
CHOSEN-IV STATISTICAL ATTACKS ON eSTREAM CIPHERS

Markku-Juhani O Saarinen
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

Keywords: Stream Ciphers, eSTREAM, Algebraic Normal Form, Möbius test, d-monomial test.

Abstract: d-Monomial tests are statistical randomness tests based on Algebraic Normal Form representation of a Boolean
function, and were first introduced by Filiol in 2002. We show that there are strong indications that the Gate
Complexity of a Boolean function is related to a bias detectable in a d-Monomial test. We then discuss how
to effectively apply d-Monomial tests in chosen-IV attacks against stream ciphers. Finally we present results
of tests performed on eSTREAM proposals, and show that six of these new ciphers can be broken using the
d-Monomial test in a chosen-IV attack. Many ciphers even fail a trivial (ANF) bit-flipping test.

1 INTRODUCTION

Statistical testing has traditionally been a part of eval-
uation of stream ciphers. However, most cryptogra-
phers agree that generic tests such as the NIST 800-22
suite are appropriate mainly for catching implementa-
tion errors rather than determining the cryptographic
strength of an algorithm (Murphy, 2000; Rukhin et al,
2001).

Usually these tests have been performed in a pas-
sive setting; a sequence of bits is generated under a
(random) key, and these bits are then subjected to a
generic statistical test. What is ignored in this ap-
proach is that stream ciphers equipped with an Initial-
ization Vector (IV) should also be able to withstand
chosen-IV attacks, where a sequence of data is gener-
ated by varying the IV value rather than the “counter”
value (see Figure 1).

Stream ciphers are optimized for security, but also
for speed and cost. Cost in many applications equates
to the number of logical gates in a hardware imple-
mentation of the cipher, and hence designers usually
attempt to minimize their gate complexity.

Most stream ciphers can be specified as a relatively
simple iterated function. As a result of this, it has
been observed that some keystream bits can be ex-
pressed as simple Boolean functions of the key and IV
bits. In a chosen-IV attack, the key bits remain con-
stant and the stream cipher can be viewed as a “black
box” Boolean function of the IV alone.

In a chosen-IV distinguishing attack, an attacker
would wish to be able to determine whether or not
a keystream bit (say, the first one after IV setup) is a
simple Boolean function of some IV bits simply by
making queries to this black box.

How would one automatically distinguish such a
Boolean function of n bits from a random one? One
solution is to examine its Algebraic Normal Form
(ANF) representation for anomalies such as redun-
dancy or bias. A test that utilizes this approach was
first proposed by Eric Filiol in 2002 (Filiol, 2002). In
this paper we will give further theoretical and exper-
imental evidence of the applicability of ANF-based
tests on stream ciphers.

The structure of this paper is as follows. In Section
2 we recall the Algebraic Normal Form and its basic
properties. Section 3 contains an exposition of a vari-
ant of Filiol’s d-monomial statistical test. Section 4
gives new, clear evidence of the relationship between
Boolean gate complexity and the d-monomial test.
Section 5 discusses a simple statistical attack based
on flipping input bits that was found to be surpris-
ingly effective against eSTREAM ciphers (Estream,
2006). Section 6 contains new results on statistical
tests on the 34 eSTREAM cipher proposals, followed
by conclusions in Section 7.

260
O Saarinen M. (2006).
CHOSEN-IV STATISTICAL ATTACKS ON eSTREAM CIPHERS.
In Proceedings of the International Conference on Security and Cryptography, pages 260-266
DOI: 10.5220/0002098302600266
Copyright c© SciTePress

black
box

"Counter"

Public IV

Secret Key

Keystream

Figure 1: A stream cipher can be seen as a black box
Boolean function that takes in a secret key, a public IV, and
a public “counter” to produce a single bit of keystream.

2 PRELIMINARIES

Let Fn
2 be the vector space defined by n-vectors x =

(x1, x2, . . . , xn), where xi ∈ F2, i.e. each of the n
elements has either value 0 or 1 and computations are
defined modulo 2. A Boolean function f of n vari-
ables is simply a mapping f : Fn

2 7→ F2. There are
exactly 22n

distinct Boolean functions of n variables,
each uniquely defined by its truth table.

There are many alternative representations for
Boolean functions, such as Conjunctive and Disjunc-
tive Normal Forms (CNF and DNF), which are widely
used in automated theorem proving and other fields of
theoretical computer science. We will focus on Alge-
braic Normal Form (ANF, also known as Ring Sum
Expansion, or RSE (Wegener, 1987)). 1

Definition. A function f̂ : Fn
2 7→ F2 satisfying

f̂(x) =
∑
a∈Fn

2

f(a)
n∏

i=1

xai
i

is an Algebraic Normal Form representation of a
Boolean function f : Fn

2 7→ F2.

Using transformed function f̂ , a multivariate poly-
nomial representation of f can be obtained as can be
seen from the following example (or directly from the
definition).

Example. Consider the Boolean function f :
F3

2 7→ F2 defined by the following table:

f(0, 0, 0) = 1, f(1, 0, 0) = 0,
f(0, 1, 0) = 1, f(1, 1, 0) = 0,
f(0, 0, 1) = 1, f(1, 0, 1) = 1,
f(0, 1, 1) = 0, f(1, 1, 1) = 1.

As indicated by Definition 2, we wish to find a f̂ that

1This transform is sometimes confusingly called the
Möbius transform (Filiol, 2002), hence the name, “Möbius
test” in Filiol’s original paper.

for all x satisfies

f(x1, x2, x3) =

f̂(0, 0, 0) + f̂(1, 0, 0)x1 +

f̂(0, 1, 0)x2 + f̂(1, 1, 0)x1x2 +

f̂(0, 0, 1)x3 + f̂(1, 0, 1)x1x3 +

f̂(0, 1, 1)x2x3 + f̂(1, 1, 1)x1x2x3.

this corresponds to solving the following system of
linear equations

in F2:

0
BBBBBBBB@

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

1
CCCCCCCCA

0
BBBBBBBBBBB@

f̂(0, 0, 0)

f̂(1, 0, 0)

f̂(0, 1, 0)

f̂(1, 1, 0)

f̂(0, 0, 1)

f̂(1, 0, 1)

f̂(0, 1, 1)

f̂(1, 1, 1)

1
CCCCCCCCCCCA

=

0
BBBBBBBB@

f(0, 0, 0) = 1
f(1, 0, 0) = 0
f(0, 1, 0) = 1
f(1, 1, 0) = 0
f(0, 0, 1) = 1
f(1, 0, 1) = 1
f(0, 1, 1) = 0
f(1, 1, 1) = 1

1
CCCCCCCCA

.

The solution to this matrix equation is obtained eas-
ily with Gaussian elimination:

f̂(0, 0, 0) = 1, f̂(1, 0, 0) = 1,
f̂(0, 1, 0) = 0, f̂(1, 1, 0) = 0,
f̂(0, 0, 1) = 0, f̂(1, 0, 1) = 1,
f̂(0, 1, 1) = 1, f̂(1, 1, 1) = 1.

The ones in f̂ directly give the five monomials in
the polynomial expression for f :

f(x1, x2, x3) = 1 + x1 + x1x3 + x2x3 + x1x2x3.

2.1 Properties of the Algebraic
Normal Form

We briefly summarize some of the most important
properties and concepts (facts) of ANF that are rel-
evant to the present discussion:

F.1 A unique f̂ exists for all Boolean functions f .
F.2 The ANF transform is its own inverse, an involu-

tion; iff g = f̂ , then ĝ = f .
F.3 We define a partial order for vectors x as follows:

x ≤ y iff xi ≤ yi for all i. Using the partial order,
Definition 2 can be written as f̂(x) =

∑
a≤x f(a).

CHOSEN-IV STATISTICAL ATTACKS ON eSTREAM CIPHERS

261

F.4 The Hamming distance d(x,y) between x and y is
the number of positions where xi 6= yi.

F.5 A norm, called the Hamming weight, wt(x) =
d(0,x), is equivalent to number of positions in x
where xi = 1.

F.6 The algebraic degree deg(f) is the maximum
Hamming weight x that satisfies f̂(x) = 1; this
is equivalent to the length of the longest monomial
(most variables) in the polynomial representation
of f .

F.7 Functions of degree one are affine functions. If the
constant term f̂(0, 0, . . . , 0) = 0, an affine function
is simply a sum of some of its input bits and called
a linear function.

F.8 A d-Truncated Algebraic Normal Form of Boolean
function f , denoted f̂d(x), is equal to f̂(x) when
wt(x) ≤ d, and zero otherwise. In essence, mono-
mials of degree greater than d have been removed
from the corresponding polynomial of the trun-
cated ANF.

F.9 Since f̂(x) is the sum of f at all positions with
smaller or equal partial order (and hence degree)
than x (F.3), it can be seen that if we have tabu-
lated f(y) at all positions y with wt(y) ≤ d, the
d-truncated ANF can be completely determined.

2.2 Computing the ANF

Networks and algorithms for computing the complete
ANF do not require more than n2n−1 additions in F2.

Let z : Fn
2 7→ Z be the standard mapping from bi-

nary vectors to integers; z(x) =
∑n

i=1 2i−1xi. Let v
be a binary-valued vector of length 2n that contains
the truth table of f ; vz(x)+1 = f(x) for all x. Algo-
rithm 1 gives a fast method for computing f̂ .

Algorithm 1 Compute the Algebraic Normal Form in
vector v of length 2n using two auxiliary vectors t and
u of length 2n−1.

for j = 1, 2, 3, . . . , n do
for i = 1, 2, . . . , 2n−1 do

ti ← v2i−1

ui ← v2i−1 ⊕ v2i

end for
v ← t || u

end for

The complexity of Algorithm 1 is clearly
O(n lg n). Variants of this algorithm can be
implemented very efficiently using shifts and
bit-manipulation operations.

3 THE D-MONOMIAL TESTS

In (Filiol, 2002) Filiol introduced “Möbius tests”,
which examine whether or not an ANF expression
of a Boolean function has the expected number of d-
degree monomials. With d = 0 the test is called the
Affine test and for d > 0 a d-Monomial test.

Please note that the following exposition of the test
/ distinguisher is significantly simpler and less formal
than that originally proposed by Filiol. Details have
been modified for the purposes of this paper. The
reader is encouraged to use (Filiol, 2002) as a refer-
ence for Filiol’s version of the test.

In practical terms the d-Monomial test involves
counting the number of ones f̂(x) = 1 of an ANF
transformed function f at positions x with Hamming
weight d. A d-truncated ANF is is sufficient for this
purpose. A χ2 statistical test is then applied to this
count to see if the count is exceptionally high or low.

Theorem. For a randomly chosen n-bit Boolean
function f , Pr[f̂(x) = 1] = 1/2 for all x.

Proof. Trivial. Since the ANF transformation is
bijective on the truth table of f , f̂ will be random if f
is.

Consider an n - bit Boolean function f . Our
null hypothesis is that the expected bitcount∑

wt(x)=d f̂(x) is 1
2

(
n
d

)
and the bitcount is binomially

distributed. The alternative hypothesis is that there is
a bias in this sum, up or down.

We can use Pearson’s classic χ2 test in this case.
Suppose that we sample f̂ at N distinct points (in this
case with wt(x) = d) and in M of those f̂(x) = 1.
Then we set

χ2 =
1
N

(2M −N)2 .

Since ”0” and ”1” cases in bitcount are mutually
exclusive, there is one degree of freedom in the test.
Using the cumulative degree-one distribution function
of χ2, we can determine a confidence level for f be-
ing distinguishable from random in our test. We call
this the P value and its intuitive interpretation is the
“probability that the null hypothesis is true”. For ex-
ample, if P is 0.01, there’s still a 1% probability that
the null hypothesis is true (and the function is, in this
sense, “random”).

Some “upper critical” values for χ2 and the corre-
sponding P values are given in the following table:

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

262

χ2 P
6.635 0.01
10.83 0.001
18.70 2−16

40.17 2−32

24.02 2−40

83.82 2−64

105.8 2−80

This type of test is dependent upon the sample size;
even a very slightly biased function will yield a high
χ2 value by the test if the sample size is allowed to be
arbitrarily large. The sample sizes are bound by com-
putational restrictions, however. A distinguishing at-
tack is not relevant unless its total expected computa-
tional complexity is smaller than the claimed security
level of the cipher (typically equivalent to 2k−1 key
trials, where k is the size of the secret key).

4 GATE COMPLEXITY AND THE
D-MONOMIAL TEST

In this section we will give a formal definition for gate
complexity and investigate its relationship with the d-
Monomial test. Gate complexity is essentially equiv-
alent to circuit complexity with realistic limitations
(Clote, 2002; Wegener, 1987).

Definition. Gate complexity of a Boolean function
f(x1, x2, . . . , xn) is the minimum number of gates
required to implement it in an acyclic circuit network.
A gate is a Boolean function with two inputs. The
constant functions 0 and 1, together with trivial func-
tions x1, x2, . . . have gate complexity 0.

Note that all 222
= 16 two-bit functions count as a

single gate, not just the standard ones (∨, ∧, ¬, ⊕).
We have determined the gate complexity of all

224
= 65536 four-bit Boolean functions. This was

done by performing an exhaustive search over all cir-
cuits with one gate, two gates, etc, until circuits for all
functions had been found. The task was computation-
ally nontrivial, even though we optimized the code to
take various symmetries and isometries into account.
The maximum gate complexity turned out to be 7 (see
Figure 2).

Table 1 gives the distribution of functions by gate
complexity. In it, Gi is the number of functions of
gate complexity i. These sum to

∑
i Gi = 65536.

Here gi,d is the number of monomials of degree d and
gate complexity i. These sum to

∑
d gi,d = Gi. The

maximum possible value for gi,d is Gi

(
4
d

)
. The ex-

pected number in a d-monomial test is half of this
value. The table contains the “bias” fraction qi,d =
gi,d/(Gi

(
4
d

)
).

Note how in Table 1 the d-Monomial “bias” qi,d

tends to be strongly increasing as the gate complex-
ity i grows (apart for anomaly at q6,4). This is clear
evidence of a correlation between the complexity of a
Boolean circuit and the d-monomial test. It is plausi-
ble to expect that a similar phenomenon is exhibited
by Boolean functions with 5, 6, . . . inputs. However,
the exact degree of this bias is currently an open prob-
lem for n > 4. We can expect simple functions to be
distinguishable in a d-monomial test even when n is
large.

It is interesting to note that it is even possible to test
the opposite; to distinguish a complex function from a
randomly chosen one, as the following example illus-
trates.

Example. With the 2720 functions of gate com-
plexity 7, all d-Monomial counts appear to be biased
upwards; q7,d ≥ 0.5. We will use a d-Monomial test
to create a distinguisher based on this fact, particu-
larly that q7,1 = 0.606.

Consider the following game. There is a list L con-
taining binary vectors of length 5. Entries in L are
may have been generated with one of the following
two methods:

1. Choose a random 4-bit Boolean function of gate
complexity 7 for each entry, and add the following
vector to the list

(f(0, 0, 0, 0), f(1, 0, 0, 0), f(0, 1, 0, 0),
f(0, 0, 1, 0), f(0, 0, 0, 1)).

2. Choose a completely random Boolean function
(one of the 65536 possibilities) and create a vector
in similar fashion.

We pose the following question: How long does L
need to be for us to see which type of list it is ?

We first note that the vectors contain sufficient in-
formation for computation of 1-Monomial test (e.g.
f̂(1, 0, 0, 0) = f(0, 0, 0, 0) + f(1, 0, 0, 0)). Each 1-
Monomial test is simply the sum of 4 bits in the ANF
result. The expected sum after n list entries is 2n for a
random function and based on our exhaustive search,
g7,1n/G7 = 6592/2720n ≈ 2.424n for a gate com-
plexity 7 function. Our distinguisher will simply re-
turn “a” if the sum is greater than 2n and “b” other-
wise.

In the second, fully random case, the distinguisher
has no advantage as the bits in the vector are random
too; “a” and “b” will both be returned with probability
1/2 regadless of the length of L.

In case 1, after n = 34 steps, the sum can be ex-
pected to reach 2.424∗34 = 82.4. ”a” will be returned
by the distinguisher with probability 99%. Hence we
can distinguish the list of (partially computed and ran-
domly chosen) “complex” functions with significant
certainty with a list of only 34 entries! Note that the

CHOSEN-IV STATISTICAL ATTACKS ON eSTREAM CIPHERS

263

probability here was computed exactly using binomial
sums, rather than using the χ2 test.

5 THE (ANF) BIT-FLIP TEST

The bit-flip test is a simple statistical test that mea-
sures the effect of flipping one of the input bits on a
Boolean function. The test can be performed either
on the function f itself or its ANF counterpart f̂ .

The same “bit-counting” χ2 test with one degree of
freedom can be applied as in d-Monomial test (Sec-
tion 3).

Given a vector with b with wt(b) = 1, we sample
f(x) (or f̂(x)) at N distinct points with xi = 0 and
count the number of occurrences M where f(x) =
f(x + b) (or, respectively, f̂(x) = f̂(x + b)). The
statistic is again

χ2 =
1
N

(2M −N)2

and the confidence level P is computed in the same
fashion as with d-monomial test.

This simple test is useful for measuring the basic
mixing properties of the function and was therefore
employed in our tests of eSTREAM proposals as dis-
cussed in the following section.

6 CHOSEN-IV TESTS ON
ESTREAM PROPOSALS

As there were as many as 34 proposals for eS-
TREAM (Estream, 2006), some with poor documen-
tation, we decided to make certain assumptions about
their structure in order to facilitate “automatic” d-
Monomial and bit-flipping testing.

1. We wish to find a subset of input bits that is likely
to receive less mixing during the IV setup process
than other bits. This is likely to be either at the
beginning or the end of the IV bit-vector.

2. After the bits for a d-Monomial test have been cho-
sen, the remaining constant IV bits also greatly af-
fect the probability that the keystream will exhibit
bias. We chose to run the tests with these bits set as
0 and also when they are set to 1.

3. Rather than running the test on some low-degree
limit d (In (Filiol, 2002) d ≤ 3 and d ≤ 5 are
mentioned), we limit the number of bits n to some
manageable number and compute all d-Monomial
tests on those bits.

There are four d-Monomial tests in total; {bits in
beginning, bits in the end} × {rest of bits set to 0, rest

of bits set to 1}. In practice the black box function (IV
setup) was run with increasing values of n until a time
or memory limit was exceeded. An ANF was then
computed and monomials of various degrees counted.
The same data was also subjected to bit-flipping tests
as described in Section 5.

The testing code was integrated into the “eS-
TREAM speed testing framework”, which allowed
the test to be easily run on most eSTREAM ciphers.
The test code simply utilizes the eSTREAM API and
treats each cipher as a black box function.

There appears to be bugs in some cipher imple-
mentations, that resulted in exceedingly high biases.
Those cases are ignored in the discussion below. We
only mention ciphers where definitive evidence of sta-
tistical anomaly was detected (positive results are not
reported). All tests were run at least 10 times with
randomized keys. We only report anomalies that re-
occurred in a consistent pattern in distinct tests. Note
that when the same tests were run on reference ciphers
such as AES-CTR, no anomalies were found.

All specifications of the ciphers are available from
the eSTREAM web site (Estream, 2006). The follow-
ing list of results is not exhaustive, but just relates to
the current status of the tests.

6.1 MAG, Frogbit and F-FCSR

MAG is a stream cipher designed by Rade Vuckovac
that uses a 128-bit key and a 32-bit IV. Frogbit is a
“cipher, data integrity algorithm” designed by Thierry
Moreau with 128-bit key and IV values. F-FCSR is a
family of stream ciphers designed by Thierry Berger,
François Arnault and Cédric Lauradoux.

These ciphers exhibited extreme biases. In some
cases flipping a particular bit in IV did not affect the
first keystream bits at all. The designers of these ci-
phers appear to have failed to consider the implica-
tions of chosen-IV attacks.

6.2 DECIM

Decim is a stream cipher with a 80-bit key and a 64-bit
IV designed by Come Berbain et al. Decim is highly
vulnerable to d-Monomial distinguishers. Biases that
occur with P < 2−96 (our implementation precision
limit) were consistently found. Decim also appears
to be susceptible to a bit-flipping attack, although to
a lesser degree. In a typical run of 218 IV setups, a
bit-flipping bias with P < 2−16 could be found.

6.3 ZK-Crypt

ZK-Crypt is a stream cipher designed by Carmi Gres-
sel, Ran Granot and Gabi Vago. With a 128-bit key

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

264

and a 128-bit IV it is highly vulnerable to both bit-
flipping and d-Monomial distinguishers. Biases with
P < 2−96 were consistently found in bit-flipping at-
tacks. In d-Monomial attacks the bias was in P <
2−12 range, although in one case P < 2−37 was ob-
served. A typical test run would involve 221 IV se-
tups.

6.4 POMARANCH

POMARANCH is a stream cipher designed by Cees
Jansen and Alexander Kolosha. With a 128-bit key
and a 112-bit IV it is susceptible to bit-flipping tests
when the flipping occurs at the end of the IV vector.
Biases with P < 2−96 were consistently observed in
such attacks. Typical run would involve 217 IV se-
tups.

6.5 NLS and TSC-3

NLS is a stream cipher designed by Gregory Rose,
Philip Hawkes, Michael Paddon and Miriam Wiggers
de Vries. TSC-3 is a stream cipher proposed by Jin
Hong, Dong Hoon Lee, Yongjin Yeom, Daewan Han
and Seongtaek Chee.

These ciphers fall into “borderline category”.
Some strong biases were found, but not strong enough
to indicate a clear design flaw. We suspect that im-
proved attacks are possible by hand-crafting the test
parameters to exploit particular features of the design
of these ciphers.

In NLS with a 128-bit key and a 128-bit IV, a bias
with P < 2−20 was observed in one d-Monomial test
run of 224 IV setups. Multiple lesser d-Monomial bi-
ases occur in a consistent pattern.

In TSC-3 with a 160-bit key and a 128-bit IV, a bit
flipping bias with P < 2−18 was observed and lesser
biases occur in a consistent pattern.

7 CONCLUSION

We have discussed the application of Algebraic Nor-
mal Form and d-Monomial tests to chosen-IV attacks
against stream ciphers. It has been demonstrated that
these tests appear to be highly effective in distinguish-
ing “simple” Boolean functions as well as (rather sur-
prisingly) complex functions from random ones.

In an experiment with eSTREAM stream ciphers,
we found that the output of six of the 34 candidates
could be distinguished from random with our meth-
ods, with additional few being borderline cases and
requiring further investigation. Ciphers with poor
mixing properties even fail a simple bit-flipping test
(or its ANF variant).

ACKNOWLEDGEMENTS

The author wishes to thank Keith Martin for his valu-
able comments. This research was supported by a
grant from Helsingin Sanomain 100-Vuotissäätiö.

REFERENCES

Clote, P., Kranakis, E.: Boolean Functions and Computa-
tion Models. Springer-Verlag, 2002

Filiol, E.: A New Statistical Testing for Symmetric Ciphers
and Hash Functions. Proc. ICICS 2002, LNCS 2513,
Springer-Verlag 2002. pp. 342 – 353.

ECRYPT: The home page eSTREAM,
the ECRYPT Stream Cipher Project.
http://www.ecrypt.eu.org/stream/

Murphy, S.: The Power of NIST’s Statistical Testing of AES
Candidates. AES Comment to NIST, April 2000.

Rukhin, A. et al.: A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic
Applications. NIST Special Publication 800-22 (re-
vised May 15, 2001)

Wegener, I.: The complexity of Boolean functions. Wiley-
Teubner series in computer science. Wiley, Teubner,
1987

CHOSEN-IV STATISTICAL ATTACKS ON eSTREAM CIPHERS

265

Table 1: Distribution of the 65536 four-bit Boolean functions by gate complexity and the results of d-monomial tests on
Boolean functions of given gate complexity.

d = 0 d = 1 d = 2 d = 3 d = 4
i Gi gi,0 qi,0 gi,1 qi,1 gi,2 qi,2 gi,3 qi,3 gi,4 qi,4

0 6 1 0.167 4 0.167 0 0.000 0 0.000 0 0.000
1 64 34 0.531 76 0.297 48 0.125 0 0.000 0 0.000
2 456 228 0.500 648 0.355 672 0.246 256 0.140 0 0.000
3 2474 1237 0.500 3912 0.395 5136 0.346 3264 0.330 832 0.336
4 10624 5312 0.500 18960 0.446 26976 0.423 17536 0.413 4608 0.434
5 24184 12092 0.500 47888 0.495 71328 0.492 47616 0.492 13216 0.546
6 25008 12504 0.500 52992 0.530 83232 0.555 55744 0.557 12576 0.503
7 2720 1360 0.500 6592 0.606 9216 0.565 6656 0.612 1536 0.565

1 + x1 + x3 + x1x2 + x2x3 + x2x4 + x3x4 + x1x2x3 + x1x2x3x4

x1

∧

∧
x2

⊕

x3

⊕

⊕

x4

r

∧

∧

Figure 2: An automatically generated picture of a Boolean function with gate complexity 7. In this picture a filled circle
indicates that the given input is inverted. This function can not be implemented with, say, six gates (regardless of the choice
of gates).

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

266

