
DEFINING VIEWPOINTS FOR SECURITY
ARCHITECTURAL PATTERNS

David G. Rosado, Carlos Gutiérrez, Eduardo Fernández-Medina, Mario Piattini
ALARCOS Research Group. Information Systems and Technologies Department UCLM-Soluziona Research and

Development Institute. Escuela Superior de Informática. University of Castilla-La Mancha.
 Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain

Keywords: Security Architectures, Security Patterns, ViewPoints

Abstract: For decades, the security community has undertaken detailed research into specific areas of security, while
largely ignoring the design process. Software architecture has emerged as an important sub-discipline of
software engineering, particularly in the realm of large system development. This paper describes how
security architectural patterns lack of a comprehensive and complete well-structured documentation that
conveys essential information of their logical structure, deployment-time, run-time behaviour, monitoring
configuration, and so on. Thus we will propose a viewpoints model for describing security architectural
patterns. We will investigate security architectural patterns from several IEEE 1471-2000 compliant
viewpoints and develop an example that demonstrates how to describe a security architectural pattern with
viewpoints. We will make use of well-known language notations such as UML to maximize
comprehensibility.

1 INTRODUCTION

In a typical application development environment,
architects and developers share similar experiences.
They deploy business applications in a highly
compressed time frame, making applications work,
testing functionality at all levels, ensuring that they
meet expected system performance or service levels,
and wrapping applications with an attractive client
presentation and user documentation. Ensuring the
security of the application at all levels has usually
been considered at the last phase of the development
process (Steel, Nagappan et al. 2005).

For decades, the security community has
undertaken detailed research into specific areas of
security, while largely ignoring the design process.
Security aspects cannot be "blindly" inserted into an
IT-system, but the overall system development must
take security aspects into account. The result of a
well-engineered security system must be an
architecture that ensures specific security aspects
such as secrecy, integrity and availability
(Artelsmair and Wagner 2003).

As we have seen over and over, the software
architecture for a system plays a central role in
system development as well as in the organization

that produces it. Architecture serves as the blueprint
for both the system and the project developing it. It
defines the work assignments that must be carried
out by design and implementation teams and it is the
primary carrier of system qualities such as
performance, modifiability, and security; none of
which can be achieved without a unifying
architectural vision. Architecture is an artifact for
early analysis to make sure that the design approach
will yield an acceptable system. In short,
architecture is the conceptual glue that holds every
phase of the project together for all of its many
stakeholders (Bass, Clements et al. 2003). The
architecture must be documented to communicate
how it achieves those properties (Bachmann, Bass et
al. 2000).

Recently, there has been a growing interest in
identifying security patterns in software-intensive
systems since they provide techniques for
considering, detecting and solving security issues
from the beginning of their development life-cycle
(Yoder and Barcalow 1997; Schumacher and Roedig
2001; Cheng, Konrad et al. 2003; Schumacher,
Fernandez et al. 2005). Security patterns work
together to form a collection of coordinated security

419
G. Rosado D., Gutiérrez C., Fernández-Medina E. and Piattini M. (2006).
DEFINING VIEWPOINTS FOR SECURITY ARCHITECTURAL PATTERNS.
In Proceedings of the International Conference on Security and Cryptography, pages 419-424
DOI: 10.5220/0002103204190424
Copyright c© SciTePress

countermeasures thereby addressing host, network
and application security.

This paper describes how security architectural
patterns lack of a comprehensive and complete well-
structured documentation that conveys essential
information of its logical structure, run-time
behaviour, deployment-time and monitoring
configuration, constraints, elements, and so on. In
consequence, we will propose an alternative way for
describing security architectural patterns from
viewpoints and views, and therefore we can add
more information about the pattern in the template
used for defining patterns.

The remainder of this paper is organized as
follows. Section 2 will discuss the importance of
software architectures and the two most important
concepts associated with software architecture
documentation: view and viewpoint; In Section 3,
we will define security patterns and what security
architectural patterns are; In section 4, we will
describe the viewpoint template defined by the IEEE
1471-2000 standard; In section 5, an overview of the
IEEE 1471-2000 compliant Security Subsystem
Design viewpoint’s template definition will be
shown and we will discuss an example of security
architectural pattern. Finally, we will put forward
our conclusions and future work.

2 SOFTWARE ARCHITECTURE

Software architecture has emerged as an important
sub-discipline of software engineering, particularly
in the realm of large system development. There are
many definitions of software architecture (Garlan
and Anthony 2002; Bass, Clements et al. 2003), but
what these definitions have in common is their
emphasis on architecture as a description of a
system, as a sum of smaller parts, and how those
parts relate to and cooperate with each other to
perform the work of the system.

The architecture must be documented to
communicate how it achieves properties such as
performance, reliability, security, or modifiability.
Fundamentally, architecture documentation can
serve three different functions (Bachmann, Bass et
al. 2000): a) A means of education. Typically, this
means introducing people to the system. b) A
vehicle for communication among stakeholders. A
stakeholder is someone who has a vested interest in
the architecture. c) A basis for system analysis. To
support analysis, documentation must provide the
appropriate information for the particular activity
being performed.

3 SECURITY PATTERNS

Security patterns are proposed as a means of
bridging the gap between developers and security
experts. Security patterns are intended to capture
security expertise in the form of worked solutions to
recurring problems. The benefits of using patterns
are: they can be revisited and implemented at
anytime to improve the design of a system; less
experienced practitioners can benefit from the
experience of those more fluent in security patterns;
they provide a common language for discussion,
testing and development; they can be easily
searched, categorized and refactored; they provide
reuseable, repeatable and documented security
practices; they do not define coding styles,
programming languages or vendors (Berry, Carnell
et al. 2002).

An architectural pattern expresses a fundamental
structural organization schema for software systems.
It provides a set of predefined subsystems, specifies
their responsibilities, and includes rules and
guidelines for organizing the relationships between
them (Buschmann, Meunier et al. 1996).

We define security architectural patterns at
several levels of detail depending on the different
potential consumers who see different
characteristics, functionalities, connections and
behavior of a same pattern. If we define security
patterns from different perspectives, we are adding
more relevant information to the template used for
describing security patterns.

4 VIEWPOINTS APPROACH

We attempt to extend the template by adding new
information from the stakeholders’ viewpoint
following as a reference the “4+1” view model
(Kruchten 1995).

Obviously, since the 4+1 views preceded IEEE
1471, they do not meet the definition of views as
specified in the standard. The 4+1 views describe a
collection of representations that provide guidance
for software architects. The viewpoints we discuss
are within the spirit of the 4+1 views.

ANSI/IEEE 1471-2000 (IEEE 2000) provides
guidance for choosing the best set of views to
document, by bringing stakeholder interests to bear.
It prescribes defining a set of viewpoints to satisfy
the stakeholder community. For describing
viewpoints and views, IEEE 1471 standard defines a
set of elements or sections (template) that are
showed in (IEEE 2006) and that we will see later.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

420

4.1 ViewPoints Catalogue

We are defining a library of viewpoints of security
that allow us to document security architectural
patterns according to IEEE 1471-2000. By
definition, these viewpoints are reusable for any
software system, thus we can document security
patterns, security architecture, software architecture,
etc., based on our viewpoint’s library.

A number of viewpoint catalogues already exist,
but we have found that all of them do not consider
aspects of security, they are only applied to the
development of architectures for large information
systems and they are not applied in the context of
security. In response, we have developed a set of
viewpoints for the security architect and the security
engineers, that build up and extend the “4+1” set,
identified by Philippe Kruchten (Kruchten 1995) and
Nick Rozanski and Woods (Rozanski and Woods
2005). Our catalogue contains seven core security
viewpoints: Logical, Process, Development,
Physical, Deployment, Operational and Misuse
Cases viewpoints as we can see in Figure 1.

The security logical viewpoint describes the
objects or object models within the security
architecture that support security behavioral
requirements. The security process viewpoint
describes the security architecture as a logical
network of secure communicating processes. This
viewpoint assigns each method of the object model
to a thread of execution and captures concurrency
and synchronization aspects of the security design.
The security physical viewpoint maps software onto
hardware and network elements and reflects the
distributed aspect of security architecture. The
security development viewpoint focuses on the static
organization of the software in the security
development environment and deals with issues of
configuration management, security development
assignments, security responsibilities, and
countermeasures. The security deployment
viewpoint describes the security environment which

the system will be deployed into, including the fact
of capturing the dependencies the system has on its
runtime environment. The aim of the Security
Operational viewpoint is to identify security system-
wide strategies for addressing the operational
concerns of the system’s stakeholders and to identify
solutions that address them.

Moreover, we are defining a new viewpoint’s
template extending the aforementioned template of
IEEE 1471-2000 and we have added new sections in
the context of security that are described as follows:
• Security properties to be addressed by the security

policy on the basis of the security viewpoint’s
elements. We consider that the complete security
policy of a security pattern is the aggregation of
the security policies defined for each security
viewpoint.

• Security metrics to be taken into account.
• Security procedures to be taken into consideration

from this viewpoint; for instance, from the
physical viewpoint, procedures to restore the
physical node in which the security services
defined by the pattern are running, or from the
logical viewpoint, how to carry out the off-line
exchange of key material between the involved
parties.

• Best practices: for example, from the developer’s
viewpoint, techniques for secure programming, or
from the physical viewpoint, topologies of secure
networks.

5 SECURITY DESIGN
SUBSYSTEM VIEWPOINT

Each aforementioned viewpoint can be divided into
different viewpoints satisfying the interest of a
particular stakeholder. A series of viewpoints is then
used to elaborate the details of the general
viewpoint. Selecting the security design subsystem
viewpoint and considering the template IEEE 1471,
we have defined this viewpoint as presented in
Figure 2.

 Abstract. This viewpoint shows security
module decomposition and the use between
systems of software system. Each security
module interprets itself as a subsystem to
develop; therefore it is an entity in construction
time, and can communicate with others security
subsystems for completing its functionality. The
decomposition continues until that each module
or subsystem of security is allocated to a unique
responsible of development or team. Figure 1: Our approach of Security Viewpoints.

 Security

Logical

Security

Development

Security

Deployment

Security

Process

Security

Physical

Security

Operational

Misuse Cases

DEFINING VIEWPOINTS FOR SECURITY ARCHITECTURAL PATTERNS

421

 Stakeholders and their concerns addressed.
Secure applications will be developed by (at
least) three different roles: i) Application
software developers that focus on the business
logic; ii) Security providers that focus on the
design and implementation of reusable
frameworks of security logic; iii) Security
engineers that implement the security policy for a
particular application and focus on how the
system is implemented from the perspective of
security, and how security affects the system
properties.
• Project managers, who must define work
assignments, form teams, and formulate project
plans and budgets and schedules; Maintainers,
who are tasked with modifying the software
elements; Testers and integrators who use the
modules as their unit of work.

 Elements, Relations, Properties, and
Constraints.
• Security modules are units of implementation,
and their decomposition in shorter modules, just
as use dependencies exist between them.
• Relations between security modules can have
the semantic associated ‘is-part-of’ or ‘utilize’.
• The last level of subsystems called security
design subsystems, defined in the views
according to this viewpoint: i) Must be set of
products of work of design assigned to different
develop teams; ii) Security subsystems will
correlate with the construction directories that
will be developed, tested and handed over
respective teams of development; iii) Following
modality origins, the security subsystems must
exhibit high cohesion and low coupling; iv)
These subsystems will be the lower level entities
for which the software architects team will need
to define the interface.

 Language(s) to Model/Represent
Conforming Views.
• The representation language used will be the
UML and extensions for security aspects such as
UMLSec (Jürjens 2001; Jürjens 2002) and
SecureUML (Lodderstedt, Basin et al. 2002).
• Each module or subsystem of security will
represent itself as a stereotyped UML packet with
the reserved word <<subsystem>>, the use
relations will show with <<uses>> and
decomposition relations with nesting of UML
packets.
• The interfaces that implement each system are
modeled as UML interfaces and the name of the
service to be included in each interface
corresponds with the names of the use cases

defined at the abstraction level of “Goal
Summarize” (CockBurn 2000) for each
subsystem.
• The design subsystem included into views
according to this viewpoint will declare a
realization of one or more interfaces whose
methods correspond with use cases at the
abstraction level “User Goal” specified in the
model of use cases of this design subsystem.

 Applicable Evaluation/Analysis Techniques
and Consistency/Completeness Criteria.
Revision checking of the fact that the different
development groups of form understand the
context of the subsystem that they are going to
develop (where system comes from) so as the
interfaces with other design subsystems. Some
analysis and evaluation methods are described by
Ronald Wassermann (Cheng, Konrad et al. 2003)
and Jan Jürgens (Deubler, Grünbauer et al.
2004).

 Viewpoint Source. Viewpoint of Design
Subsystem (Garlan and Anthony 2002)

6 EXAMPLE: ‘QoP’ PATTERN

Due to space constraints and because actually we are
working and researching in this issue, we will do a
brief description of the ‘QoP’ pattern from security
logical view that includes a views’ packet with the
information of decomposition in security design
subsystem, attempting describe the main object from
the security design subsystem viewpoint.

From this description of viewpoint, we will
attempt to describe, following the viewpoint of
design subsystem, the ‘QoP’ security pattern that
offers Quality of Protection security service which
address message confidentiality, message integrity
and message authentication.

This view allows the security software architects
to communicate security development team
boundaries, communicate and negotiate interfaces
between security development teams, and
communicate with security project management.

Each subsystem must implement an interface that
is used by the rest of elements that need the service
that the owner subsystem of the interface offers.
This subsystem implements the interface
‘QoPSecurityService’ with the methods protect and
verifyProtection, as we can see in Figure 3.

These two methods are used by the elements for
applying the service to outbound/inbound messages

Figure 2: Security Design Subsystem Viewpoint.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

422

according to policy established for this service. This
subsystem has relations with others subsystems or
interfaces, as it can be the relation with the
subsystem Security Token Manager, through its
interface SecurityTokenManager that manages
security tokens and they can be implemented using
WS-Trust, XKMS with PKI infrastructure, etc.,
established in its security policy; it has relation with
the subsystem Message Confidentiality Manager,
through its interface ConfidentialityManager that
cipher or decipher the message offering message
confidentiality service using XML Encryption; and
it has relation with the subsystem Message Integrity
Manager, through its interface IntegrityManager that
check and protect the message offering message
integrity service using XML Digital Signature. Also
it can have relation with the subsystem Security
Policy Service, this is optional, where it would
manage all policies associated to the services offered
by the system. We have said that this is optional
because policies can be managed and implemented
into of the own subsystem (i.e. ‘QoP’ subsystem)
without to be relation with this subsystem.

Other possible relation, non obligatory, is the
relation between ‘QoP’ Security Service subsystem
and an Alarm subsystem, using a common protocol
of alarms (CAP, Common Alerting Protocol)
establishing an alarms system in the application,
communicating elements with others, indicating an
event or an alarm generated and sent to others
subsystems.

7 CONCLUSIONS

It is important to document a software architecture
because first of all it serves to introduce people to
the system; secondly, it serves as a vehicle for
communication among stakeholders, and finally it is
use as a basis for system analysis. Moreover, a
documented architecture is crucial for understanding
its main characteristics, its functionality, its
components and connections, its behaviour, and so
on. It will be important to describe and define the
main characteristics of architectural patterns for
stakeholders to be able to use and analyze the pattern
at the time of integrating it into either the design of
the application, or the design of the whole
architecture.

In this paper, we have described an architectural
pattern from viewpoints attempting to provide a
wider vision of its main characteristics, its design,
connections, elements, interfaces, implementation,
classes and behavior, putting the description of the
pattern conforming to the template as future work.

Our intention is not only to define security
architectural patterns by means of a views template
and a viewpoint template but also to recommend
ANSI/IEEE 1471-2000 (IEEE 2000), that provides
guidance for choosing the best set of views to
document. We have defined a viewpoints’ catalogue
and we have added and we are adding new elements
or sections to the viewpoint template of IEEE 1471-
2000 standard. Our research concentrates in defining

Figure 3: Relations between subsystems and interfaces of the ‘QoP’ Pattern.

PKI
<<subsystem>>PKI

(from P...

QoPSecurityService

protect(outoingMsg : SOAPMessage) : SOAPMessage
verifyProtection(incomingSOAPMessage : SOAPMessage) : SOAPMessage

protect(outoingMsg : SOAPMessage, securityPolicy : Policy) : SOAPMessage
verifyProtection(incomingSOAPMessage : SOAPMessage, securityPolicy : Policy) : SOAPMessage

QoP Security Service
<<subsystem>>

SOAP MessageSecurity

SecurityTokenManager

issue()
validate()

exchange()
revoke()

(from Security Token Manag...

Security Token Manager
<<subsystem>>

XKMS
<<subsystem>>

WS-Trust
<<subsystem>>

XKMS

(from XKMS)

WS-Trust

(from WS-Trust)

WS-TrustAdapter
(from WS-Trust)

XKMSAdapter
(from XKMS)

SecurityTokenManagerImp
(from Security Token Manager)

X.509 Token Profile Username Token

LDAP Service
<<subsystem>>

LDAP
(from LDAP Service)

<<Interface>>

MessageConfidentialityManager
<<subsystem>>

ConfidentialityManager

cipher()
decipher()

(from MessageConfident ialityManager)
XML Encryption

<<subsystem>>

NCIPHER
Cryptosystem

<<subsystem>>

PKCS#11

(from NCIPHER Cryptosyst...

MessageIntegrityManager
<<subsystem>>

IntegrityManager

check()
protect()

(from MessageIntegrityManag...
XML Dig ital Signature

<<subsystem>>

XML (Exc)C14N
<<subsystem>>

SecurityPolicyService
<<subsystem>>

SecurityPolicyServer

retr ieve()

(from SecurityPolicyServi.. .

AlarmManager
<<subsystem>>

AlarmManager

reg ister()

(from AlarmManag.. .
OASIS CAP

<<subsystem>>

SNMP
<<subsystem>>

(from SN.. .

DEFINING VIEWPOINTS FOR SECURITY ARCHITECTURAL PATTERNS

423

a library of viewpoints adhered to IEEE 1471-2000
whose instances are the views that we can define
following the documentation IEEE 1471-2000
(IEEE 2006). In this way, we could have a library of
viewpoints to document security architectural
patterns.

ACKNOWLEDGEMENTS

This research is part of the following projects:
DIMENSIONS (PBC-05-012-2) and MISTICO
(PBC06-0082) financed by FEDER and by the
“Consejería de Ciencia y Tecnología de la Junta de
Comunidades de Castilla-La Mancha” (Spain), and
CALIPO (TIC2003-07804-C05-03) granted by the
“Dirección General de Investigación del Ministerio
de Ciencia y Tecnología” (Spain).

REFERENCES

Artelsmair, C. and Wagner, R. (2003). Towards a Security
Engineering Process. The 7th World Multiconference
on Systemics, Cybernetics and Informatics, Orlando,
Florida, USA.

Bachmann, F., Bass, L., et al. (2000). Software
Architecture Documentation in Practice: Documenting
Architectural Layers: Pgs. 46.March 2000

Bass, L., Clements, P., et al., Eds. (2003). Software
Architecture in Practice, Addison-Wesley.

Berry, C. A., Carnell, J., et al. (2002). Chapter 5: Patterns
Applied to Manage Security. J2EE Design Patterns
Applied.

Buschmann, F., Meunier, R., et al. (1996). Pattern-
Oriented Software Architecture: A System of Patterns,
John Wiley & Sons.

CockBurn, A. (2000). Writing Effective Use Cases,
Addison-Wesley Professional.

Cheng, B. H. C., Konrad, S., et al. (2003). Using Security
Patterns to Model and Analyze Security Requirements.
High Assurance Systems Workshop (RHAS 03) as
part of the IEEE Joint International Conference on
Requirements Engineering (RE 03), Monterey Bay,
CA, USA.

Deubler, M., Grünbauer, J., et al. (2004). Sound
Development of Secure Service-based Systems.
Second International Conference on Service Oriented
Computing (ICSOC), New York City, USA, ACM
Press.

Garlan, J. and Anthony, R. (2002). Large-Scale Software
Architecture, John Wiley & Sons.

IEEE (2000). Recommended Practice for Architectural
Description of Software-Intensive Systems (IEEE Std
1471-2000). New York, NY, Institute of Electrical and
Electronics Engineers: Pgs. 29.01-May-2000

IEEE. (2006, last saved: March 21, 2006). "Software
Architecture Document (SAD)." from
www.sei.cmu.edu/architecture/SAD_template2.dot.

Jürjens, J. (2001). Towards Secure Systems Development
with UMLsec. International Conference of
Fundamental Approaches to Software Engineering
(FASE/ETAPS), Genoa, Italy, Springer-Verlag.

Jürjens, J. (2002). UMLsec: Extending UML for Secure
Systems Development. 5th International Conference
on the Unified Modeling Language (UML), 2002,
Dresden, Germany, Springer.

Kruchten, P. (1995). "Architectural Blueprints - The "4+1"
View Model of Software Architecture." IEEE
Software 12(6): 42-50.

Lodderstedt, T., Basin, D., et al. (2002). SecureUML: A
UML-Based Modeling Language for Model-Driven
Security. 5th International Conference on the Unified
Modeling Language (UML), 2002, Dresden, Germany,
Springer.

Rozanski, N. and Woods, E. (2005). Software Systems
Architecture: Working With Stakeholders Using
Viewpoints and Perspectives, Addison Wesley
Professional.

Schumacher, M., Fernandez, E. B., et al. (2005). Security
Patterns, John Wiley & Sons.

Schumacher, M. and Roedig, U. (2001). Security
Engineering with Patterns. 8th Conference on Patterns
Lnaguages of Programs, PLoP 2001, Monticello,
Illinois, USA.

Steel, C., Nagappan, R., et al. (2005). Core Security
Patterns, Prentice Hall PTR.

Yoder, J. and Barcalow, J. (1997). Architectural Patterns
for Enabling Application Security. 4th Conference on
Patterns Language of Programming, PLop 1997,
Monticello, Illinois, USA.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

424

