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Abstract: In this paper, a new multi-secret threshold scheme based on linear algebra and matrices is proposed. Unlike 
many recently proposed methods, this method lets the use of conventional cryptographic algorithms in shar-
ing multiple secrets. Our scheme is a multi-use scheme, which in some cases, the amount of computations is 
considerably reduced. Also, in this paper bounds on the maximum number of participants, for a given 
threshold value, are obtained. 

1 INTRODUCTION 

Secret sharing has been a subject of study for the 
last three decades and is a useful tool in modern 
cryptography. It plays an important role in    protect-
ing information from getting lost, stolen, or de-
stroyed and has been more applicable in recent 
years. Secret sharing schemes either can be   identi-
fied as threshold schemes or generalized group-
oriented cryptosystems. Various approaches have 
been proposed for the general problem. In 1979, the 
first ),( nt  threshold scheme was proposed by Blak-
ley (Blakley , 1979) and Shamir (Shamir, 1979) 
independently, where, Blakley’s scheme is based on 
linear projective geometry and Shamir’s scheme is 
based on the Lagrange interpolating polynomial. In 
a ),( nt  threshold scheme, a secret can be shared 
among n  participants and at least t participants are 
required to    reconstruct the secret, while )1( −t or 
fewer participants can obtain no    information about 
the secret. In a multi-secret sharing scheme, there 
are multiple  secrets to be distributed during a secret 

sharing process but only one share is kept by each 
participant and many secrets can be shared without  
refreshing the share . 

     As mentioned in (Jackson et al, 1994), multi-
secret sharing schemes may be classified into two 
groups: One time-use and multi-time use schemes. 
In a one time-use scheme, the secret holder redis-
tributes new shares to each participant once a par-
ticular secret is reconstructed. The schemes in 
(Blakley , 1979), (Shamir, 1979) and (Karnin et al., 
1983) are of this type. On the other hand, in a multi-
time use scheme, the shadows owned by any partici-
pant remain still secret to others, after the recon-
struction of multiple secrets. Therefore, there is no 
need to redistribute new shares to each participant, 
which is a costly process in both time and resources 
((Jackson et al, 1994)). The schemes in (Deng et al., 
1995)   (Chien et al., 2000) (Bertilsson et al.,, 1992)   
and (Pang, 2005) are of this type. 

     A special class of secret sharing schemes are 
the linear threshold schemes which are based on 
vector spaces and systematic linear block codes 
((Deng et al., 1995)   (Chien et al., 2000) (Bertilsson 
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et al.,, 1992)   (Karnin et al., 1983)).The proposed 
scheme is a linear threshold scheme in which the 
secret S  is  stored in  a matrix (or in a linear sub-
space). This matrix (or linear subspace) has the 
property of being constructed by special (author-
ized) set of vectors and of course, a non-special 
(non-authorized) set would give no information 
about it. The scheme is applicable in both one-secret 
and multi-secret sharing systems and is a multi-time 
use scheme.  

     One major problem in many of the previously 
proposed linear threshold schemes such as Deng, et 
al. scheme (Deng et al., 1995)   , Chien, et al. 
scheme (Chien et al., 2000), is the dependency of 
secret reconstruction process on the number of par-
ticipants ( n ). For example, in Chien’s scheme, in 
order to reconstruct p     secrets, solving 

tpn −+ simultaneous linear equations is required. 
This dependency, especially when n  is a large 
number with respect to t , would make the scheme 
somehow inefficient. In the proposed scheme, the 
secret decomposition scheme is totally independent 
of the number of participants. 

     In most of the previous schemes the computa-
tions are performed in )( mqGF  where, mq  is larger 
than all the used numbers. In fact, all the used num-
bers are elements in this field. But in our scheme the 
computations could be done in a field of any size, 
hence, reducing the amount of computations. 

     The paper is organized as follows. In section 
2, we shall briefly review Chien’s scheme as an 
example of a recently proposed linear threshold 
scheme. In section 3, we shall present the proposed 
scheme and make some security analysis. In section 
4, a comparison is given between our scheme and 
other schemes such as Chien’s. Finally, in section 5, 
conclusions are presented. 

2 REVIEW OF CHIEN’S 
SCHEME 

Before presenting Chien’s scheme (Chien et al., 
2000), we give a definition of a one-way func-
tion ),( yxf  with two variables x  and y . One-way 
function has been used in Chien’s scheme, and will 
be used in our scheme. 

     Definition 1 If function ),( yxf  denotes a 
two-variable one-way function that maps any x  
and y  to a bit string ),( yxf  of fixed length ((He et 
al., 1995)), the function has the following properties:  

a) Given x  and y , it is easy to com-
pute ),( yxf . 

b) Given x  and ),( yxf , it is hard to com-
pute y. 

c) Given y  and ),( yxf , it is hard to com-
pute x . 

d) Having no knowledge of y it is hard to 
compute ),( yxf  for any x .  

e) Given y , it is hard to find two different 
values 1x  and 2x  such that ),(),( 21 yxfyxf = . 

f) Given pairs of ix  and ),( yxf i , it is hard to 
compute ),( yxf ′  for ixx ≠′ . 

       The proof of existence, as well as few exam-
ples on construction of such one-way functions is 
given in ((He et al., 1995)).  Chien’s scheme is as 
follows: 

        Step 1   Let )2( mGF be a large finite field 
such  that  all  the   used  

                     numbers are  its   elements  and   let   
g   be   a    primitive     

                     element ; Let ))(2,( tpnpnG −++  
denote a special type of                        

                     systematic block codes generator 
matrix [P  ] tpnpnI −+×+ )(2)(   

                     where I is an identity matrix of  or-
der  )()( pnpn +×+  and   

                     P   is   a    )()( tpnpn −+×+    

matrix     [ ])1)(1( −− jig      for    
                     pni += ~1     and     

tpnj −+= ~1   ((Lin, 2004) );   The   secret    
                      holder randomly selects  nss ,...,1    

as participants’   secret  
                     shadows. 
        Step 2   The secret  holder   randomly   se-

lects  r    and   computes   
                    ),( isrf for each participant.  
        Step 3   Assuming pPPP ,...,, 21  are the p  

secrets to be  shared,  let    
                    

)],(),...,,(),,(,,...,,[ 2121 np srfsrfsrfPPPD =  be  
the vector  

                     of  information  symbols. The secret  
holder computes  the 

                            corresponding  code word  
DGV =  as follows: 
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(2) 
        Step 4   Publish ),...,,,( 21 tpncccr −+  in an 

authenticated manner. 
     The secret reconstruction process is very sim-

ple and straightforward. In order to reconstruct the 
p  secrets, at least t  participants poll their pseudo 

shadows ),( isrf . Thus, the )( tpn −+  equations in 
(2) are obtained with only )( tpn −+  unknown 
symbols. Therefore, the p  secrets can be obtained 
by solving the simultaneous )( tpn −+  linear equa-
tions in (2). The important point is that the secret 
shadows is  will not be revealed even though all of 
the symbols ),( isrf  are exposed to the partici-
pants. Therefore, redistribution of secret shadows 
among the participants, after the secret-
reconstruction process, is not required. This is due to 
the properties of the one-way two-variable func-
tion ),( srf . The secret holder only has to choose 
and publish another random integer r . The number 
of public values in Chien’s scheme is )1( +−+ tpn  
according to Step 4. 

3 THE PROPOSED SCHEME   

3.1 Description of the Basic Idea 

Suppose that V is a finite m -dimensional vector 
space over a field F  and E  is a t - dimensional 
subspace of V . Obviously E  is spanned by any 
linearly independent set },...,,{ 21 tA ααα=  of its 
vectors ( )( El ∈α  for tl ~1=  ). The idea is first to 
find a special and unique set of linearly       inde-
pendent vectors },...,,{ 21 tTTTT =  of E  such that, 
given any t -linearly    independent 
set },...,,{ 21 tA ααα= of vectors in E ,  the set T  can 
easily be obtained from A . We call the set T  as the 
characteristic set of E . For     example, suppose 
that 3,4 == tm , having any three vectors 

E∈321 ,, ααα  which do not lie in a plane, E  is 

totally known with respect to V . But the idea is to 
find 3 special vectors },,{ 321 TTTT =  in which T  
could easily and uniquely be obtained from any 
arbitrary and linearly independent set of 3 vectors 
in E . 

     By the method of finding the row-equivalent 
matrix (Hoffman et al., 1971), the characteristic set 
of any subspace can easily be found. 

           Lemma 1: Every matrix nmZ ×  has a 
unique row-equivalent matrix nmT × .  

       Proof: (Hoffman et al., 1971). 
Lemma 2: The row space of a matrix is the linear 

space spanned by its rows as vectors. The row space 
of a matrix and its row-equivalent matrix are the 
same. Also, the row spaces of two matrices are the 
same if and only if their row equivalent matrices are 
the same. As a result, the row equivalent matrix of 
all the matrices with the same row spaces is the 
same. 

       Proof: (Hoffman et al., 1971). 
     So, representing the vectors of V in the stan-

dard coordinates, the    characteristic set of any t -
dimensional subspace E  can be found as        fol-
lows: 

        Step 1   Choose an arbitrary base 
( tααα ,...,, 21 ) for E  . 

        Step 2   Generate the matrix 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

t

mtZ

α

α
α

2

1

   

in which the  thi   row  
                    of  mtZ ×    is   iα   ( ti ~1= ). 
        Step 3   Compute the row-equivalent matrix 

( mtT × ) of mtZ ×  .  
        Step 4   According  to Lemma 2, the  rows  

of  mtT ×   span  E    and   
                    mtT ×  is  uniquely  found. We  call 

mtT ×   the  characteristic  
                     matrix of  E  .So the  collection of 

rows of the characteris- 
                     tic matrix of  E   is also its character-

istic set.  
     So, if by some means the secret S  is fitted 

into a matrix  mtT ×  which is the row equivalent  of 
itself, then by choosing each participant’s share as a 
vector in E  ( mtT × is the characteristic matrix of 
E ),with the property that every t  shares are line-
arly independent, we are done.  
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3.2 Description of our Scheme  

First, we describe the algorithm for sharing one 
secret, and then the multi-secret sharing algorithm is 
described. We assume that the secret S  is a binary 
data of size S .Also, the computations are per-

formed in )2( mGF (there is no limitation on m  but 
of course for security purposes m is chosen large 
enough).  

        Step 1   By adding sufficient  number  of   
zeros  at the  end of  S ,  

                     S   is   divided   into  t   sub-secrets   
iS     ( ti ~1= ) .  The    
                      size of each sub-secret is  

)1( +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

t
S

Si . 

        Step 2   Sufficient  number of  zeros are  
added to the end of  each   

                    iS  .  Then,  each   iS      is    divided   
into    blocks     jiS ,   

                     ( )1
)1(

(~1 +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
==

m
S

cj i  )   of  

length  1−m . So  each   iS    
                     ( ti ~1= )  is a vector as follows: 
                            ) ,...,,  ( ,2,1, ciiii SSSS =                                                      

(3)                       
        Step 3   Let T be a matrix [IT ctt =+× )( ]S , 

where I  is  an   identity 

                     tt ×   matrix and 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

tS

S
S

S 2

1

  is a  

ct ×  matrix  in which  the  
                     thi  row is iS . Obviously, T is  row-

equivalent of  itself  so                      
                     the rank  of   T   is  t , and T  is  the  

characteristic  matrix 
                     of the space spanned by its rows 

( E ). 
        Step 4   The share for the thi  participant 

( ni ~1= , where n  is  the   
                     number of participants)   is  a   vec-

tor   Ei ∈α  . The  nec-     
                     essary property for the set 
{ }nA ααα ,...,, 21=   is   that  any     

                     arbitrary collection  B   of   t   vec-
tors   in  A   is  a   line- 

                     arly   independent  set  and as men-
tioned in section 3.1, T    

                     (therefore E )   can   be   easily   
computed   from  B .  To  

                     generate the  iα s , one  method is  
to generate  the  matrix      

                    TPA ctn ×=+× )( , where 

[ ])1)(1( −−
× = ji

tn gP  ( njti ~1,~1 == )   
                     ( g is a primitive element in 

)2( mGF ) and let iα  be the thi   
                      row  of  A .  It   is  proved  in  sec-

tion  3.3   that  the  iα s        
                      generated in   this   method  have  

the  above    mentioned 
                                 property (when 12 −≤ mn ).  
        Step 5    The secret holder randomly  selects  

nss ,...,1    as   partici- 
                       pants’ secret  shadows. Also  the 

secret holder  randomly 
                      selects r and computes ),( isrf for 

each participant.  
        Step 6    Each  participant’s share ( iα )  is 

encrypted with  ),( isrf   
                      as   the   key(for example by those  

in (Elgamal, 1985),(Rivest et al., 1978)) and each 
                      participant’s  public share ( iβ ) is 

generated. 
        Step 7    Publish  ),...,,,( 21 nr βββ  in an au-

thenticated manner.     
     Secret reconstruction: In order to reconstruct 

the secret, t  participants poll their pseudo shadow 
),( isrf s. Using the pseudo shadows, the respective 

public shares ( iβ ) are deciphered and iα s are gen-
erated. By the use of t  vectors ( iα ) and according 
to section 3.1 the characteristic matrix T , and as a 
result, the secret S  are generated. 

     According to step 1 the secret is first divided 
into t   parts. So, our one-secret threshold scheme is 
already a multi-secret threshold scheme with t  se-
crets. For having the general multi-secret threshold 
scheme, we first   perform steps 1 and 2 for each of 
the p  secrets individually. But in step 3, for gener-

ating the thi   row of matrix S , the thi   sub-secrets 
of each p  secret are put together in a vector which 

is the thi  row of matrix S . The other steps are the 
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same. The reconstruction of the secrets is also simi-
lar. Therefore, when matrix T  is found, the matrix 
S  and each of the p  secrets are easily recon-
structed. 

3.3 Bounds on the Maximum Value 
of n  

As mentioned in section 3.2 The public share for the 
thi participant ( ni ~1= ) is a vector Ei ∈α . A 

necessary property for the set { }nA ααα ,...,, 21=   is 
that any arbitrary collection B  of t  vectors in A  is 
a linearly independent set. Therefore, the problem of 
finding maximum number of the users is equivalent 
to finding the maximum possible        cardinality of 
set A . The members of the characteristic set of E  
form a   basis for it. For each set 

{ }tzzzB ,...,, 21= of vectors in, E  we have 

∑
=

=
t

j
jjii Tz

1
,γ    where )2(,

m
ji GF∈γ                                                   

(4) 
Definition 2 for each Ezi ∈ the vector 

),...,,( ,2,1, tiii
relative

iz γγγ=  is called the relative 
vector of iz  and for each set B , the Matrix 

[ ]jittZ ,γ=×  ( tjti ~1,~1 == ) is called the relative 
matrix of set B . 

     Obviously B  is a linearly independent set if 
and only if its relative matrix is invertible. Let tnQ ×  

be the matrix in which the thi  row is the relative 
vector of iα (each participant’s share vector), i.e. 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

relative
n

relative

relative

tnQ

α

α

α

....
2

1

                                                                                    

     The problem is equivalent to finding the 
maximum number of rows for tnQ × ,or similarly the 
maximum cardinality of a set A .                                                        

     Lemma 3:  If )(tf  is the maximum cardinal-
ity of set A over a t        dimensional space, then 

12)( +≥ mtf                                                                                               

Proof.  Let Q  be a tm ×+ )12(  matrix defined as 

tmP
R

Q
×+

⎥
⎦

⎤
⎢
⎣

⎡
=

)12(

 where R  is a t×2  matrix 

t×
⎥
⎦

⎤
⎢
⎣

⎡

21...00
0...01

and [ ])1)(1( −−= jigP  

)~1,12~1( tji m =−=  where g  is a primitive 

element in )2( mGF . So for 12,0 −≤≤ mji  and 

)( ji ≠  we have: ji gg ≠ . Therefore, according to 
the inevitability of Vandermonde matrix, every set 
of t  arbitrary and distinct rows are linearly inde-
pendent. Let { }

1221 ,...,,
+

= mt qqqQ  be the collection 

of all rows of  Q  respectively. So 

  12)( +≥ mtf              
     Lemma 4:  The intersection of any two non-

overlapping hyper planes in a t dimensional space is 
a  2−t  dimensional space.  

Proof: (Hoffman et al., 1971). 
Lemma 5: 12)2( += mf . 

Proof. According to Lemma 3, 12)2( +≥ mf . 

Any vector in 2))2(( mGF (the space of all ordered 

pairs ),( ba  which )2(, mGFba ∈ ) is a multiple of a 
vector in the set 2Q , so no new vector can be added 
to 2Q . Also for any other set of vectors, with the 
property of linearly independence of any two vec-
tors, there is a one to one correspondence between 
the set and a subset of 2Q (relation: being multiple 
of each other). So the proof is complete. 

Theorem 1: 12)(12 −+≤≤+ ttf mm  
    Proof. Let { }kλλλ ,...,, 21=Π  be a maximal 

set with the properties mentioned above. Let Ω  be 
the linear subspace spanned by 221 ,...,, −tλλλ . Be-
cause of linearly independence of these vectors, 
there are two independent vectors, e.g., 21 ,θθ  which 
the spanned plane by 21 ,θθ  is perpendicular to the 
Ω .Let Γ  be the family of  1−t  dimensional hyper 
planes passing Ω . Obviously, each hyper plane in 
Γ  can at most include one of the vectors in  Π  
other than 221 ,...,, −tλλλ . Let Ψ be the family of 
projection of such vectors on the plane passing 
through 21,θθ . Trivially, none of the members ofΨ  
are multiple of each other and also all the members 
are non-zero (Lemma 4). So there is a one to one 
correspondence between Γ and Ψ   and according to 
the proof of lemma 5, there is a one to one corre-
spondence between Ψ and a subset of 2Q . So: 

)2(f≤Γ=Ψ                                                                                    
Therefore, we have: 
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2)2( −+≤Π tf                                                                                     
(5)   

From (5) and lemma 5:  
12)( −+≤Π≤ ttf m                                                                              

(6) 
Finally, from Lemma 3 and (6) we get the result.                                                                                          

3.4 Cheater Identification and  
Security Analysis 

It is important for any secret sharing scheme to de-
tect cheating and to identify the cheater. There are 
numerous works on this issue such as in Hwang et 
al., 1999), (Tan et al., 1999). Therefore, we will not 
address this issue here. However, in     order to keep 
the participants’ shadows secret after the cheater 
identification process, there are some points, which 
should be mentioned: The secret holder should use 
the pseudo shadows ),( isrf  instead of the real 
shadows in generating the public values for cheater 
identification. At the same time, with no knowledge 
of the real shadows, the verifier should be able to 
use the pseudo shadows in order to determine the 
existence of a cheater. Hence, in the cheater identifi-
cation process, each participant polls his pseudo 
shadow. Therefore, the real shadows will not be 
disclosed by the properties of the one-way two-
variable function. 

     The security of our scheme can be analyzed 
from the following different views: 

a) Having 1−≤′ tt  pseudo shadows, only t ′  
linearly independent vectors from E  is found. Since 
the characteristic set of E  is determined by comput-
ing the row equivalent matrix T , and also in order 
to   find   T  ( [IT ctt =+× )( ]S ), using t ′  vectors 
would give no information about matrix S  in which 
the secrets are stored. Because every new vector 
from the remaining tt ′− vectors has a direct impact 
on each element of S . 

b) Our scheme will not disclose the partici-
pant’s real shadows is  even   after multiple secret 
reconstruction. Even though pseudo shadows 

),( isrf  have been exposed among many co-
operating participants, the real shadows are well 
protected by the properties of the one-way    two-
variable function. Therefore in order to share next 
p  secrets, the secret holder only needs to randomly 

choose a new integer r  without redistributing every 
participant’s secret shadow is . 

c) Given the public values ),...,,,( 21 nr βββ , 
an adversary has no way of determining iα ’s, with-
out having the pseudo shadows ),( isrf  (as the 
keys). Furthermore, encryption of less than t  of the 

iβ s, according to part a, shall give no information 
about the secrets.   

4 PERFORMANCE 
COMPARISON 

In this section, we will shortly compare the perform-
ance of our scheme with other schemes, especially 
Chien’s scheme.  

 In Chien’s scheme, the secret reconstruction 
costs solving the simultaneous )( tpn −+  linear 
equations, while in our scheme, the dependence of   
reconstruction process on n  is totally omitted. 
Therefore, in the cases where n  is a relatively large 
number, our scheme would be more efficient. 

     In our scheme the computations are performed 
in )2( mGF  where m2  could be smaller than the 
secrets (if their decimal representation is          as-
sumed). This would reduce the number of computa-
tional bit operations in some cases. For example, 
according to (Koblitz, 1998) in a finite 
field )( mpGF , two elements can be divided or mul-

tiplied in )(ln 2 qO  ( mpq = ) bit operations, and 

one element can be raised to the  thN  power in 
)))(ln((ln 2 qNO  bit operations. So, obviously, 

when )ln(q  is reduced by the factor k , the opera-

tions are reduced by the factor 2k . In our scheme, 
(for simplicity, suppose one secret threshold 
scheme) we approximately (in step 2) reduced the 

binary size of the field order ( )(log2 q ) by 
tm
S

 and 

instead there are 
m
S

 parallel processes (for each 

block in each secret). So since the   reduction in 
each multiplication or division is by the factor 

2k (as defined above), a total reduction in the com-
putations is expected.   
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5 CONCLUSION 

In this paper, a new ),( nt  threshold multi-secret 
sharing scheme was proposed. The scheme  is  
mainly  based  on  vector  spaces  and  matrices  and 
one-way functions. In this scheme, the computa-
tional complexity is independent  of the number of  
users .Furthermore, the scheme is a multi-use 
scheme  which  lets  the  use  of  conventional cryp-
tographic methods in the secret sharing problem. 
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