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Abstract: Prosodic information can be used successfully for automatic speaker recognition, although most of the 
speaker recognition systems use only short-term spectral features as voice information. In this work, 
prosody information is added to a multimodal system based on face and voice characteristics in order to 
improve the performance of the system. Fusion is carried out by using various fusion strategies and two 
different fusion techniques: support vector machines and matcher weighting. Results are clearly improved 
when a previous normalization based on histogram equalization is done before the fusion of the monomodal 
scores. 

1 INTRODUCTION 

A multimodal biometric system involves the 
combination of two or more human characteristics in 
order to achieve better results than using monomodal 
recognition (Bolle, Connell et al. 2004). When 
several biometric traits are used in a multimodal 
recognition system, fusion is possible at three 
different levels: feature extraction level, matching 
score level or decision level. Fusion at the matching 
score level is usually preferred by most of the 
systems, which is, in fact, a two-step process: 
normalization and fusion itself (Indovina, Uludag et 
al. 2003). Since monomodal scores are usually non-
homogeneous, the normalization process transforms 
the different scores of each monomodal system into 
a comparable range of values. One conventional 
affine normalization technique is z-score, which 
transforms the scores into a distribution with zero 
mean and unitary variance. Histogram equalization 
is another method whose purpose is to equalize the 
statistics of two monomodal biometrics.  

After normalization, the converted scores are 
combined in the fusion process in order to obtain a 
single multimodal score. In matcher weighting 
fusion method, each monomodal score is weighted 
by a factor proportional to the recognition result of 
the biometric. One of the most currently used fusion 
techniques is support vector machines (SVM). The 

SVM algorithm constructs models that contain a 
large class of neural nets, radial basis function nets 
and polynomial classifiers as special cases. The 
algorithm is simple enough to be analyzed 
mathematically, since it can be shown to correspond 
to a linear method in a high-dimensional feature 
space non-linearly related to input space (Hearst 
1998). 

Prosody is mostly used to refer to speech 
elements such as tone, rhythm and intensity. The 
aim of this work is to add prosodic information to 
the multimodal biometric recognition systems in 
order to improve the performance of the system. 
Prosodic, vocal tract spectral and facial scores are 
fused by using two types of fusion, and different 
fusion strategies are proposed: score level fusion is 
carried in one, two or three steps, considering two 
different combinations in the two-step fusion.  

This paper is organized as follows. In the next 
section the monomodal information sources used in 
this work are described. The conventional 
normalization method z-score and histogram 
equalization are presented in section 3. Matcher 
weighting fusion technique and support vector 
machines are reviewed in section 4. Finally, 
experimental results are shown in section 5 for the 
fusion combinations of prosodic, vocal tract 
spectrum and face scores. 
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2 MONOMODAL SOURCES 

2.1 Voice Information 

2.1.1 Spectral Parameters 

Spectral parameters are those which only take into 
account the acoustic level of the signal, like spectral 
magnitudes, formant frequencies, etc., and they are 
more related to the physical traits of the speaker. 
Cepstral coefficients are the usual way of 
representing the short-time spectral envelope of a 
speech frame in current speaker recognition systems. 
These parameters are the most prevalent 
representations of the speech signal and contain a 
high degree of speaker specificity. The conventional 
mel-cepstrum coefficients come from a set of mel-
scaled log filter bank energies (LFBE) S(k). The 
sequence of cepstral coefficients is quasi-
uncorrelated and compact representation of speech 
spectra. However, cepstral coefficients have some 
disadvantages: they do not possess a clear and useful 
physical meaning as LFBE have, they require a 
linear transformation from either LFBE or the LPC 
coefficients and in continuous observation Gaussian 
density HMM with diagonal covariance matrices the 
shape of the cepstral window has no effect so that 
only its length . In order to overcome them, (Nadeu, 
Mariño et al. 1996) presents an alternative that 
consists of a simple linear processing on the LFBE 
domain. The transformation of the sequence S(k) to 
cepstral coefficients is avoided by filtering that 
sequence. This operation is called frequency filtering 
(FF) to denote that the convolution is performed in 
the frequency domain. 

2.1.2 Prosodic Parameters 

Humans tend to use several linguistic levels of 
information like lexical, prosodic or phonetic 
features to recognize others with voice. Prosodic 
parameters are called suprasegmental features since 
the segments affected (syllables, words and phrases) 
are larger than phonetic units. These features are 
basically manifested as durations, tone and intensity 
variation.  
 Although these features don’t provide very 
good results when used alone, they give 
complementary information and improve the results 
when they are fused with vocal tract spectrum based 
systems. Moreover, some of these features have the 
advantage of being more robust to noise than the 
low-level ones (Carey, Parris et al. 1996). Spectral 
patterns can be affected by frequency features of the 

transmission channel, and spectral information 
depends also on the speech level and the distance 
between the speaker and the array, while 
fundamental frequency is unaffected by such 
variations (Atal 1972). The prosodic recognition 
system used in this task was constituted by a total of 
9 prosodic features already used in (Peskin, Navratil 
et al. 2003); i.e. three features related to word and 
segmental durations: number of frames per word and 
length of word-internal voiced and unvoiced 
segments, and six more features related to pitch: 
mean pitch, maximum pitch, minimum pitch, pitch 
range, pitch “pseudo-slope” defined as (last F0 - first 
F0)/(number of frames in word) and average slope 
over all segments of piecewise linear stylization of 
F0, all of them averaged over all words with voiced 
frames. 

2.2 Face Information 

Facial recognition systems are based on the 
conceptualization that a face can be represented as a 
collection of sparsely distributed parts: eyes, nose, 
cheeks, mouth, etc. Non-negative matrix 
factorization (NMF), introduced in (Lee and Seung 
2001), is an appearance-based face recognition 
technique based on the conventional component 
analysis techniques which does not use the 
information about how the various facial images are 
separated into different facial classes. The most 
straightforward way in order to exploit discriminant 
information in NMF is to try to discover 
discriminant projections for the facial image vectors 
after the projection. The face recognition scores used 
in this work have been calculated in this way with 
the NMF-faces method (Zafeiriou, Tefas et al. 
2005), in which the final basis images are closer to 
facial parts. 

3 NORMALIZATION AND 
HISTOGRAM EQUALIZATION 

One of the most conventional normalization 
methods is z-score (ZS), which normalizes the 
global mean and variance of the scores of a 
monomodal biometric. Denoting a raw matching 
score as a from the set A of all the original 
monomodal biometric scores, the z-score normalized 
biometric xZS is calculated according to 
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Figure 1: Scores distribution of face and speech biometrics after the presented  normalizations. 
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where mean(A) is the statistical mean of A and 
std(A) is the standard deviation. 

 
Multimodal variances are reduced when the 

variances of the monomodal scores are similar. 
Unfortunately, these variances are not usually 
similar. In order to solve this problem and 
equalization of the histograms of the monomodal 
scores is proposed in this paper as a non affine 
normalization process. Thus, the genuine and 
impostor statistics and, consequently, the variances, 
will probably be equalized. 

Histogram equalization (HE) or cumulative 
distribution function (CDF) equalization is a general 
non parametric method to make the CDF of some 
given data match to a reference distribution. HE is a 
widely used non linear method designed for the 
enhancement of images. HE employs a monotonic, 
non linear mapping which re-assigns the intensity 
values of pixels in the input image in order to 
control the shape of the output image intensity 
histogram to achieve a uniform distribution of 
intensities or to highlight certain intensity levels 
(Torre, Peinado et al. 2005). 

CDF equalization method was mainly developed 
for the speech recognition adaptation approaches or 
for the correction of non linear effects typically 
introduced by speech systems such as: microphones, 
amplifiers, clipping and boosting circuits and 
automatic gain control circuits. The principle of this 
method is to find a non linear transformation to 
reduce the mismatch of the statistics of two signals. 
By means of the CDF a transformation that maps the 
distribution of a signal back to the distribution of a 
reference signal is defined. 

In this work, the statistical matching technique 
matches de CDF obtained from the speaker 
verification scores and the CDF obtained from the 
face verification scores, both evaluated over the 
training data. The designed equalization takes as a 
reference the histogram of the biometric with a 
better accuracy, which is expected to have lower 
separate variances, in order to obtain a bigger 
variance reduction. 

In figure 1 two histograms of face and voice 
scores are plotted after the application of the 
presented normalizations in order to compare the 
transformations produced by each of them. 

4 FUSION TECHNIQUES AND 
SUPPORT VECTOR 
MACHINES 

In matcher weighting (MW) fusion, one of the most 
conventional fusion techniques, each monomodal 
score is weighted by a factor proportional to the 
recognition rate, so that the weights for more 
accurate matchers are higher than those of less 
accurate matchers. When using the Equal Error 
Rates (EER) the weighting factor for every 
biometric is proportional to the inverse of its EER. 
Denoting wm and em the weighting factor and the 
EER for the mth biometric xm and M the number of 
biometrics, the fused score u is expressed as: 

∑
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A support vector machine (SVM) is a binary 
classifier based on a learning fusion technique 
(Cristianini and Shawe-Taylor 2000). Learning 
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based fusion can be treated as a pattern classification 
problem in which the scores obtained with 
individual classifiers are seen as input patterns to be 
labelled as ‘accepted’ or ‘rejected’. Given a linearly 
separable two-class training data, the aim is to find 
an optimal hyperplane that splits input data in two 
classes: 1 and -1 (the target values that correspond to 
the ‘accepted’ and ‘rejected’ labels respectively) 
maximizing the distance of the hyperplane to the 
nearest data of each class. The optimal hyperplane is 
then constructed in the feature space, creating a non 
linear boundary in the input space. 

5 RECOGNITION 
EXPERIMENTS 

In section 5.1 some preliminary experiments 
involving face and speech multimodal identification 
by using matcher weighting fusion are presented. 
The prosody, vocal tract spectrum and face based 
recognition systems used in our fusion experiments 
are presented in section 5.2. Experimental results 
obtained by using SVM and matcher weighting 
fusion methods and combined according to three 
different fusion strategies are shown in section 5.3. 

5.1 Preliminary Experiments 

In this section, the audio, video and multimodal 
person identification experiments in the CLEAR’06 
Evaluation Campaign (http://www.clear-evaluation.org) 
are presented. A set of audiovisual recordings of 
seminars have been used, consisting of short video 
sequences and matching far-field audio recordings. 

For the acoustic speaker identification, 20 
Frequency Filtering parameters were generated with 
a frame size of 30ms and a shift of 10ms, and 20 
corresponding delta and acceleration coefficients 
were included. Gaussian Mixture Models (GMM) 
with diagonal covariance matrices were used. 

For the visual identification, a projection-based 
technique was developed, which combines the 
information of several images to perform the 
recognition (Luque, Morros et al. 2006). Models for 
all the users were created using segments of 15 
seconds. The XM2VTS database was used as 
training data for estimating the projection matrix. 
For each test segment, the face images of the same 
user were gathered into a group; then, for each 
group, the system compared the images with the 
person model. 

Segments of different durations (1 and 5 
seconds) corresponding to 26 personal identities 

have been used for testing. Table 1 shows the correct 
identification rates obtained for both audio and video 
monomodalities and the fusion identification rate. 
The identification results are clearly improved when 
the multimodal fusion technique is used. 

Table 1: Correct identification for both audio and video 
systems and multimodal fusion. 

 Correct identification (%) 
duration (s) Speech Video Fusion 
1 75.0 20.2 76.8 
5 89.3 21.4 92.0 

5.2 Experimental Setup 

A chimerical database has been created by relating 
the speakers of the Switchboard-I speech database 
(Godfrey, Holliman et al. 1990) to the faces of the  
video and speech XM2VTS database (Lüttin, Maître 
et al. 1998) of the University of Surrey. The 
Switchboard-I database has been used for the 
speaker recognition experiments. It is a collection of 
2430 two-sided telephone conversations among 543 
speakers (302 male, 241 female) from all areas of 
the United States. Each conversation of the 
Switchboard-I database contains two conversation 
sides. For both recognition systems each speaker 
model was trained with 8 conversation sides and 
tested according to NIST’s 2001 Extended Data 
task. 

Speech scores have been obtained by using two 
different systems: a voice spectrum based speaker 
recognition system and a prosody based recognition 
system. The spectrum based recognition system was 
the same GMM system used in the preliminary 
experiments and the UBM was a 32-component 
Gaussian mixture model trained with 116 
conversations. 

In the prosody based recognition system a 9 
prosodic feature vector was extracted for each 
conversation side. Mean and standard deviation were 
computed for each individual feature. The system 
was tested with one conversation side, computing 
the distance between the test feature vector and the k 
feature vectors of the claimed speaker, using the k-
Nearest Neighbour method with k=3 and the 
symmetrized Kullback-Leibler divergence. 

XM2VTS database was used for the face 
recognition experiments. It is a multimodal database 
consisting of face images, video sequences and 
speech recordings of 295 subjects. Only the face 
images (four frontal face images per subject) were 
used in our experiments. In order to evaluate 
verification algorithms on the database, the 
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evaluation protocol described in (Lüttin, Maître et al. 
1998) was followed. The well-known Fisher 
discriminant criterion was constructed as 
(Belhumeur, Hespanha et al. 1997) in order to 
discover discriminant linear projections and to 
obtain the facial scores. 

The fusion experiments combine the scores for 
the users of all the recognition systems. A chimerical 
database with 30661 users has been created by 
combining 170 users of the Switchboard-I database 
and 270 users of the XM2VTS database. A total of 
46500 experiments were carried out. 

5.3 Verification Results 

Table 2 shows the EER obtained for each prosodic 
feature used in the prosody based recognition 
system. As it can be seen, features based on pitch 
measurements achieve the best results. 

Table 2: EER for each prosodic feature. 

Features EER (%) 
log(#frames/word) 30.3 
length of word-internal voiced segments 31.5 
length of word-internal unvoiced segments 31.5 
log(mean F0) 19.2 
log(max F0) 21.3 
log(min F0) 21.5 
log(range F0) 26.6 
pitch “pseudo slope” 38.3 
slope over PWL stylization of F0 28.7 

 
The EER obtained in each monomodal 

recognition system, in the fusion of prosodic and 
voice spectral scores and in the fusion of spectral 
and facial scores when using SVM and MW 
methods are shown in table 3. 

Table 3: EER for monomodal and bimodal systems. 

EER (%) Source 
 SVM ZS-MW 

Prosody  14.65 15.66 
Voice 
spect. 10.10 

6.84 7.44 

Face 2.06 
0.99 

 
1.83 

 
 

Note that fusion was only used in the 
monomodal prosodic system, where 9 different 
prosodic scores where fused, and in both bimodal 
systems. No fusion was involved in the monomodal 
voice spectral and facial recognition systems. It can 
be seen that the performance of MW fusion is 
slightly worse that the SVM. 

5.3.1 One-step Fusion 

One-step fusion (figure 2) consists in fusing at once 
all the scores obtained from the 11 extracted 
features: prosodic scores (PS) obtained from 9 
prosodic parameters, voice spectral scores (SS) 
obtained from spectral parameters and face scores 
(FS) obtained from image face parameters. The EER 
obtained for both types of fusion (SVM and MW 
with ZS normalization) are shown in table 4. 

 
Figure 2: One-step fusion. 

Table 4: EER for one-step fusion. 

F EER (%) 
SVM 0.840 
ZS-MW 1.320 

 
The results show, once again, that SVM 

technique outperforms the conventional MW method 
wit ZS normalization. Furthermore, by using 
prosodic features the results of the bimodal voice 
spectrum and face recognition system are clearly 
improved. 

5.3.2 Two-step Fusion 

Two-step fusion consists in fusing all the scores 
obtained from the 11 parameters in two consecutive 
steps. In this kind of fusion two different 
configurations have been considered (figure 3). In 
the first configuration (config. A) the scores of all 
the speech features (9 prosodic features and 1 
spectral feature) are previously fused and the 
obtained results are then fused again with the facial 
scores. In the second configuration (config. B) the 
scores of the 9 prosodic features are previously 
fused and the obtained results are then fused again 
with voice spectral and facial scores. 

 
Configuration A    Configuration B 

Figure 3: Two configurations of two-step fusion. 

Table 5 shows the EER for both configurations 
of the proposed two-step fusion. It can be seen that 
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SVM outperforms, once again, the conventional ZS 
technique. 

Table 5: EER (%) for two-step fusion. 

F1 F2 Config. A Config. B 
SVM SVM 0.987 0.647 
ZS-MW ZS-MW 2.054 1.493 
SVM ZS-MW 1.583 1.303 
ZS-MW SVM 1.880 0.785 

5.3.3 Three-step Fusion 

Since the previous tables show that the best results 
are achieved by SVM fusion, another possibility is 
now considered: a three-step fusion with SVM. First 
of all, scores related to the 9 prosodic features are 
fused by SVM. The obtained results are then fused 
with voice spectral scores, and the new results are, 
once again, fused with the facial scores, as it can be 
seen in figure 4. EER for three-step SVM fusion are 
shown in table 6. 

 

 
Figure 4: Three-step fusion. 

Table 6: EER for three-step fusion. 

F1, F2, F3 EER (%) 
SVM 0.868 

5.3.4 Histogram Equalization 

In order to analyze how the fusion process is 
influenced by a previous histogram equalization of 
the scores, this normalization method is applied to 
the fusion strategy where the best results were 
achieved, i.e. configuration B in the two-step fusion. 
In table 7 the results obtained with equalized and 
non equalized scores are compared. It can be clearly 
seen that the results are always improved when 
histogram equalization is previously applied. 

Table 7: EER (%) with equalized and non equalized scores 
in the best fusion strategy. 

F1 F2 non equalized equalized 
SVM SVM 0.647 0.630 
ZS-MW ZS-MW 1.493 0.987 
SVM ZS-MW 1.303 0.886 
ZS-MW SVM 0.785 0.774 

 

6 CONCLUSIONS 

The performance of a bimodal system based on 
facial and spectral information is clearly improved in 
this work when prosodic information is added to the 
system. In our experiments the use of SVM 
outperforms the results obtained by fusion with the 
matcher weighting technique. The way how the 
scores are fused is relevant for the performance of 
the system. The best results have been obtained 
when prosodic scores are previously fused and the 
resulting scores are fused at once with spectral and 
face scores. Furthermore, a previous histogram 
equalization as a normalization technique improves 
the results obtained with non equalized scores. It has 
also been observed that a previous fusion of the 
voice information (spectral and prosodic scores) 
does not contribute to the improvement of the 
system. 
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