter, on subject domain and target
domain arguments. The subject domain categorizes
the members that perform actions over the members
of the target domain. We identify two types of
member in the subject domain: composite service
and Web service. Similarly, we identify a single type
of member in the target domain: Web service.

CONTEXT-DRIVEN POLICY ENFORCEMENT AND RECONCILIATION FOR WEB SERVICES

97

4 POLICY NEGOTIATION AND
RECONCILIATION

Appendix 1 illustrates how negotiation on the type
of authentication mechanism, encryption technique,
and integrity happens between travel composite-
service and airline and payment component Web
services. Initially, travel composite-service gets a
booking request from a user (through his user-agent)
with the necessary (complete) details.

To satisfy the user’s request, airline and payment
services are responsible for booking ticket and
payment related issues, respectively. Before both
services engage in interactions, the composite
service establishes an SPP request between the
component services (Appendix 1, (2) and (3)). If the
SPP request is acceptable to both, airline and
payment services, each service proceeds as reported
in (4) through (7) of Appendix 1. Otherwise, travel
composite-service needs to generate a new SPP
request. After establishing an SPP, travel composite-
service requests for an airline ticket with appropriate
details. Then, airline service creates a service
instance to satisfy travel composite-service request
with the established security policy. After that travel
service requests payment service for performing
credit-card payment. For this, payment service
creates a service instance with its established
security policy.

Similarly, payment service instance needs the
output of airline service instance. For this, there
should be a common policy between both these
services with regard to encryption/decryption
technique, integrity algorithm, and authorization
mechanism. Interactions (13) through (20) of
Appendix 1 present the negotiation process between
airline service instance and payment service
instance. Initially airline service instance creates an
SPP-Instance-1 as an instance of SPP and makes a
request to payment service instance. If payment
service instance does not accept, then further SPP-
Instances (SPP-Instance-2, etc.) will have to be
generated by either service instance, as further
instances of SPP. This process keeps on running
until the instances reach a mutual agreement. At the
end of the policy reconciliation process, airline
service instance sends the necessary details (e.g.,
flight name, amount, etc.,) for air-ticket payment to
payment service instance. And the payment service
instance also provides the confirmation of payment.
Finally air-ticket is delivered to user.

It is noted that the work in (Wang et al., 2004) is
about an algorithm and tool for policy reconciliation
in a distributed computing environment. Our
algorithm is similar to this one, but is tailored to

context-driven Web service environments.

5 CONCLUSION

In this paper, we described our policy-based
mechanism for securing contexts of services by
leveraging our earlier work on context ontologies for
Web services (Maamar et al., 2005). Our mechanism
includes a policy negotiation protocol among the
participating Web services, via the instantiation of a
security policy proposal by the participants in the
composition. Our approach takes benefit of other
works by providing a rallying framework that
enables securing Web services using context-driven
policies. At present our proposal relies first, on
Ponder to specify security policies and second, on
context to trigger the appropriate policy. In addition,
in this framework security policies are not specific
to access control (like (Leune et al., 2004),
(Damianou et al., 2001), and (Agarwal and Sprick,
2004)) but target the security mechanisms to enforce
between Web services, users’ client applications,
and resources. These mechanisms are authentication,
cryptographic, and integrity. We have implemented
all the above mentioned ideas in the Context based
semantic Web Services prototype for modeling
context-based semantic Web services (Sattanathan et
al., 2005).

ACKNOWLEDGEMENTS

The first author was supported by the Center for
Advanced Studies program of IBM Software Labs
India. He also thanks Prof. K. C. Shet of NITK, for
supporting his doctoral work.

REFERENCES

Agarwal, S., and Sprick, B. (2004). Access Control for
Semantic Web Services. In Proc. of The 2nd IEEE Int.
Conf. on Web Services, San Diego, CA, USA.

Agarwal, S., Sprick, B., and Wortmann, S. (2004).
Credential Based Access Control for Semantic Web
Services. In Proc. of The 2004 American Association
for Artificial Intelligence Spring Symposium Series,
Stanford, CA, USA.

Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini,
M., and Mecella, M. (2003). A Foundational Vision
for E-Services. In Proc. of the Work. on Web Service,
E-Business, and the Semantic Web held in conjunction
with the 15th Conf. on Advanced Information Systems
Engineering, Klagenfurt/Velden, Austria.

Bhatti, R., Bertino, E., and Ghafoor, A. (2004). A Trust-

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

98

based Context-Aware Access Control Model for Web
Services. In Proc. of The 2nd IEEE Int. Conf. on Web
Services, San Diego, CA, USA.

Casati F., and Shan, M.C. (2001). Dynamic and Adaptive
Composition of E-Services. Information Systems,
26(3).

Damianou, N., Dulay, N., Lupu, E., and Sloman, M.
(2001). The Ponder Specification Language. In Proc.
of the Work. on Policies for Distributed Systems and
Networks, Bristol, UK.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S.,
and Samarati, P. (2001). Fine Grained Access Control
for SOAP E-Services. In Proc. of the 10th Int. World
Wide Web Conf., Hong Kong, China.

Damiani, E., De Capitani di Vimercati, S., Fugazza, C.,
and Samarati, P. (2004). Extending Policy Languages
to the Semantic Web. In Proc. of the Int. Conf. on Web
Engineering, Munich, Germany.

Hu, J., and Weaver, A.C. (2004). A Dynamic, Context-
Aware Security Infrastructure for Distributed
Healthcare Applications. In Proc. of The 1st Work. on
Pervasive Security, Privacy, and Trust held in
conjunction with in Conjunction with The 1st Annual
Int. Conf. on Mobile and Ubiquitous Systems:
Networking and Services, Boston, MA, USA.

Kouadri Mostefaoui, G. (2004). Towards a Conceptual
and Software Framework for Integrating Context-
Based Security in Pervasive Environments. Ph.D.
Thesis No. 1463, University of Fribourg, Switzerland,
October.

Kouadri Mostefaoui, G., and Brézillon, P. (2004).
Modeling Context-Based Security Policies with
Contextual Graphs. In Proc. of The Work. on Context
Modeling and Reasoning held in conjunction with The
2nd IEEE Int. Conf. on Pervasive Computing and
Communication, Orlando, Florida, USA.

Leune, K., van den Heuvel, W.J., and Papazoglou, M.
(2004). Exploring a Multi-Faceted Framework for

SOC: How to Develop Secure Web Service
Interactions? In Proc. of The 14th Int. Work. on
Research Issues on Data Engineering, Boston, USA.

Lilly, J. (2004). Tips and Tricks: Web Services Attacks
and Defenses (White Paper). January 2004
(osdn.bitpipe.com/detail/RES/1080320572_938.html),
visited June 2004.

Lupu, E., and Sloman, M. (1999). Conflicts in Policy-
Based Distributed Systems Management. IEEE
Transactions on Software Engineering, 25(6),
November/December.

Maamar, Z., Kouadri Mostéfaoui, S., and Yahyaoui, H.
(2004). A Web Services Composition Approach based
on Software Agents and Context. In Proc. of 19th
Annual ACM Symposium on Applied Computing,
Nicosia, Cyprus.

Maamar, Z., Narendra, N.C., and Sattanathan, S. (2005).
Towards an Ontology-based Approach for Specifying
and Securing Web Services. In Information and
Software Technology (forthcoming).

Sattanathan, S., Narendra, N.C., and Maamar, Z. (2005).
ConWeSc - Context-based Semantic Web Services
Composition Towards an Ontology-based Approach
for Specifying and Securing Web Services. In Proc. of
The 3rd Int. Conf. on Service Oriented Computing,
Amsterdam, The Netherlands, December.

Tonti, G., Bradshaw, J., Jeffers, R., Montanari, R., Suri,
N., and Uszok, A. (2003). Semantic Web Languages
for Policy Representation and Reasoning: A
Comparison of KAoS, Rei, and Ponder. In Proc. of
The 2nd Int. Semantic Web Conf., Sanibel Island,
Florida, USA.

Wang, H., Jha, S., Livny, M., and McDaniel, P. D. (2004).
Security Policy Reconciliation in Distributed
Computing Environments, 2004. In Proc. of the 5th Int.
Work. on Policies for Distributed Systems and
Networks, New York, USA.

(2) Security Policy Proposal (SPP) for Reconciliation

(3)Security Policy Proposal (SPP) for Reconciliation

(10) Availability Confirmation Details (optional)

Travel Service
(Composite Service Provider)

Airline Service
(Web Service Provider/Instance)

Payment Service
(Web Service Provider/Instance)

(4) Process SPP(6) SPP Accepted

(7) SPP Accepted

(13) SSP-Instance-1 for Negotiation

User Agent

(9) Process Request

This Negotiation process will be
continued till the end of mutual agreement
between Web Service Provider/Instance.

reconciliation

(16) SSP-Instance-1 Not-Accepted

(17) SSP-Instance-2 for Negotiation

(21) Air-ticket related details

(20) SSP-Instance-N Accepted

(22) Process Payment
(23) Confirmation

(24) Air-ticket delivery
very

o
o

(19) SSP Instance-2 Not Accepted
(18) Process SSP Instance-2

(1) Get Reservation

(8) Request for Air-ticket

(11) Response (Optional)

(12) Credit-card Details for doing Air-ticket Payment

(5) Process SPP

(15) Process SSP-Instance-1

Appendix 1: Policy Negotiations among Travel Airline and Payment Services.

CONTEXT-DRIVEN POLICY ENFORCEMENT AND RECONCILIATION FOR WEB SERVICES

99

