
LAYERED ARCHITECTURE FOR SECURE E-COMMERCE
APPLICATIONS

Amir Herzberg and Igal Yoffe
Computer Science Department,Bar Ilan University

Ramat-Gan, 59200, Israel

Keywords: Secure e-commerce, secure payments, attested delivery, e-banking, cryptographic protocol, non-repudiation.

Abstract: We present a layered architecture for secure e-commerce applications and protocols with fully automated
dispute-resolution process, robust to communication failures and malicious faults. Our design is modular, with
precise yet general-purpose interfaces and functionalities, and allows usage as an underlying secure service to
different e-commerce, e-banking and other distributed systems. The interfaces support diverse, flexible and
extensible payment scenarios and instruments, including direct buyer-seller payments as well as (the more
common) indirect payments via payment service providers (e.g. banks). Our design is practical, efficient, and
ensures reliability and security under realistic failure and delay conditions.

1 INTRODUCTION

Efficient payments are crucial for efficient markets
and commerce. Historically, improved payment in-
struments were critical to the development of com-
merce and economy. In particular, different secure,
unforgeable, authenticated payment tokens, made
trading easier: coins are easier to use than barter, pa-
per bills and checks easier than coins, credit-cards of-
ten easier than cash and checks.

To facilitate commerce between non-trusting peers
payment instruments used trusted third-parties. Of-
ten, these parties are trusted to hold the “real” values
(funds), and transfer them to the payee upon present-
ment of the appropriate payment authorization or to-
ken; this is the traditional role of a bank, or more gen-
erally a payment system provider (PSP). A separate
role for trusted third parties is to prevent or resolve
disputes between the parties, including disputes in-
volving bank, PSP, or other payment-related services.
Indeed, the ultimate control of payment instruments,
prevention of fraud and resolution of disputes, are of
the basic attributes of sovereignty. Banks (and some
other PSP) are usually subject to laws and government
regulation and supervision. One goal of these mech-
anisms is to prevent, or at least resolve, bank/PSP
fraud, e.g. a bank denying a deposit or removing
funds without authorization.

Traditionally, the main mechanism for dispute res-

olution is the use of (handwritten) signatures. Banks
provide customers with signed receipt for each de-
posit, and customers sign authorization for each pay-
ment (by check, credit card, or any other means).
There are laws and regulations on the necessary au-
thentication and record-keeping by financial institu-
tions, and the system works well, at least for tradi-
tional, face-to-face transactions.

Currently, systems deployed with a PSP require
complete trust in the PSP, i.e. do not include mech-
anisms to prove PSP fraud; do not offer receipts
or dispute resolution. Moreover, unfortunately and
alarmingly, current deployed systems mostly rely
on credit card numbers, passwords and other weak-
authentication mechanisms, usually transmitted over
a connection protected by the SSL or TLS proto-
col. There were several proposals for deploying addi-
tional cryptographic authentication, most notably on
(anonymous) digital cash e.g. (Chaum, 1983) and mi-
cropayments e.g. (Herzberg, 2003; R. Rivest, 1996).
The most significant effort was theiKP secure credit-
card payments protocol (Bellare et al., 2000), which
was adopted (with changes) into theSET (Secure
Electronic Transactions) system by Visa, MasterCard
and others, but not widely deployed. We should note
that bothiKP andSETdid not include a dispute reso-
lution process.

Several of these proposals, including iKP and SET,
authorized transactions using digital signatures by

118
Herzberg A. and Yoffe I. (2006).
LAYERED ARCHITECTURE FOR SECURE E-COMMERCE APPLICATIONS.
In Proceedings of the International Conference on Security and Cryptography, pages 118-125
DOI: 10.5220/0002099801180125
Copyright c© SciTePress



buyers and sometimes also sellers. A possible ad-
vantage of signatures over many other authentication
mechanisms, is that signatures can be validated by
any party - not just the recipient - and at any time, not
only at real payment time. In this sense, a payment
system can use digital signatures, to allow third-party
resolution of disputes, similarly to use of paper signa-
tures. This was definitely one of the goals of signing
in iKP.

Currently deployed systems do not have a secure
mechanism for fair dispute resolution. To protect con-
sumers, laws and regulations often force a default res-
olution in favor of the buyer. There are exceptions,
most notably, laws and regulations that accept the va-
lidity of records kept by a bank, when a client de-
nies having made a transaction. Clearly, such simple
dispute-resolution mechanisms provide an acceptable
solution to many existing payment scenarios, in spite
of their obvious potential unfairness to one party.

In this paper, for the first time, we present a con-
struction which ensuresefficient, fault-tolerant and
fair dispute resolutionto e-payment transactions. As
mentioned, many of the proposed payment protocols
use digital signatures, often with the hope of facili-
tating dispute resolution. However, few works (Her-
reweghen, 2000; J. Tang, 2004) including works on
non-repudiation (Zhou, 2001; Nenadic and Zhang,
2003) analyzed how the dispute resolution would
work in such protocols, and tried to define appropriate
process. The resulting processes were designed for a
human, and not fully automated. Furthermore, these
works did not consider the effects of communication
failures.

We considered bothdirect payments, between two
parties, andindirect payments, involving a trusted
third party such as a bank. Furthermore, we divide the
payments used in traditional and online commerce, to
three groups. The payments could benon-final, fi-
nal andconditional final. With non-final payments,
the payee need to validate the availability of the payer
funds, and take into account the payment might be
reversed. For example, paying a merchant with a per-
sonal check, may result in the merchant withholding
goods, until the check is cleared with the bank. An-
other example of non-final payments, are credit card
MOTO (mail order, telephone order) payments, which
are unique in the absence of the credit card itself in the
transaction. Most laws allow non-final MOTO pay-
ments to be easily reversed, by the customer stating
he never approved the order.

On the other hand, with final payments, the ap-
proval and availability of payer funds is a function of
the payee local validation and actions only. A certi-
fied check, for example, from a known bank assures
the merchant that he would receive payment if he de-
posits it within a time frame as defined by banking
laws. Another category of payments, are conditional

Table 1: Payment instruments between two or more parties.

Payment Type Example

Direct (2P) Immediate cash, barter, tokens

Conditional betting, futures

Expirable

Indirect(>2P) Non-Final MOTO, personal checks,

(clearing) online credit cards usage

Final credit cards, certified

payment options and checks

Conditional lottery, escrow, conditional

Final certified payment options

Figure 1: Repetitive successful flow of orders.

final payments. One would receive payment against
a horse betting ticket, which is a certified conditional
payment option, only if the horse won the race, or in
case of e-mail, if one is signed on a message, it is, con-
ditionally, a payment, if the message is considered as
a SPAM (Herzberg, 2004). In Table 1 we summarize
the various payment instruments we had mentioned.

The design we present is flexible, and supports sev-
eral types of payments, allowing its use as underly-
ing layer for many secure commerce protocols. Each
payment network principal employs four secure e-
commerce application layers, anapplication layer, a
paymentlayer, anorder layer and anattestationlayer,
as a bottom layer, as shown in Figure 2.

The most basic form of payment is a direct, im-
mediate payment order. Our design easily supports
such direct payments. See a simple example scenario
in Figure 1, where a payments client (client) opens a
payment channel (pay channel) to a payment server
(server), and then sends several payment requests, to
each of which the server sends back a response.

The design also supports conditional and expirable
payment orders. In this case, the server responds to
the order with a paymentoption. Furthermore, we use
the option mechanisms also to facilitate three-party
payments, both final and conditional.

One aspect of the flexibility of our layered con-
struction is the support for arbitrarycondition func-
tion on payments, provided as a ‘black box’ function
to payment and e-commerce protocols. The condi-

LAYERED ARCHITECTURE FOR SECURE E-COMMERCE APPLICATIONS

119



tion function is defined as part of apayment agree-
mentbetween the payment client and payment server.
In particular, we use the same basic two party pay-
ment, to enable also payments via a trusted third party
PSP, which has a long-term relationship with both
buyer and seller. The three party payment transac-
tion (buyer, PSP and merchant) is done by two in-
stances of the simple, two-party transactions, one be-
tween buyer and the PSP, and the other between the
seller and the PSP. Details and examples are presented
later on (specifically see Figure 3). Properly-designed
condition functions can support many other scenar-
ios, including betting, hedging and other structured
investment devices, and much more.

Related Work. Many payment models and
schemes have been developed over the years. Many
of these protocols focused on aspects of the payment
process, where the widely-used credit card system is
not satisfactory. The two main directions here are
micropayments (R. Rivest, 1996; Micali and Rivest,
2002; Herzberg, 2003) and digital (anonymous) cash
(Chaum, 1983). An important exception isiKP, the
i-Key-Protocol (Bellare et al., 2000), a family of pro-
tocols for secure credit-card payments, which was
adopted by MasterCard and Visa for the SET stan-
dard (which seems to have been abandoned). Another
important exception is theNetBill (Cox et al., 1995)
protocol, which is a distributed transactional payment
protocol featuring atomic delivery, where payment
proceeds only if the customer had received the goods.
Additional, notable layered architecture, though lack-
ing automated resolution process, is SEMPER (La-
coste et al., 2000), which aimed to create a global,
decentralized and secure marketplace. The literature
also includes vast research regarding non-repudiation
and fair exchange (Nenadic and Zhang, 2003; Pfitz-
mann et al., 2000; Ray and Ray, 2002) along with
dispute resolution (Kremer and Markowitch, 2003)
for different levels of a trusted third party involve-
ment (Zhou et al., 1999); for such a survey see (Kre-
mer et al., 2002). The mentioned works lack the
proofs to match between orders and issued goods,
or don’t handle failed submission of orders, pay-
ments or payment option deposits, which makes them
unsuitable as underlying infrastructure for secure e-
commerce services.

Contribution of this work. Our main contribution
may be in the presentment of new e-commerce lay-
ers as a well defined, fully-automated services, un-
derlying secure e-commerce protocols and applica-
tions. We present an architecture, define e-commerce
layers with well defined services and interfaces. An-
other key contribution is our validation constructions,
where every e-commerce layer defines its validation
functions for automated dispute resolution, which is
efficient and fair to all parties.

Figure 2: Secure E-commerce layers vs. Internet layers.

Table 2: Attestation evidence structure.

Evidence Field Description
type Evidences of origin, delivery and

failed submission,EOO, EOD, EOFS,
respectively.

agr Attestation agreement.
msg The message sent.
ci Creation time interval.
σ Signature over evidence

fields.

2 ATTESTATION LAYER

TheAttestationlayer is the lowest secure e-commerce
layer. Attestation layer is based on top of a transport
layer, such as, for example, TCP/IP, TLS/SSL, work-
ing on top of socket or SSL API, respectively, and
provides additional certification services. An attested
session is always between three parties: client, server,
and a notary (trusted third party), which acts as time-
stamping and certification provider.

An attestation (Table 2) is a time-stamped and
signed statement, by an entity or a notary, on behalf of
the entity. Anevidence of delivery(EOD), is an attes-
tation of message acceptance by an intended message
receiver. Anevidence of origin(EOO), is an attesta-
tion of a message origin. Anevidence of failure and
submission(EOFS) is an attestation that the message
was correctly sent, yet wasn’t acknowledged by the
intended receiver (as with EOD).

Generally, the EOD is a proof for the message
sender, that the intended message receiver had indeed
received the message. The EOO, intended for mes-
sage receiver, ensures that the message in question
had indeed originated from the claimed sender. The
EOFS allows the sender to prove he had sent the mes-
sage in question, even if the message wasn’t received
due to communication faults or adversarial behavior.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

120



Table 3: Attestation agreement.
Agreement Field Description
∆bound Bound on attestation layer answer,

for message delivery.
Id0, Id1, Notary The identities of the principals

participating in the agreement.
Principal’s identity is an(addr, vk)

tuple, of principal’s address and
public validation key, respectively.

Time-stamping. The attestation layer supplies, as
part of the evidences mentioned above, evidence that
a message had existed at specific time interval, and by
that time was also signed by the originating party’s
validation key. This allows cognoscibility of a mes-
sage even after message originator’s validation key
had expired, been compromised or revoked.

Confidentiality. In our model we do not treat
confidentiality issues, which could be solved by us-
ing transport communication layers below attestation
layer, for instance, TLS/SSL or IP-Sec layers.

Failed Delivery. We assume simple management
of non-delivered messages, where each message is
assigned only one type of evidence during lifetime.
The attestation layer doesn’t try to re-deliver a mes-
sage (reliability service could be provided by layers
below attestation, e.g., TCP), if it had been assigned
an EOFS.

Attestation Agreement. An attested communica-
tion channel is established using an attestation agree-
ment, specified in Table 3, and for which we assume
settings are valid for the whole period the channel re-
mains open. Parties signing the agreement specify
own identities and the notary that would be used for
attestation. The∆bound, agreement field, is the bound
required for the attestation service to return an evi-
dence, EOD or EOFS, for a sent message.

Validation. The validation functionality is not re-
lated to any particular instance of attestation module,
and could be invoked by any third party, which had
obtained the attested communication agreement and
would have to supply the evidence in question. The
Validate(e,type,id)efficient predicate returns whether
the evidencee, Table 2, is valid. Theid specifies
the principal whose validation key is to be used from
the attestation agreement extracted from the evidence,
andtypespecifies the validated evidence type.

Attestation interface. The interface between pay-
ment and attestation layers is described in Table 4, and
consists of initialization interface and an interface to
send and receive message along with their respective
evidences.

Initialization. Attestation initialization is two
phased, where inInit, the attestation layer generates
secret and validation key pair, keeps the secret key

and inInitResultreturns the validation key, along with
the (communication) address of the attested instance.
These values, address and validation key, compose
principal’s identity, for the above layer, e.g., payment
or application layers, and would be used to sign evi-
dences, as specified in Table 2.

3 ORDER LAYER

The layer encapsulates operations (“orders”) related
to goods and services. The layer provides the service
for placing an order for goods or services by a client,
and validating that the server returned order result ad-
here to the order agreement signed between the prin-
cipals.

Order Agreement. We define an order agree-
ment between trading parties as specified in Table 5.
To sign an order agreement, the parties should agree
on an appropriate attestation agreement, and a trade
validation function,ValidateTrade(order,goods). The
function should haveBadOrder, BadGoods, OrderOk,
GoodsOkreturn values. TheBadOrderreturn value is
issued for an order which is invalid under the agree-
ment, regardless of the value of goods. The second,
BadGoodsreturn value, is issued for goods which do
not match the order (which should also include the
payed amount), theOrderOkreturned for valid order,
without goods; and theGoodsOkstatus is returned
when the corresponding goods match the order, in the
context of the agreement.

Table 5: Order agreement.
Agreement Field Description

ValidateTrade(order,goods) Trade validation function.

returnsstatus; Validates that issued goods

match the order.

AttAgr Attestation agreement,

see Table 3.

Order interface. The interface between the appli-
cation and order layer, Table 6, defines the initializa-
tion, ordering goods or services, and validation of or-
der results. In the first,Init phase, each order layer
machine establishes its own identity, as returned by
attestation layer. Using this information a principal
may establish order agreements with other network
principals.

When an order channel is established, order trans-
action are invoked withOrder event, supplying client
specified order information which defines the de-
posited option or type of goods to acquire, the pay-
ment amount, and possibly other relevant information
(e.g., original merchant offer). We then expect an
OrderResultevent within finite time, as governed by

LAYERED ARCHITECTURE FOR SECURE E-COMMERCE APPLICATIONS

121



Table 4: Attestation layer interface.
Method Direction Description
Init(1k) in Initializes attestation layer, with a security parameter.
InitResult(vk,addr) out Returns generated validation keyvkof the initializer, and the principal’s

addressaddr in the payment network.
OpenChannel(AttestationAgreement)in Establishes an attested channel between the source principal,

destination principal and a notary.
OpenChannelResult(success) out Notifies the principal that an attested channel had been established.
CloseChannel() in Closes an attested communication channel.
Send(m) in Sends a a messagem over established, attested, channel.
SendResult(e) out Returns an attestation evidence, Table 2, for the sent message.
Deliver(e) out Delivers an evidence of origin, Table 2, which also includesthe message.

Table 6: Order layer interface.
Method Direction Description
Init(k) in Initializes the order layer, with security parameterk.
InitResult(vk,addr) out Returns initializer’s addressaddr, and validation keyvk.
OpenChannel(OrderAgr) in Opens an order channel with the principal(s) specified by

OrderAgragreement.
OpenChannelResult(status) out Notifies the application of the order channel establishment success.
CloseChannel() in Closes an order channel.
Client

Order(order) in Instructs the order layer to issue an order, described byorder,
over an established order channel.

OrderResult(status,result) out Returns the order status and result.
Server

VendRequest(order) out Instructs the application layer to issue goods, described byorder,
and implicitly by the order agreement, in the order context.

VendRequestResult(orderresult) in Returns the vended goods, from the application.
Validation

Validate(OrderAgr,orderevidence)in Validation of order evidences according to the suppliedOrderAgr.
returnsresult Whereresult is NoFraud, ServerFraud, ClientFraud.

the ∆bound, specified in the encapsulated attestation
agreement.

On the server side, we assume an application (or
upper) level functionality to issue goods or services,
usingVendRequestinterface. The goods and services
are issued in the context of the order agreement spec-
ified for the open order channel, and are verifiable by
order agreement’sValidateTrade.

The validation functionality,Validate(e), is com-
mon to all parties. That is, an automatic dispute res-
olution system, or an arbiter, upon dispute, would in-
stantiate the order layer, and supply the relevant order
agreement along with the the protocol-specific order
evidencee. Such order layer evidences include evi-
dence of purchase and evidence of failed order, for the
client, and evidence of sell, or of a bad client order, for
the server. The aforementioned evidences typically
composed of pairs of relevant attestation evidences.

4 PAYMENT LAYER

The payment layer encapsulates operations related to
funds, which includes payment transactions, final and
conditional payment orders, and maintaining of ac-
counts for trading principals.

The payment layer interface is identical to order
layer interface, Table 6, with an additional meaning to
theOrder interface method, for support of the afore-
mentioned payment instruments, e.g., ordering a pay-
ment option.

Payment layer agreement is specified in Table 7,
and includes trading principals initial mutual credit,
an encapsulated order agreement and aValidateCon-
dition method for validating payment order deposits.

ValidateCondition. The ValidateCondi-
tion(option,condition), is an agreement between
parties, regarding evaluation of conditions of certified
options at deposit time. It compares option induced
condition, with the supplied one, at time of deposit, to
decide whether an option should be honored. Using a
horse-betting example, anoption, for instance, could

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

122



Table 7: Pay agreement.
Agreement Field Description
ValidateCondition(option, Validation function for
condition)returnsboolean; payment options’ conditions.
clientCredit Initial client’s credit.
serverCredit Initial server’s credit.
OrderAgr Order agreement, see Table 5.

specify odds, bet funds, race, the chosen horse, and
bookie’s signature required to approve the result. The
condition, supplied along with the option when it is
deposited, would be winner’s name and race, signed
by the bookie specified by the option.

Payment evidences and Validation. Payment
layer evidences include balance statements, along-
side with evidences of client or third-party’s deposits
of payment orders, issued to the pay client. We re-
mark that for simplicity of management the state-
ments could be incremental, and enclosed within
each payment transactions. Validation of payment
layer evidences is straightforward, provided undis-
puted (signed) server balance statement, for the previ-
ous payment transaction, and comparing amount and
validity of current transaction evidences which in-
cludes server supplied evidences of payment options
deposits, to the balance statement of the current (dis-
puted) transaction.

Multi-party payments. Payments which involve
multiple PSPs could be facilitated by additional,
multi-party, e-commerce layer. The layer would
maintain an open, decentralized payment network,
which is to provide interoperability among many
PSPs without requiring global trust in each PSP, by
means of payment routing tables (PRTs) and agree-
ments, that would allow automatic dispute resolution,
involving multiple PSPs along a payment path. For
further details see (Herzberg, 2003).

5 BREAKDOWN AND USE-CASES

We present few concise use-cases, which together
with the presented attestation and payment layer
APIs, would clarify how one should implement
payment-layer machines (client and server) and com-
mon validation functionality, for a payment protocol.
We plan to publish full implementation of our order
and pay layer protocol, includingValidatepredicates
in a separate paper.

1. Ordering goods or services.We begin with a
trivial flow of a set of successful orders, as shown in
Figure 1. Two trading principals, client and server,
use a signed pay agreement to establish a payment
channel. Over the payment channel they progress
with a set ofrequestandresponsepairs, where each

such pair, is a successfully completed order. The or-
der request may be requests for goods or services,
such as, request for a payment option, and the re-
sponse contains either a refuse, or the requested
goods. The returning goods and services could be
validated to match the order and the payed amount,
by the client, or any party, e.g., an arbiter, using the
pay agreement between the server and the client.

2. Ordering and depositing an option.An option
acquisition and deposit, is between two trading par-
ties, namely, server and client. The process begins
with ordering an option, where the server removes
funds from client’s account to pending, and issues the
option. The option response arrives to the client, in a
form of EOO. When the client deposits such option,
as EOO, server validates that it’s an EOO issued by
itself, validates the option condition, and if the condi-
tion is upheld, and option didn’t expire, commits the
funds transfer from pending to self. Then, a receipt
and the goods specified by the option, are sent, in a
response message, to the client.

3. Notarized failure of ordering goods or ser-
vices. We show failed flow of orders, and describe
the recovery within the next order, in Figure 5. We
begin with the simpler case; in case A, shown in the
figure, an order response has failed, with notarization,
for server. When the next order arrives, the server in-
cludes with the response, the EOFS, for the previous
(failed) response, and includes an updated balance
statement. The client, which was aware of only one
successfully processed order, receives the response
and the enclosed EOFS, for the failed response, vali-
dates the EOFS, and concludes that both orders were
processed, and update its account and balances ac-
cordingly.

The next case, described as figure’s case B, as op-
posed to case A, a client’s request fails, possibly, be-
cause server unavailability, and thus client is issued
an EOFS. This EOFS2 is enclosed with the next, third
order, order3 request. The server, would process all
previous failed orders, enclosed with the request. For
instance, if the failed order was a deposit of an option,
it needs still to be deposited, and the deposit time to be
taken from the EOFS. As for failed orders, pay agree-
ment may specify special fees or fines for server’s un-
availability.

Also, notice the incremental nature of EOFSes,
where, for each failing request or response, the next,
request or response, respectively, will include all the
previous EOFS-es.

4. Communication failures. For benefit of hon-
est parties we supply means of recovery from non-
notarized communication failures. Consider the case
in Figure 4; a client (or similarly a server) issuing an
order request, receives in return a communication fail-
ure (instead of an EOD). The client could not possibly
know whether the channel had failed, before the re-

LAYERED ARCHITECTURE FOR SECURE E-COMMERCE APPLICATIONS

123



Figure 3: Trade and payments with PSP intermedi-
ate.

Figure 4: Non-notarized communication failure for
orders.

quest had been delivered (and server had obtained an
EOO), or afterward, and the failure had prevented him
from receiving an EOD (or EOFS). Thus, the state of
the order would be unknown, until the next order suc-
cessfully completes. As could be seen in the figure,
if the order was indeed received by a honest server,
the client would see the order’s EOO included in the
next response, and update order’s status, and account
balances, accordingly.

5. Dispute resolution. Consider disputes regard-
ing amount of funds in the accounts, after a series of
orders. Since account balances could be validated in-
crementally, adhering to the concept of retaining last
evidences, the client would turn to an arbiter with two
subsequent sever response evidences, as a payment
evidence. The arbiter would instantiate the payment,
order and attestation layers, given the pay agreement,
and would invoke the correspondingValidate rou-
tine. Possible implementation of the routine, which
is shared by all protocol parties, would be taking the
balance statement from the (last) non-disputed server
response, and comparing all the reported order-results
and deposit balance changes, to the balance reported
in the current response, in addition to checking de-
posits validity withValidateCondition.

Additional scenarios, e.g., server just ignoring an
order, for which the client had obtained an EOD,
could be addressed by introducing additional order
layer evidences and order layer trusted party, which
could, similarly to attestation, issue an evidence of
failed (or ignored) order for the client.

6. Payments with PSP intermediate.With indi-
rect final payments, the payee (merchant) receives a
pre-authorized payment option from the payer (cus-
tomer). The payee is able to locally validate the pay-
ment, unlike payments which require clearance to en-
sure availability of payer funds. When the option is
deposited to the PSP, its condition is evaluated, and
if the evaluation succeeds the PSP makes the transfer

Figure 5: Failed order flows.

between payer an payee accounts, otherwise the pay-
ment option is discarded. In Figure 3 we show our
schematic settings for such indirect payments. The
conditional payments flow between the payer and the
payee progress as two separate interactions, as fol-
lows: a PSP receives an order for an option from the
payer, moves the funds specified by the order to pend-
ing, and returns a payment option. The payer, in a
process of trade with the payee, handles the payment
option to the payee. In his own pay interaction against
the PSP, the payee deposits the option. At deposit,
the PSP checks for expiration and option condition,
and then two receipts are generated, one indicating
the end of PSP’s transaction against the payer and the
other indicating the end of PSP’s transaction against
the payee.

The trade itself between the payer and the payee,
shown as a dotted line, could be performed by any e-
commerce protocol. Although the merchant and the
customer do not maintain long-term relationship as
required in our settings (such long-term relationship
renders introduction of a PSP intermediate as arti-
ficial), the option itself could be used as a material

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

124



for signing ad-hoc pay agreement (see Section 4) be-
tween the parties. Then, multiple trade transactions
could occur between payer and payee, until the credit
specified by the option is exhausted.

In addition, using conditional certified payment op-
tions provides extra flexibility. Consider, for exam-
ple, the case of assuring goods delivery, as with Net-
Bill (Cox et al., 1995). The PSP conditions the payee
presenting a delivery receipt signed by a customer, or
notarized delivery services (N. Asokan, 2000). Such
receipt would be checked by theValidateCondition
pay agreement predicate, upon option deposit, assur-
ing option deposit is successful only when goods had
been delivered.

6 CONCLUSION

Following our construction we are implementing a
payment protocol with automated dispute resolution,
it would be published in a separate paper. We also
consider applying our constructions and protocol for
the SICS (Herzberg, 2004), SPAM-prevention sys-
tem. We believe SICS could be easily adapted for
the presented architecture, in collecting and resolving
SPAM-related payments.

In conclusion, we have introduced a novel,
agreement-based, mechanism, and have shown how
to use it to construct final and conditional final pay-
ments, between two parties which maintain a long
term relationship, or how to conduct trade when a
PSP is a trusted party. Our constructions are practi-
cal, layered, with promise of automatic dispute reso-
lution based on precise agreements and relatively sim-
ple cryptographic constructions assumed.

REFERENCES

Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk,
H., Steiner, M., Herrenweghen, E. V., and Waidner, M.
(2000). Design, Implementation and Deployment of
the iKP Secure Electronic Payment System. InJour-
nal on Selected Areas in Communication, special is-
sue on Network Security, volume 18, pages 611–627.

Chaum, D. (1983). Blind Signatures for Untraceable Pay-
ments. InAdvances in Cryptology - Proceedings
of CRYPTO ’82, pages 199–203. D. Chaum, R. L.
Rivest, and A. T. Sherman, Eds., Plenum, NY.

Cox, B., Tygar, J. D., and Sirbu, M. (1995). NetBill secu-
rity and Transaction Protocol. InThe First USENIX
Workshop on Electronic Commerce, pages 77–88.

Herreweghen, E. V. (2000). Non-repudiation in SET: Open
Issues. InProceedings of the 4th Conference on Fi-
nancial Cryptography.

Herzberg, A. (2003). Payment technologies for E-
commerce, Chapter 13, Micropayments. Springer-
Verlag.

Herzberg, A. (2004). Controlling Spam by Secure Inter-
net Content Selection. InProceedings of Secure Com-
munication Networks (SCN), volume 3352 ofLNCS,
pages 337–350. Springer-Verlag.

J. Tang, A. Fu, J. V. (2004). Supporting Dispute Handling
in E-commerce Transactions, a Framework and Re-
lated Methodologies. InElectronic Commerce Re-
search Journal, volume 4, pages 393–413. Kluwer
Academic.

Kremer, S. and Markowitch, O. (2003). Fair Multi-Party
Non-Repudiation Protocols.International Journal on
Information Security, 1(4):223–235.

Kremer, S., Markowitch, O., and Zhou, J. (2002). An Inten-
sive Survey of Non-repudiation Protocols.Computer
Communications, 25(17):1606–1621.

Lacoste, G., Pfitzmann, B., Steiner, M., and Waidner, M.,
editors (2000).SEMPER - Secure Electronic Market-
place for Europe, volume 1854 ofLecture Notes in
Computer Science. Springer-Verlag.

Micali, S. and Rivest, R. (2002). Micropayments revis-
ited. InProgress in Cryptology — CT-RSA 2002, vol-
ume 2271 ofLNCS. In Bart Preneel, editor, Springer-
Verlag.

N. Asokan, V. Shoup, M. W. (2000). Optimistic fair ex-
change of digital signatures.IEEE Journal on Selected
Areas in Communications, 18:593–610.

Nenadic, A. and Zhang, N. (2003). Non-repudiation and
Fairness in Electronic Data Exchange. InProceed-
ings of 5th International Conference on Enterprise
Information Systems (ICEIS), pages 55–62, Angers,
France.

Pfitzmann, B., Schunter, M., and Waidner, M. (2000). Prov-
ably Secure Certified Mail. InIBM Research Report
RZ 3207 (#93253), IBM Research Division, Zurich.

R. Rivest, A. S. (1996). PayWord and MicroMint: Two
Simple Micropayment Schemes. InProceedings of
the International Workshop on Security Protocols,
pages 69–87.

Ray, I. and Ray, I. (2002). Fair exchange in E-commerce.
SIGecom Exch., 3(2):9–17.

Zhou, J. (2001).Non-repudiation in electronic commerce.
Computer Security Series. Artech House.

Zhou, J., Deng, R. H., and Bao, F. (1999). Evolution of Fair
Non-repudiation with TTP. InACISP ’99: Proceed-
ings of the 4th Australasian Conference on Informa-
tion Security and Privacy, pages 258–269, London,
UK. Springer-Verlag.

LAYERED ARCHITECTURE FOR SECURE E-COMMERCE APPLICATIONS

125


