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Abstract: Identity protection and privacy became increasingly important in network communications; especially in 
wireless LAN. In this optic, Privacy Enhancing Technologies (PET) have been introduced to provide 
anonymous exchange and to protect personal data. In this paper, we present the SAM (Secure Access 
Module) architecture, which is a couple of smartcards (client and server) that process EAP-TLS, a 
transparent transport of TLS (Transport Layer Security) over EAP (Extensible Authentication Protocol). 
This architecture provides mutual authentication, identity protection and data un-traceability by preventing 
undesired and unnecessary processing of personal data. 

1 INTRODUCTION 

Without encryption features, information flowing in 
the network could be potentially logged, archived 
and searched. To resolve such problems, many 
security protocols, such as TLS (RFC 2246, 1999) 
and IPSec (RFC 2401, 1998) have been developed. 
Thanks to these protocols, communicating entities 
perform mutual authentication and compute a shared 
secret. This secret value is then used to generate 
cryptographic keys that enforce privacy and integrity 
services for information exchanged between these 
two parties. 

Mutual authentication establishes the proof of 
identity and is usually realized thanks to X509 
certificates or pre-shared-keys (PSK). Certificate 
deployment needs Public Key Infrastructures (PKI) 
and Certificate Authorities (CA) or Third Trusted 
Parties (TTP) to link the identity of the certificate 
owner to its public key. As for PSK, it requires 
neither of them and it is always identified through an 
ID value managed by the PSK owners. 
Consequently, PSK management does not require 
alike PKI infrastructures. 

Even though security protocols are able to 
provide the basic security services, missing from 
their design is a way to protect information related to 
the communicating identities. Consequently, an 
intruder can easily learn who is reaching the 

network, when, and from where, and hence 
correlates client identity to connection location. For 
example, in the use case of TLS, the two 
communicating parties expose public-key 
certificates for mutual authentication and key 
establishment. However, TLS cannot prohibit an 
attacker to use traffic analysis to identify parties 
over time. In fact, during the TLS session 
certificates flow in clear through the network. 
Consequently, attacking TLS client’s privacy 
becomes straightforward, because the intruder can 
easily read the client personal data, and make a 
correlation between its identity and its location, 
which is a privacy issue, especially to the wireless 
LAN (IEEE 802.11, 1999). 

WLAN security relies on the IEEE 802.1x (IEEE 
802.1x, 2001) infrastructure, which defines a 
framework for authenticating and controlling user’s 
traffic, as well as dynamically exchanging 
encryption keys between the wireless terminal 
(supplicant) and the authentication server. It ties 
itself to a protocol called EAP, Extensible 
Authentication Protocol (RFC 3748, 2004) that is a 
powerful umbrella supporting multiple 
authentication methods and mechanisms, such as 
EAP-TLS (RFC 2716, 1999). However, security 
protocols lack the need to securely store secret and 
private keys. In fact, there is no safe place to store 
these critical credentials on disk, encrypted or  

157Urien P. and Badra M. (2006).
SECURE ACCESS MODULES FOR IDENTITY PROTECTION OVER THE EAP-TLS - Smartcard Benefits for User Anonymity in Wireless Infrastruc-
tures.
In Proceedings of the International Conference on Security and Cryptography, pages 157-164
DOI: 10.5220/0002100001570164
Copyright c© SciTePress



 

 
Figure 1: A SAM infrastructure for wireless LAN. 

otherwise. The advanced approach for protecting 
these private data is to use tamper-resistance devices 
such as smartcards. These chips manage hardware 
and software countermeasures, which makes it 
difficult to extract or modify confidential 
information. In this way, we implemented EAP-TLS 
on smartcards. 

In this paper, we introduce EAP-TLS servers, 
e.g. trusted applications running in Java cards 
(JavaCardForum, 2006) and processing EAP and 
TLS protocols. Furthermore, we define SAM 
(Secure Access Module) an architecture that 
enhances security authentication, identity protection, 
client credentials verification and services 
authorization. Next, we analysis this approach and 
we give an example of anonymous exchanges within 
TLS before concluding with some remarks. 

2 INTRODUCING SAM IN WLAN 

The extensible authentication protocol is a powerful 
umbrella that shelters multiple authentication 
scenari. It is the cornerstone of the IEEE 802.1x 
standard (IEEE 802.1x, 2001) which defines key 
exchange mechanisms between the wireless user 
(the supplicant) and the authentication server. 

 
EAP messages are transported in 802.11 frames 

(IEEE 802.11, 1999),(IEEE 802.1x, 2001) between 
the supplicant and the access point, whereas 
RADIUS (RFC 3559, 2003) packets are used to 

convey these messages between the access point and 
authentication server. Between the terminal and the 
EAP smartcard, we defined a network interface that 
transports EAP messages using ISO 7816 payloads 
(ISO7816, 2006). 

In (Urien et al., 2004), we described an open 
architecture that processes EAP-TLS in smartcards 
and we presented a modular and flexible approach 
for controlling network accesses in WLAN 
environment. We also demonstrated that this 
approach is realistic with cheap smartcards, which 
are not specially designed for that purpose. 

 
In this paper, we introduce EAP server 

smartcards that are dual forms of the EAP client 
smartcards. The main function of the EAP servers is 
to parse EAP responses, to process them and to 
return the appropriate EAP requests. 

 
At the end of an EAP authentication session, the 

server notifies the success or the failure of the 
process. Upon success, it forwards the AAA key 
(see figure 1) to the access point; which is needed 
for all security operations that occurred between the 
access point and the client. 

 
A dedicated RADIUS software processes 

RADIUS packets issued by the access point, extracts 
EAP messages, and forwards them to the appropriate 
EAP smartcard. We called SAM a couple of 
smartcards that processes EAP messages on both 
client and server side. Figure 1 describes the 
sequence of EAP exchanges between SAM during 
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the WLAN authentication phase. There are one EAP 
smartcard on each side, which parses and processes 
EAP messages. 

 
In this sequence, the client intends to gain access 

to services provided by WLAN, and periodically 
transmits an EAP-Start (1) message to the access 
point to initiate an EAP authentication scenario. The 
access point produces, upon reception of this 
information, an EAP identity request (2), which will 
be forwarded to the client smartcard (3). This device 
will then deliver an appropriate EAP identity 
response, shuttled by ISO 7816 commands. 

 
Upon reception by the client, the EAP identity 

response is encapsulated in a 802.11 frame (4), 
before conveying it to the access point that will in 
turn shuttle this response using a RADIUS packet 
(5). 

 
SAM architecture uses many smartcards on the 

server side in order to process multiple 
authentication sessions. The server software checks 
the availability of one of its EAP-Server before 
forwarding (6) the EAP identity response to the 
available smartcard. 

 
In reply, the EAP server sends an EAP request 

message, repeating the same encapsulation sequence 
before delivering the message to the client 
smartcard. This latter processes then the message 
and generates an appropriate response that will be 
sent to the selected EAP-Server. 

 
Secret and cryptographic keys are always 

computed into the smartcards that also securely store 
network credentials (shared secrets, RSA private 
keys, certificates, etc.). Upon receiving the EAP-
Success, the RADIUS (6) and the client (7) collect 
the AAA key from the SAM via a specific smartcard 
command. Thereafter, the client and the access point 
establish more exchange (for example 802.11i 
handshake) in order to compute cryptographic 
parameters that are required for radio security 
protocols, such as WEP and WPA. 

3 EAP SERVER COMPONENTS 

As we introduced, an EAP smartcard is a 
standardized, ISO 7816 microcontroller supporting 
most of authentication methods. It is described by an 
internet draft (Urien et al., 2006b) and a more 

detailed description may be found in (Urien et al., 
2005). 

 
We have developed the OpenEapSmartcard 

platform (OpenEapSmartcard, 2005) that provides a 
trusted execution environment for EAP methods and 
makes it a secure software entity. This platform is 
based on the standard Java Card Forum 
(JavaCardForum, 2006) framework that supports a 
cryptographic package including cryptographic 
resources needed by security protocols such as TLS. 
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Figure 2: The OpenEapSmartcard architecture. 

The OpenEapSmartcard platform comprises four 
java components (see figure 2): 
 
1- The EapEngine: it manages several methods and 
multiple instances of a given method. It implements 
the EAP core and acts as a router that sends and 
receives packets to/from methods. At the end of an 
authentication session, each method computes a 
master cryptographic key (the AAA Key) which is 
collected by the terminal operating system. 
 
2- The Authentication interface: this component 
defines all services that are mandatory in EAP 
methods in order to collaborate with the EapEngine. 
The two main functions are Init() and Process-Eap(). 
The first initializes method and returns an 
Authentication interface; the second processes 
incoming EAP packets. Methods may provide 
additional facilities dedicated to performances 
evaluations. 
 
3- Credential Objects: each method is associated to a 
Credential Object that encapsulates all information 
required to process a given authentication scenario. 
 
4- Methods: each authentication method is processed 
by a specific class. Once initialized, this object 
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analyses and processes each incoming EAP packet 
and delivers corresponding response. 

4 BENCHMARK 

4.1 Basic Constraints 

The WLAN standard (IEEE 802.1x, 2001) specifies 
some timing constraint related to the delay between 
EAP requests and responses. That must be (by 
default) less than 30 seconds. Moreover, the duration 
of the authentication procedure is limited to a 
maximum value of 60 seconds, in order to avoid the 
client network interface reset, which is generated by 
the DHCP (RFC 2131, 1997) timeout. 

 
In (Urien et al., 2004) and (Urien et al., 2006a), 

we described our implementation of EAP-TLS on 
EAP smartcards and detailed benchmark tests. The 
best results show that EAP-TLS session costs about 
five seconds on both on the client and server side. 
Even if the time required to run EAP-TLS is high – 
although it should be improved – it clearly appears 
that today javacards are able to fully run EAP-TLS 
in an interval compatible with IEEE 802.1X and 
DHCP requirements. 

 

 
Figure 3: Computing times distribution for EAP-TLS 
smartcards. 

Figure 3 shows the observed repartition of 
computing times for the EAP-TLS application. 
Operations are split into three categories, data 
transfer (about 2.6 kilobytes are exchanged during 
the TLS session with 1024 bits RSA keys), 
cryptographic resources (these facilities are 
supported by standard Javacard framework (Chen, 
2000), and software overhead, which is the time 
required by all remaining operations. 

4.2 EAP Server Card Performances 

Due to modest performances of smartcards, each 
EAP packet is managed by a thread. A thread is 
started for each response and ends when the EAP-

server delivers the next request or the last 
notification. 

 
If we call Tm the main thread that runs the 

RADIUS server and Ti a thread associated to a given 
EAP message, the EAP server management is 
therefore done according to the following paradigm: 

 
1- In thread Tm, the GetSession() procedure finds a 
smartcard (whose number is index) that is associated 
or that can be associated to the EAP session, 
identified with its id-session value, see (Urien et al., 
2006a) for more details. If no smartcard is available, 
then the incoming RADIUS Access-Request is 
silently discarded. 
 

<Tm: index= GetSession(id_session)> 
 
2- If a smartcard is available, then a thread Ti 
associated to that smartcard – identified by an index 
value – is created. 
 

<Tm: StartThread(index)> 
 
3- The incoming EAP-Response is forwarded to the 
appropriate smartcard (by ProcessEAP(index)), 
which afterwards returns an EAP request or a 
notification packet. Next, the thread Ti will build a 
RADIUS message (FormatRADIUSpacket()) that is 
sent to the access point (by SendRADIUSpacket()). 
 
<Ti:ProcessEAP(index) 
BuildRADIUSpacket() SendRADIUSpacket()> 
 

As we previously mentioned, when no smartcard 
is available on the server side, the incoming 
RADIUS packet is silently discarded. This 
mechanism is similar to the classical blocking 
algorithm used in circuit-switching. Therefore, we 
shall estimate the system performance in a way 
similar to an M/M/C/C queuing system, from the 
Erlang-B formula. 

 
 
 

 
Where  
- Pc is the probability of blocking (e.g. a RADIUS 
packet is silently discarded),  
- c is the number of smartcards (EAP servers),  
- λ is the rate of authentication sessions, and  
- 1/μ the mean time of an authentication session.  

 
With our best couple of devices (client and 
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of an authentication session is about 5+5 = 10 
seconds; therefore 1/μ = 10. Let’s now assume a 
network with 1000 users, authenticated every hour, 
then λ = 1000/3600 and so λ/μ = 10 x 1000/3600 = 
2,8. As illustrated by figure 5, the probability of 
blocking (pc) is about 50% with 2 smartcards (c = 2) 
and only 1% with 8 smartcards (c = 8). 

 

 
Figure 5: Using Erlang-B law, for adjustments of 
RADIUS server performances. 

5 IDENTITY PROTECTION 
WITHIN TLS 

As we introduced, we have implemented our SAM 
within Wi-Fi architecture, using EAP-TLS 
smartcards. EAP-TLS is based on TLS, the most 
deployed security protocol for securing exchanges. 
TLS provides connection security with peer entity 
authentication, data confidentiality and integrity, key 
generation and distribution, and security parameters 
negotiation. 

 
TLS protocol consists of several sub-protocols 

(RFC 2246, 1999); specially the Record and the 
Handshake protocols. The Record protocol provides 
basic connection security for various higher layer 
protocols through encapsulation. The Handshake 
protocol is used to allow peers to agree upon 
security parameters for the Record layer, 
authenticate themselves, instantiate negotiated 
security parameters, and report error conditions to 
each other. Handshake results in security attribute 
negotiation. Once a transport connection is 
authenticated and a secret shared key is established 
with the TLS Handshake protocol, data exchanged 
by application protocols can be protected with 
cryptographic methods by the Record layer using the 
keying material derived from the shared secret. 

 
We illustrate (see figure 6) TLS Handshake in 

three phases: the hello phase, the authentication 
phase, and the finished phase. During the hello 

phase, the client and the server negotiate 
cryptographic options (asymmetric and symmetric 
encryption algorithm, hash function, key exchange 
method, etc.) and exchange two random values that 
will be used by the key computation process. The 
second phase consists of exchanging certificates and 
of proving the identity and the validity of these 
certificates. In this phase, the client generates a 
secret called PreMasterSecret, which is sent 
encrypted using the server public key (see figure 6). 
During the finished phase, the client and the server 
exchange the ChangeCipherSpec and the Finished 
messages. The ChangeCipherSpec message is sent 
by both the client and the server to notify the 
receiving party that subsequent records will be 
protected under the newly negotiated cipher spec 
and keys. The Finished message is immediately sent 
after the ChangeCipherSpec message to verify that 
the key exchange and authentication processes were 
successful. The Finished message is the first 
message that is protected using the negotiated 
algorithms by the Record sub-protocol. 

5.1 TLS Authentication Options 
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Server Hello (ServerRandom) 

Server’s Certificate 
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SERVER 
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CA 
KPubCA 

Server 
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Figure 6: Mutual authentication with TLS, the client’s 
identity is unprotected. 

With TLS, the entities mutually authenticate 
using certificates which are sent in clear text,( see 
figure 6) leaving it unprotected. TLS supports three 
authentication modes: authentication of both parties, 
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server authentication with an unauthenticated client, 
and anonymity key exchange. For that, TLS 
proposes a range of cipher suites (cryptographic 
options). Some of these cipher suites provides 
anonymous communications in which neither party 
is authenticated. However, anonymous cipher suites 
are strongly discouraged because they cannot 
prevent man-in-the-middle attacks. 

5.2 TLS Identity Protection 

 

ExtendedClientHello (ClientRandom)) 

ExtendedServerHello (ServerRandom) 
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PRF(MasterSecret,”client_certificate” 
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Server 
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Figure 7: TLS Handshake with identity protection. 

There are some propositions to allow identity 
protection with TLS. One of them establishes an 
initial anonymous Diffie-Hellman exchange before 
establishing an ordinary handshake with identity 
information (Rescorla, 2000), even though this 
wouldn't be secure against active attackers. And it 
wouldn't favorable for some environments (e.g. 
mobile) because the client and the server must 
encrypt the whole ordinary TLS session and then 
increase enormously the processing time to establish 
the secure session. Another solution is a matter of 
changing the order of the messages that the client 
sends to the server in order to activate the 

encryption/decryption before sending the certificate. 
That way the certificate is sent protected by the new 
bulk encryption algorithm and key. However, this 
solution requires the definition of new version for 
TLS, in which IETF TLS working group does not 
agree (Rescorla, 2000). In order to provide identity 
protection in an extensible way and to integrate that 
with the SAM architecture, we extend TLS with a 
new extension using the TLS extensions standard 
(RFC 3546, 2003). This latter describes ways to add 
functionality to TLS (RFC 2246, 1999). The 
standard provides generic extension mechanisms for 
the TLS handshake client and server hellos and 
specifies some extensions using these mechanisms. 
It specifies extensions using the following generic 
mechanism represented in the external data 
representation (XDR) format (RFC 1832, 1995). 

 
struct { 
ExtensionType extension_type; 
opaque extension_data <0 .. 2^16-1>; 
       } Extension; 

 
The extension_data field contains information 

specific to the particular extension type (identified in 
the extension_type field). The extension defined 
below is sent by the client to indicate to the server 
that the client certificate will be sent encrypted using 
the negotiated symmetric algorithm and a secret key. 
It contains the symmetric encryption algorithms 
supported by the client in order of the client's 
preference (favorite choice first). The defined 
extension is of type "identity_protection". The 
"extension_data" field of this extension shall 
contain: 

 
struct {  
SymmetricAlgorithm 
symmetric_algorithm_list<0..2^16-1>; 
       } IdentityProtection; 
enum {rc4(0),(255)} SymmetricAlgorithm; 

 
If the server is not able to negotiate such session, 

it replays with an alert notification, falls back on an 
ordinary TLS handshake or stops the negotiation. 

 
If the server is able to process this extension, it 

selects a symmetric encryption algorithm from the 
list sent by the client. The selected algorithm and a 
16-bytes encryption key will be then used by the 
client to encrypt its certificate (in mode stream). 
Both the client and the server compute the 
encryption key by applying the PRF-TLS function 
(RFC 2246, 1999) on the random values and the 
master secret. 
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encryption_key =  
PRF(master_secret, 
"client_certificate", 
ServerHello.random+ClientHello.random); 

 
Upon receipt of the encrypted client certificate, 

the server should decrypt it, and check that the 
certificate is valid. Next, the client and the server 
continue their exchange as defined in TLS. 
 

Figure 7 illustrates TLS handshake, with our 
proposed identity protection mechanism. Identity 
protection is negotiated through two TLS extensions 
included in client and server Hello messages. The 
client’s certificate, which is usually sent in a clear 
text, is encrypted according to the negotiated 
cryptographic algorithm associated to the 
encryption_key, defined above. More details have 
been published in an IETF draft (Urien et al., 
2006c). 

5.3 Identity Protection with SAM 

As we cited before, it’s desirable to manage security 
protocols parameters, such as private and secret 
keys, by tamper-resistance computers. In this optic, 
our SAM smartcard allows highly secure storage of 
such credentials and verifies certificates in a trusted 
environment. It is, moreover, the only entity in the 
chain that retrieves certificates in clear text. In other 
words, all TLS cryptographic computations and 
certificate encryption/decryption are performed into 
the SAM. In this way, the certificate will not flow 
unencrypted nor on the network, neither on the client 
or server machines. 

6 CONCLUSION 

Identity protection is a critical requirement for 
network’s users, especially in a wireless context. In 
this paper, we introduced the SAM concept that 
works in WLAN or VPN architectures. Next, we 
extended the TLS protocol to provide identity 
protection services, and we integrated it within SAM 
infrastructures. The use of smart cards allows trusted 
computing, ensures client identity protection, and 
guaranties safe storage of sensitive credentials. 

REFERENCES 

RFC 1832, 1995. XDR: External Data Representation 
Standard. Internet Engineering Task Force, IETF. 

RFC 2131, 1997. Dynamic Host Configuration Protocol, 
DHCP. Internet Engineering Task Force, IETF. 

RFC 2401, 1998. Security Architecture for the Internet 
Protocol. Internet Engineering Task Force, IETF. 

IEEE 802.11, 1999. Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) 
Specifications, Institute of Electrical and Electronics 
Engineers. 

RFC 2716, 1999. PPP EAP TLS Authentication Protocol. 
Internet Engineering Task Force, IETF. 

RFC 2246, 1999. The TLS Protocol Version 1.0. Internet 
Engineering Task Force, IETF. 

Chen, C., 2000, Java Card Technology for Smart Cards. 
The Java Series, Addison Wesley, 2000. 

Rescorla, E., 2000. SSL and TLS- Designing and Building 
Secure Systems, Addison Wesley, 2000. 

IEEE 802.1X, 2001. "Local and Metropolitan Area 
Networks: Port-Based Network Access Control", 
Institute of Electrical and Electronics Engineers. 

RFC 3546, 2003. Transport Layer Security (TLS) 
Extensions. Internet Engineering Task Force, IETF. 

RFC 3559, 2003. Remote Authentication Dial In User 
Service Support for EAP. Internet Engineering Task 
Force, IETF. 

RFC 3748, 2004. Extensible Authentication Protocol, 
(EAP). Internet Engineering Task Force, IETF. 

Urien P., Badra M., and Dandjinou M., 2004. EAP-TLS 
smartcards, from dream to reality. In ASWN 2004, 
Fourth workshop on Applications and Services in 
Wireless Networks,. Boston, USA. 

OpenEapSmartcard, 2005. WEB site, 
http://www.enst.fr/~urien/openeapsmartcard. 

Urien P., Dandjinou M., 2005. The OpenEapSmartcard 
project. Short paper, In ACNS 2005, Applied 
Cryptography and Network Security 2005, Columbia 
University, New York, USA 

ISO 7816, 2006. Identification cards-Integrated circuit(s) 
card with contact, International Organization for 
Standardization (ISO), ISO/IEC 7816. 

JavaCardForum, 2006. www.javacardforum.org 
Urien P., Dandjinou M., 2006a. Introducing Smartcard 

Enabled RADIUS Server, In CTS 2006, the 2006 
International Symposium on Collaborative 
Technologies and Systems, Las Vegas, USA. 

Urien P., Pujolle, G., 2006b. EAP support in smartcard. 
Internet Draft, Internet Engineering Task Force, IETF. 

Urien P., Badra M., 2006c. Identity Protection within 
EAP-TLS, Internet Draft, Internet Engineering Task 
Force, IETF. 

SECURE ACCESS MODULES FOR IDENTITY PROTECTION OVER THE EAP-TLS - Smartcard Benefits for User
Anonymity in Wireless Infrastructures

163


