
FINITE FIELD MULTIPLICATION IN LAGRANGE
REPRESENTATION USING FAST FOURRIER TRANSFORM

Christophe Negre
Équipe DALI, LP2A, Universit́e de Perpignan
avenue P. Alduy, 66 000 Perpignan, France

Keywords: Finite field arithmetic, FFT, multiplication.

Abstract: The multiplication inFpn can be performed using a polynomial version of Montgomery multiplication (Mont-
gomery, 1985). In (Bajard et al., 2003) Bajardet al. improved this method by using a Lagrange represen-
tation: the elements ofFpn are represented by their values at a fixed set of points. The costly operations in
this new algorithm are the two changes of Lagrange representation which require2r2 operations inFp with
n ≤ r ≤ 2⌈log2(n)⌉. In this paper we present a new method to perform the change of Lagrange represen-
tation. This method uses Fast Fourier Transform and has a cost equal to3rlog2(r) operations inFp with
r = 2⌈log2(n)⌉.

INTRODUCTION

Finite field arithmetic is used in many applications,
for example in cryptography (Koblitz, 1987; Miller,
1986) and in error correcting code (Berlekamp, 1982).
Getting efficient finite field arithmetic is an important
challenge to make these applications as fast as pos-
sible. Specially in ECC essentially two field opera-
tions are required: multiplication and addition, and
the multiplication is the most costly. Consequently,
many works have been done to get an efficient mul-
tiplication in finite field F2n (Ning and Yin, 2001;
Sunar and Koc, 1999),Fp and also forFpn (Bailey
and Paar, 1998).

Our interest here concerns finite field extensions
Fpn . Elements in these field can be seen as polyno-
mial A(X) ∈ Fp[X] of degreen− 1. The multiplica-
tion consist in a multiplication of polynomial follow-
ing by a reduction modulo an irreducible polynomial
N(X) ∈ Fp[X].

A method to perform arithmetic inFpn was pro-
posed by Bajardet al. in (Bajard et al., 2003). This
method is based on a generalization of the polynomial
version of the Montgomery Algorithm (Montgomery,
1985). The arithmetic is done modulofriable poly-
nomialsΨ andΨ′ with degreer ≥ n; by friable we
means they are product of polynomial of degree one.
The arithmetic modulo such polynomials is very effi-
cient when the elements are expressed in the Lagrange

representation (Bajard et al., 2003)LRΨ andLRΨ′ .
In this situtation the most costly operation is the

change of representation fromLRΨ to LRΨ′ which
consists of a product of anr× r constant matrix with
the vectorLRΨ(A). This requires roughlyr2 multi-
plications andr2 additions. Here we will improve this
method for well chosenΨ andΨ′ and by using Fast
Fourier Transform. The change of representation will
require4r log(r) multiplications and8r log(r) addi-
tions .

This article is organized as follows: in the first
section we will give some background on Lagrange
representation of polynomials. In the section 2 we
explain how the Lagrange algorithm (Bajard et al.,
2003) of Bajardet al. works. The main contribution
of the paper is in section 3 in which we present our
new method to perform the change of Lagrange rep-
resentation. At the end we evalutate the complexity of
our algorithm and compare it to the original method
of Bajardet al. and we conclude by a brief conclu-
sion.

1 LAGRANGE
REPRESENTATION

The Lagrange representation consists to represent a
polynomial by its evalutation atn points. In an arith-

320
Negre C. (2006).
FINITE FIELD MULTIPLICATION IN LAGRANGE REPRESENTATION USING FAST FOURRIER TRANSFORM.
In Proceedings of the International Conference on Security and Cryptography, pages 320-324
DOI: 10.5220/0002096503200324
Copyright c© SciTePress



metic point of view, this is related to the Chinese Re-
mainder Theorem which asserts that the following ap-
plication is an isomorphism.

Fp[X]/(Ψ) → Fp[X]/(X − e1) × · · · × Fp[X]/(X − ek)

A 7→ (A mod (X − e1), . . . , A mod (X − ek)) ,

We remark that the computation ofA mod (X −
ei) is simply the computation ofA(ei). In other words
the image ofA(X) by the isomorphism (1) is nothing
else that the multi-points evaluation ofA at the roots
of Ψ =

∏n
i=1(X − ei).

Definition 1 (Lagrange representation) Let A ∈
Fp[X] with deg A < n, and Ψ =

∏r
i=1(X − ei),

whereei ∈ Fp for 1 ≤ i ≤ r andei 6= ej for i 6= j. If
ai = A(ei) for 1 ≤ i ≤ r, the Lagrange representa-
tion (LR) ofA(X) moduloΨ is defined by

LRΨ(A(X)) = (a1, . . . , ar). (1)

The advantage of the LR representation to perform
operations moduloΨ is a consequence of the Chinese
remainder theorem. Specially the arithmetic modulo
Ψ in classical polynomial representation can be costly
if Ψ has a high degree, in LR representation this arith-
metic is decomposed inton independent arithmetic
units, each consists of arithmetic modulo a very sim-
ple polynomial (X − ei). But arithmetic modulo
(X − ei) is the arithmetic modulop since the prod-
uct of two degree zero polynomials is just the product
modulop of the two constant coefficients.

2 MONGOMERY
MULTIPLICATION IN
LANGRANGE
REPRESENTATION

Montgomery in (Montgomery, 1985) proposed an al-
gorithm to perform integer modular multiplications.
The polynomial version of the Montgomery algo-
rithm can be used to perform polynomial modular
arithmetic inFp[X]. Here we will present only the
generalized version of this algorithm.

We consider an irreducible polynomialN ∈ Fp[X]
of degreen and two polynomialsΨ,Ψ′ ∈ Fp[X] such
that

gcd(Ψ,Ψ′) = gcd(Ψ, N) = gcd(Ψ′, N) = 1,

anddeg Ψ,deg Ψ′ ≥ n. In this situation, the gener-
alized polynomial version of Montgomery Algorithm
computesABΨ−1 mod N .

The advantage of Montgomery multiplication is to
avoid euclidean division to computeAB moduloN .
This division is replaced by exactly 5 multiplications

Algorithm 1 Generalized Montgomery Multiplica-
tion.

Require: A,B ∈ Fp[X], with deg A,deg B ≤ n−1;
a monic irreducible polynomialN ∈ Fp[X], with
deg N = n; Ψ,Ψ′, with deg Ψ = deg Ψ′ = r ≥
n, andgcd(Ψ,Ψ′) = gcd(Ψ, N) = 1

Ensure: ABΨ−1 mod N
1: Q← A×B ×N−1 mod Ψ
2: R← (A×B + Q×N)×Ψ−1 mod Ψ′

moduloΨ or Ψ′ (2 in step 1 and 3 in step 2). But this
makes sense only if the arithmetic operation modulo
Ψ and Ψ′ can be done efficiently. In their original
paper Bajardet al. proposed to useΨ andΨ′ which
split totally inFp[X], i.e.,

Ψ =
r∏

i=1

(X − ei) andΨ′ =
r∏

i=1

(X − e′i).

In section 1 we noticed that the arithmetic modulo
polynomialsΨ andΨ′ can be done efficiently using
Lagrange representation. The use Lagrange represen-
tation LRΨ andLRΨ′ provides some complications
in the Generalized Montgomery Algorithm: between
step 1 and step 2 we have to perform some conver-
sions from Lagrange representation ofQ relatively to
Ψ to Lagrange representation ofQ relatively toΨ′.
Similarly after the step 2 we should compute the La-
grange representation ofR relatively toΨ.

If we note Change RepΨ→Ψ′ the sub-routine
which computes the Lagrange representation of an el-
ementA relatively toΨ′ from its Lagrange represen-
tation relatively toΨ, the generalized Montgomery’s
Algorithm 1 becomes

Algorithm 2 LR Modular Multiplication.

Require: A,B ∈ Fp[X], with deg A,deg B ≤ k−1;
a monic irreducible polynomialN ∈ Fp[X], with
deg N = n; Ψ,Ψ′, with deg Ψ = deg Ψ′ = r,
andgcd(Ψ,Ψ′) = gcd(Ψ, N) = 1

1: LRΨ(Q)← LRΨ(A)×LRΨ(B)×LRΨ(N)−1

2: LRΨ′(Q)← Change RepΨ,Ψ′(LRΨ(Q))
3: LRΨ′(R) ← (LRΨ′(A) × LRΨ′(B) −

LRPsi′(Q)× LRΨ′(N))× LRΨ′(Ψ)−1

4: LRΨ′(R)← Change RepΨ′,Ψ(LRΨ′(R)

In (Bajard et al., 2003) Bajardet al. the change
of Lagrange representation is done with a product
matrix-vectorΩ · LRΨ(Q) where the matrixΩ =
[ωi,j ]i,j=1,...,r is a r × r matrix and has the follow-
ing coefficients

ωi,j =

r∏

ℓ=1

e′i − eℓ

ej − eℓ

FINITE FIELD MULTIPLICATION IN LAGRANGE REPRESENTATION USING FAST FOURRIER TRANSFORM

321



This matrix-vector product is a costly operation: it
requiresr2 multiplications andr(r − 1) additions.

In this paper we study a different strategy to per-
form the change of Lagrange representation. Our
strategy was to express the change of representation
in term of Discrete Fourrier Transform. This becomes
interisting when this DFT can be computed with the
FFT, since the FFT is really efficient.

3 CHANGE OF LAGRANGE
REPRESENTATION WITH FFT

For now, we will take the prime integerp such that
2k+1|p − 1 with k ≥ 1. In this case there exists
an elementα ∈ Fp such that the2k+1 elementsαi

for i = 0, . . . , 2k+1 − 1 are the2k distinct roots of
X2k+1

− 1.
Let r = 2k, in this situation we choose the two

polynomialsΨ andΨ′ as follows

Ψ =
∏r

i=0(X − α2i) = Xr − 1
and Ψ′ =

∏r
i=0(X − α2i+1) = Xr + 1.

We are going to express the change between two
Lagrange representationsLRΨ andLRΨ′ in term of
to Discrete Fourier Transform. But before we recall
some basic fact on DFT and FFT.

3.1 Background On Dft and FFT

Let β = α2, the evaluation of a polynomialA(X) ∈
Fp[X] at the elementsβi for i = 0, . . . , r corresponds
to the Discrete Fourier Transformation ofA

DFTr(A) = (â1, â2, . . . , âr)
= (A(1), A(β), A(β2), . . . , A(βr−1))

The DFTr of A can be computed by using the
FFTr Algorithm. This algorithm is based on the fol-
lowing identities

âi = Ae((β
2)i) + βiAo((β

2)i)
âi+(r/2) = Ae((β

2)i)− βiAo((β
2)i),

(2)

where the polynomialAe(X) is the even part ofA
andAo(X) is the odd part ofA

Ae(X) =

r/2∑

i=0

a2iX
i, Ao(X) =

r/2∑

i=0

a2i+1X
i.

The FFTr recursively computesFFTr/2(Ae)
and FFTr/2(Ao) and then deducesFFTr(A) =

(A(β0)A(β2), . . . , A(β(r−1))) using equations (2).
For a complete description of the FFT algorithm
see (von zur Gathen and Gerhard, 1999)

In our situation the FFT is a powerful algorithm
which enables us

• to compute the Lagrange representation relatively
to Ψ of a polynomialA(X).

• to compute the polynomial from its LR representa-
tions relatively toΨ since the reverse operation of
the FFT isFFT−1

r = 1
r FFTr.

3.2 TheChange Rep Routines

Let us see how use the FFT in the change of repre-
sentation betweenLRΨ andLRΨ′ . We know only
how to reconstruct a polynomialA(X) from itsLRΨ

representation

A(X) = FFT−1
r (LRΨ(A)).

But if now we computeÃ(X) = A(αX) and if after
that we computeFFTr(Ã), we obtain ther = 2k

elements

Ã(βi) = A(αα2i) = A(α2i+1),

for i = 0, . . . , r. This means thatLRΨ′(A) =

FFTr(Ã)). Consequently the change of Lagrange
representationChange RepΨ→Ψ′ can be done with
the following algorithm.

Algorithm 3 Change RepΨ→Ψ′ .

1: A(X)← FFT−1(LRΨ(A))

2: Ã(X)← A(αX)

3: LRΨ′(A)← FFT (Ã)

The reverse of the change of representation is done
using the reverse process. First we get back toÃ(X)
by computingFFT−1

r (LRΨ′(A), then we compute
to A(X) with A(X) = Ã(α−1X), and finally we get
LRΨ(A) by computingLRΨ(A) = FFTr(A(X)).

Algorithm 4 Change RepΨ′→Ψ.

1: Ã(X)← FFT−1(LRΨ′(A))

2: A(X)← Ã(α−1X)
3: LRΨ(A)← FFT (A(X))

It is natural to wonder if it is possible to merge
the three step of the Algorithm 3 and 4 in a FFT-like
recursive Algorithm since the main computation are
done withFFTr and FFT−1

r . Specially the com-
putation of the polynomial representation ofA(X)

andÃ(X) seems to be superfluous, it thus could be
avoided. For now we could not obtain such recursive
algorithm, but it will be interesting in the future to get
such recursive method to improve the performance of
the Algorithm 3 and 4.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

322



4 COMPLEXITY COMPARISON

In this section we evalutate the complexity of the
modified form of Lagrange multiplication of Bajardet
al.. First we focus on the theoretic complexity by
evaluating the number of field operationsFp (addi-
tions and multiplications). In the table 4 we give
the cost of each step of the Algorithm 2 used with
Change Rep of section 3. For an explicit evaluation
of the cost of the FFT we refer to (von zur Gathen and
Gerhard, 1999).

Multiplication Additions
Step 1 2r 0
Step 2 rlog2(r) 2rlog2(r)
Step 3 3r r
Step 4 (2rlog2(r) + r − 1) 4rlog2(r)

The global cost of the algorithm is thus equal to
(4rlog2(r)+7r−2) multiplications and(8rlog2(r)+
r) additions. We get a clearly improvement compared
to original LR multiplication, since the complexity
was equal to(2r(r − 1) + r) addtions and2r2 + 5r
multiplications inFp.

Hardware implementation.For hardware imple-
mentations, the FFT have the nice property to be
parallelizable. Specially, we can computeFFTr(A)
with r/2 multipliers andr adders in parallel. The de-
lay of the architecture to perform oneFFTr is then
equal tolog2(r)TM +log2(r)TA. For a precise expla-
nation of this fact we refer to (Johnson et al., 2000) .

But the other computations in the Algorithm 2 re-
quire also at most onlyr multipliers in parallel andr
adders in parallel. This is clear for step 1 and step 3,
for step 2 and 4, we needr adders and multipliers for
the FFT parts, and alsor multipliers for the compu-
tation of Q̃ andR(X). We can use at each time the
samer adders and multipliers.

Consequently the Algorithm 2 can be implemented
in hardware with an architecture usingr multipliers
andr adders in parallel.

Let us evaluate the delay of such architecture. The
total delay is equal to the sum of the delay of each
step of Algorithm 2. If we noteTM the time for a
multiplication in Fp, the step 1 has a delay of2TM

and the step 2 has a delay of3TM + TA. In step 2
and 4 the delay is equal to the delay of twoFFTr

plus the delay of two multiplications ,i.e. (oneTM

for the multiplications byr−1 and a second for the
computation ofÃ), each step has a delay of(log2(r)+
2)TM + (log2(r)TA.

Finally, the global delay is equal to(log2(r) +
5)TM + (log2(r) + 1)TA.

5 CONCLUSION

In this paper we have presented a modified version of
the Algorithm of Bajardet al. (Bajard et al., 2003)
computes the product of two elements ofFpn . We
have modified only a part of the algorihtm: precisely
we modified the changes of representation in a way
to use FFT algorithm. We thus obtain an algorithm
which have a sub-quadratic complexity: a multipli-
cations requires(4rlog2(r) + 7r − 2) multiplica-
tions and(8rlog2(r) + r) additions inFp instead of
(2r(r−1)+r) addtions and2r2+5r multiplications in
the original work of Bajardet al.(Bajard et al., 2003).

We are greatefull to N. Louvet for helpfull com-
ments on a preliminary version of this paper.

REFERENCES

Bailey, D. and Paar, C. (1998). Optimal Extension Fields
for Fast Arithmetic in Public-Key Algorithms.Lecture
Notes in Computer Science, 1462:472.

Bajard, J.-C., Imbert, L., Negre, C., and Plantard, T. (2003).
Efficient Multiplication in GF(pk) for Elliptic Curve
Cryptography. InARITH 16, 16th IEEE Symposium
on Computer Arithmetic June 15-18, 2003 Santiago
de Compostela, SPAIN.

Berlekamp, E. (1982). Bit-serial Reed-Solomon encoder.
IEEE Transaction on Information Theory, IT-28(6).

Johnson, J., Kumhom, P., and Nagvajara, P. (2000). De-
sign, optimization, and implementation of a universal
fft processor. In13th IEEE International ASIC/SOC
Conference, Washington, DC.

Koblitz, N. (1987). Elliptic curve cryptosystems.Mathe-
matics of Computation, 48(177):203–209.

Miller, V. (1986). Use of elliptic curves in cryptography.
Advances in Cryptology, proceeding’s of CRYPTO’85,
218:417–426.

Montgomery, P. (1985). Modular multiplication without
trial division. Mathematic of computation, 44(170).

Ning, P. and Yin, Y. (2001). Efficient Software Implemen-
tation for Finite Field Multiplication in Normal Basis.
Lecture Notes in Computer Science, 2229:177.

Sunar, B. and Koc, C. (1999). Mastrovito Multiplier for All
Trinomials. IEEE Transaction on Computers.

von zur Gathen, J. and Gerhard, J. (1999).Modern com-
puter algebra. Cambridge University Press, New
York, NY, USA.

FINITE FIELD MULTIPLICATION IN LAGRANGE REPRESENTATION USING FAST FOURRIER TRANSFORM

323


