
MULTICAST KEY AGREEMENT PROTOCOL FOR MOBILE
AD HOC NETWORKS

André Boumso, Boucif Amar Bensaber, Ismail Biskri, Samir Khali
Department of mathematics and computer sciences, University of Quebec at Trois-Rivières, 3351 Bd des Forges C.P 500,

Trois-Rivières, G9A 5H7 - QC - Canada

Keywords: Wireless network, Ad Hoc network, Multicast, Key Agreement, group activity, activity threshold.

Abstract: In this paper we address the problem of Multicast secure data over a multihop wireless ad hoc network.
Many protocols that have been proposed are not really convenient for mobile ad hoc networks. We propose
a key agreement protocol that aims to solve problems that are specific to ad hoc networks such as mobility,
unreliable links, and multihop communication cost. The main idea is to focus on group dynamics and
complete node mobility in ad hoc environment to develop an adaptive protocol that is suitable for the
network and group changes. Doing so, we extend and adapt the proposed Tree based Group Diffie-Hellman
(TGDH) protocol to pure mobile ad hoc network. Our method promotes the use of a fully balanced tree and
eliminates the broadcasting of the entire tree as it appears in TGDH. We introduce a probabilistic value that
gives the state of group dynamism. We simulated our protocol using C++ code and some results are
presented in this paper and currently other simulations are going on the Network Simulator ns environment
under various mobility, group size, and group dynamic scenarios.

1 INTRODUCTION

Multicast and mobile communications are emergent
technologies that might enable interactive real time
applications such video on demand and
videoconference to name a few. In infrastructureless
zones, ad hoc networks seem to be a natural
extension of networks with fixed infrastructures.
However, securing groups’ communications in these
networks is very challenging, since they suffer
cruelly from a lack of resources and significant
topology changes. Four principal research axes are
presently considered for securing multicast
communications: sender and recipient access
control, authentication of the communicating
entities, key management and fingerprinting (Paul
Judge, Mostafa Ammar, 2003).

The purpose of key management is to optimize
the generation of keys, their distribution and their
maintenance. Unfortunately, the present key
management methods are not optimal.
The aim of our work is to develop a scalable key
management approach that introduces the notion of
group activity threshold allowing the choice of key
tree management and distribution model adaptable

to groups’ communications. This method will also
try to reduce the encryption time, the number of
keys transmitted or stored, and the quantity of
bandwidth used.

Our paper arises as follows: first of all, we
present a brief review of the literature on keys
management; second, we propose our solution with
the whole necessary architecture to its modeling.
Then we detail encoding keys management through
the various operations of group management.

2 RELATED WORKS

Many Key Agreement protocols have been
presented in the literature. One of them is the cliques
suite, a variety of protocols that extend the Diffie-
Hellman two party protocol to groups (Michael
Steiner, Gene Tsudik, Michael Waidner, 1998). In IKA.1
(Initial Key Agreement protocol 1), the last member
who joins the group plays the role of group
controller. The key agreement is a linear process and
every member Mi, i∈[1,n-1], contributes its own
share in a round i upflow message. The last round n
is a broadcast of data collected from the previous n-1

86

Boumso A., Amar Bensaber B., Biskri I. and Khali S. (2006).
MULTICAST KEY AGREEMENT PROTOCOL FOR MOBILE AD HOC NETWORKS.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 86-94
Copyright c© SciTePress

rounds. In this protocol the number of rounds
increases linearly with joining events, the last
member joining the group (the controller) may be a
single point of failure. The order in which packets
are transmitted must be properly defined.
Nevertheless, these protocols have the advantage of
consuming less bandwidth and managing partition
events efficiently.

Figure 1: IKA.1 round i; Mi member sending a set of
collected values in an upflow message to Mi+1, i ∈ [1,n-
1].

Another group DH extension protocol is
Octopus. It’s extending the 2nd-hypercube protocol
(K.Becker, U. Wille, 1998) to unlimited number of
members. In Octopus, n members are divided in five
subgroups. Four members A,B,C and D become
controllers of four subgroups GA,GB,GC,GD and the
n-4 remaining members are distributed among this
subgroups in a rectangular way. Every controller
collects each subgroup member contribution ki in a
2-party Diffie-Hellman key exchange, computes a
subgroup key and exchanges this key in a 4-party
Diffie-Hellman with its neighbouring controllers.

Figure 2: Octopus four party key agreement protocol
steps.

 The third contribution is the Tree-Group Diffie-
Hellman (TGDH) proposed by Yondae Kim, Adriane
Perrig and Gene Tsudik. TGDH is a contributive tree

key management protocol which comes to optimize
the performances of the IKA1/2 (Michael Steiner,
Gene Tsudik, Michael Waidner, 1998). It is similar to
OFT (One Way Function Trees) (D. Balenson, D.
McGrew and A. Sherman, 2000) but each member can
act as sponsor depending on his position in the key
tree. The sponsor is responsible for the computation
and the broadcasting of intermediate node keys to
other members of the group. It is the rightmost
member of the subtree or the rightmost member of
the deepest subtree associated with the incoming or
the leaving node. In the partitioning event, they may
be several sponsors in the process of building a new
group key.

When a membership event occurs, the sponsor
changes his own share, computes keys on his keys
path and blinded keys on his co-path from the leaves
to the root and broadcast blinded key tree. All
members update the key tree and compute the group
key.

TGDH is not suitable for mobile ad hoc
networks since the mobility of nodes might make it
impossible for a simple node to broadcast a message
to all members. Therefore, to operate properly, the
network must be restricted so that nodes stay
relatively close to each other throughout the entire
multicast session so for instance, the bandwidth
problem is resolved (Maria Striki, John S. Baras, 2003).
The mobility of node can cause frequent link
breakage, involving multiple partitioning events that
may lead to a deeply unbalanced tree. Modular
exponentiation is the most expensive operation in
this protocol and depends on the key structure. In a
deep unbalanced key tree, if a deepest node leaves, it
might require O(n) exponentiations to compute the
group key. Also, the broadcasting of the whole tree
in membership events seems to be unnecessary and
the protocol uses a lot of bandwidth notably in
partitioning events. So, maintaining a well balanced
tree almost in high dynamic environments such as ad
hoc networks might maintain the computation cost
to O(log(n)). The authors of TGDH did not describe
the initialization phase.

Figure 3: TGDH: Sponsor broadcasting new blinded key
tree in leaving event.

Let g be a generator of a cyclic finite group G
of order q, A, B, C and D the four subgroups
controllers, ka, kb, kc, kd their respective
subgroups keys. The protocol operates as
shown below:

 Step 1: A and B, C and D exchanges their keys
and compute the first round keys k1= gk

a * kb and
k2= gk

c
* kd

Step 2: A and C, B and D exchanges the keys
obtained in step1 and compute the group key
k = g(k

1 * k2
)

Let g be a generator of a cyclic finite group G
of order q and Si a random contribution of
member Mi, IKA.1 round i appears as follow:

Mi Mi+1

{gS1*S2***Si/S
k / k∈[1,i] }, gS

1
* S

2
***S

i

Let Ms be the sponsor, G* = {M1..Mn}-{ML}
the group of remaining members in a leaving
event and T(BK*) the new blinded tree, the
protocol operate as follow:

 Ms T(BK*) G*

MULTICAST KEY AGREEMENT PROTOCOL FOR MOBILE AD HOC NETWORKS

87

3 GAKAP METHOD

Our method GAKAP, witch stand for Group
Activity based Key Agreement Protocol, is based
on TGDH. However, it promotes the use of a fully
balanced tree, eliminates the broadcasting of the
entire tree as it appears in TGDH, and uses the
elliptic curve cryptography algorithm ECDH for key
exchange instead of the traditional Diffie-Hellman
(DH) as in TGDH. The term fully means that the key
tree is always entirely balanced in a high dynamic
environment. It introduces the concepts of group
activity and activity threshold. Group activity is a
probabilistic value that gives the state of group
dynamism in:

- predominant additive state with high nodes
mobility or note

- predominant leaving state with high nodes
mobility or note

- equilibrium state which gives the value of
the activity threshold suitable for the key
management in a high dynamic ad hoc
network.

Keys are identified by their name, according to
their positions in the key tree. The tree key
management depends on the group activity threshold
and keys are shifted instead of being deleted (M.
Steiner, G. Tsudik, M. Waidner, 1996) when a
membership event occurs. The concept of Group
Activity includes group’s dynamics and node
mobility in both the group and the entire network.
We will explain thereafter the encoding keys
management through the various operations of group
management.

4 GROUP MEMBERSHIP
EVENTS

In high dynamic groups and ad hoc networks,
joining events as well as leaving, merging and
partitioning can arrive very frequently. Therefore,
the keys management may become very laborious in
term of computation and bandwidth consumption.
The protocol that follows tends to minimize these
effects.

4.1 Initialisation

In this phase, the initial key tree is built and the
initial group key is computed. The protocol operates
as follow:

Figure 4: GAKAP: Initialization protocol phase.

At the end of the initialization phase, all
members have completed the same key tree and
computed the same group key. With the key naming
introduced in this phase, members can determine the
order of parenthood that exists among them. This
parenthood will permit later to “elect” the sponsor.

1000

100

10

1010

1

101

1001 1011 1100

110

11

1110

111

1101 1111

u2u1 u4u3 u6u5 u8u7

Private key

Blinded sibling key

sponsor

Shifted key

empty key node

Figure 5: Initialization key tree phase.

4.2 Joining Event

The new member broadcasts a join request
containing its blinded key (bkey) BK. Each current
member determines the insertion point which is the
first empty leaf node when traversing the key tree
from left to rigth. The sibling node of the new
member if it exists, becomes the sponsor, otherwise

Step 1: the initiator (or initial controller)
publishes the opening of a multicast session,
upon receiving the joining response in a
predefined period of time, it builds up the list of
participants, builds the tree containing the
blinded keys and their names (or ID) and
broadcasts them to the members.

Step 2: round i: almost n/2i (with n the number
of initial members and i ∈ [1,h] where h=log2n) of
the group members become the sponsors,
compute the keys and blinded keys on their path
and co-paths from the leaves up to the root and
broadcast the blinded keys to the group.

Step 3: round h+1: Each member can compute
the group key and the initial group activity
probability.

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

88

one of its cousin node (Figure 7) becomes the
sponsor.

Figure 6: GAKAP joining event protocol.

Figure 7: Key tree in joining event.

The sponsor updates its key tree by computing all
the keys and blinded keys on his path to the root and
broadcasts the blinded modified keys to the other
members and sends the tree of blinded keys in
unicast mode to the new member. Every member
determines the insertion point, computes both the

new key and the activity threshold. If, after the
addition of a new member, all the node of the tree
are completed, a new tree must be build as follow:
- A new group key node is constructed on the top of

the tree;
- The previous key tree becomes the left sub-tree of

the new tree;
- The right sub-tree is built as full as possible

depending on the activity threshold.
Upon receiving the blinded key tree from the
sponsor, the new member computes the missing
keys of all the parents on his way to the root.

4.3 Leaving Event

The member broadcasts a leaving request containing
its ID. The sponsor generates a new contribution,
updates his key tree by erasing all the keys and
blinded keys on its path to the root and broadcast the
blinded modified keys to all the other members.
Every member updates the key tree by determining
and “deleting” the keys to be changed, and replacing
them by those contained in the list received from the
sponsor.

Figure 8: GAKAP leaving event protocol.

Step1: The joining member Mn+1 broadcast the
join request containg its bkey BKn+1 to the
group.

 Mn+1 BKn+1 {M1…Mn}

Step2:
• Each member:

- Updates its key tree by erasing all bkeys
to be changed on the sponsor path;

- Determines the insertion point.
• The sponsor Ms changes its share and

broadcasts a set of all modified bkeys BK*
and sends the bkey tree T{BK*} to the
new member.

 {M1…Mn} {BK*

s} Ms

 Mn+1 T{BK*

s} Ms

Step3: Every member can compute the group
key using the necessary keys.

Step1: The outgoing member ML broadcasts
its leaving request containing its ID to the
group.

ML IDL G= {M1..M}

Step2: Every member

Updates its key tree by erasing the leaving
member’s key and all the blinded keys on
the sponsor path.
 The sponsor additionally erases all keys
on

 It changes his share, computes new keys
and blinded keys on his path and
broadcasts the bkeys.

 G*= {M1..Mn}-{ML} {BK*si} Ms

Step3: Every member can compute the group
key using the appropriate bkeys.

000

00

0

010

GK

01

001 011 100

10

1

110

11

101 111

u2u1 u4u3 u6u5 u8u7

1000

100

10

1010

GK

101

1001 1011 1100

110

11

1110

111

1101 1111

u2u1 u4u3 u6u5 u8u7

Sponsor private key and
blinded path

Sponsor’s siblings of
blinded keys

sponsor

Empty key node

u3

keyed node

MULTICAST KEY AGREEMENT PROTOCOL FOR MOBILE AD HOC NETWORKS

89

Figure 9: Key identification and key management in
departing events.

4.4 Multiple Join

As in the simple join event, the joining members
send their joining request at the same time. Since all
joining requests are not received in the same order
by all members, it is necessary to classify them in
order to guarantee the same key structure. A
temporary controller is then elected to this purpose.
The temporary controller or group temporary
sponsor is the rightmost member concerned by the
additive event: this means the member in the
righmost subtree concerned by the additive event.
The temporary controller determines the various
insertion points, inserts each new participant in an
empty node.

It chooses a new contribution, computes its new
share and all keys and blinded keys (bkeys) on his
path to the root, and broadcasts both the tree
containing the bkeys and the activity threshold of the
moment to all participants. Every current member
updates its key tree by erasing all keys and bkeys to
be changed. New members received the key tree
structure. Each sponsor broadcasts modified blinded
keys to all other members. Every member replaces
all modified bkeys by those received from the
sponsors. Each participant can then compute the
group key. The new key tree may be constructed as
indicated in the simple additive event if at some
moments in the process the tree is full. If two new
members are leaves of a previous intermediate
empty parent node, one of them, the leftmost
becomes the sponsor.
In this method, we distinguish the multiple additive
events from the merging event since the later
suppose the addition of two different previous
subgroups in the aim of forming a new group.

Figure 10: Multiple join protocol in GAKAP.

4.5 Multiple Leave

As in the leaving event, many members leave the
group at the same time by sending individual leaving
events. Each sponsor identifies all the participants
leaving. It changes its contribution and computes
secretes and blinded keys of all the parents’ nodes
on his way to the root. It broadcasts his parents’
blinded keys. It replaces all others modified blinded
keys. It computes the group key. Each member
identifies the leaving participants. It erases the
leaving nodes keys and the parents’ nodes if it is
necessary. It updates the tree by replacing all the
blinded keys that have been modified by the
sponsors. It computes the group key.

Let p be the number of the new members.
Step1: Every new joining member Mj broadcasts
its joining request containing its BKj to the group

 Mj BKj G={M1..Mn}

Step2: Each member:

- Updates its key tree by erasing all bkeys
to be changed on the sponsor path.

Step3:
Round 1 to h:

- A temporary group controller Mtc
computes its new share, builds a new
bkey tree with all members’ bkeys and
broadcasts the tree to the group.

Mtc {M1..Mn}U{Mk}

For k∈[n+1,n+p] :

- Every sponsor Msi computes keys and
bkeys on his path and broadcasts a set of
all modified bkeys BK*

SI .to the group.

G*= {M1..Mn}-{MLi} {BK*si } Msi

Step4: Every member can compute the group key
using the appropriate bkeys.

000

00

0

010

GK

01

001 011 100

10

1

110

11

101 111

u2u1 u4u3 u6u5 u8u7

1000

100

10

1010

GK

101

1001 1011 1100

110

11

1110

111

1101 1111

u2u1 u4u3 u6u5 u8u7

Sponsor private key and
blinded path

Sponsor’s siblings of
blinded keys

sponsor

Shifted key

empty key node

u3

keyed node

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

90

Figure 11: Multiple leave protocol in GAKAP.

4.6 Merge Event

Each sponsor chooses a new contribution and
computes all secrete and blinded keys on his way up
to the root. It broadcasts his subtree containing the
blinded keys. Upon receiving other subtree, he
builds a new tree in which the deepest one becomes
the left subtree. Depending on the activity threshold,
it builds a fully balance tree by completing the right
sub tree and computes the group key.

Each member determines the insertion point and
depending of the activity threshold, it builds the new
key tree. It finally computes the group key.

4.7 Sponsor Election

The election of the sponsor in a membership event is
based on its parenthood closeness to the incoming or
the leaving member. If the incoming or leaving node
has a sibling, it becomes the sponsor; otherwise one
of the nodes with which its share a common parent
key in the smallest highest sub-tree becomes the
sponsor.

Figure 12: Order in which sponsor is chosen.

5 RESULTS

In this section, we introduce the simulation results.
Simulations were done using C++ code and compare
GAKAP to TGDH.

To study the behaviour of GAKAP and TGDH,
we have implemented a C/C++ code (in visual
studio and Kdevelop environments) of the tree
structure behaviour when group events occur. Group
events where generated randomly. Link breakage
and connexion due to nodes mobility were generated
randomly. We first use group that the number of
participants vary from 25 to 250 and the number of
group events from 10 to 100. After, we maintain a
group of 250 participants. We calculated the number
of messages transmitted by the sponsors, the number
of rounds done when computing group key. The
results we obtained could be interpreted as follow:

1. for both methods, the number of
packets increases with the number of
rounds;

2. the number of rounds grow with the

number of events;

Let p be the number of leaving members.
Step1: Every outgoing member MLi broadcasts
its leaving request containing its ID to the group

MLi IDLi G={M1..Mn}

Step2: Every member:
- Updates its key tree by erasing the

leaving member’s key and all the
blinded keys on the sponsor path.

- The sponsor additionally erases all keys
on his path up to the root..

Step3:
Round 1 to h:

- A temporary group controller Mtc
computes its new share, builds a new
bkey tree with all members’ bkeys and
broadcasts the tree to the group.

 Mtc {M1..Mn}U{Mk}

For k∈[n,n-q] :

- Every sponsor Msi computes keys and
bkeys on his path and broadcasts the
bkeys.

G*= {M1..Mn}-{MLi} {BK*si} Msi

Step4: Every member can compute the group
key using the appropriate bkeys.

000

00

0

010

GK

01

001 011 100

10

1

110

11

101 111

u2u1 u4u3 u6u5 u8u7

Sponsor of the first level

Sponsor of the second
level

Joining or leaving
node

MULTICAST KEY AGREEMENT PROTOCOL FOR MOBILE AD HOC NETWORKS

91

3. to maintain the equilibrium of the
TGDH key tree in high dynamic
MANET, they must be 1.8 to 1.9
joining member for 1 leaving member
(Figure 19). This is the value of the
activity threshold for which, in
maintaining a constant flow of additive
and leaving events, we can maintain a
fully balanced tree, thus the group key
computation order of O(logN).

5.1 Packets Exchanged

The packets sends by sponsors are of two types:
Unicast and Multicast. Unicast packets are only sent
in simple join events. The number of packets where
count in simulation.

We can see that the number of total packets
sends by sponsors in group events is higher in
GAKAP than in TGDH, this is because sponsors
delivered two packets: one multicast to the group
and a unicast packet to the joining member (Figure
13). However, the size of packets sends in GAKAP
protocol are fewer compare to that of TGDH, and
the size of TGDH packets increases significantly
with number of events (Figure 14).

Number of packets for joins and leave

0
50

100
150
200

GAKAP

GAKAP

GAKAP
TGDH

TGDH

M et ho d

PkTot
NbJoin
NbLeave

Figure 13: Number of total packets sends for joining and
leaving events.

Total size of packets

-200000

0

200000

400000

600000

GAKAP

GAKAP

GAKAP
TGDH

TGDH

Method

S
iz

e
in

 o
ct

et
s

sizePkTot

Figure 14: Size of packets sends for all group events.

5.2 Number of Rounds and
Computation Cost

In this section, we find the number of rounds
necessary to compute group key in join and leave
events. Figure 15 shows us the number of rounds for
simple joins and multiple joins events. Figure 17
gives us the number of rounds for simple leave and
multiple leave events. Since the number of simple
and multiple joins are taken as joins events and
simple and multiple leave as leave events, figure 16
and 18 give more precise value of the percentage of
the number of rounds for joining and leaving events.

0
10
20
30
40
50
60
70
80

Number of
Joi ns

GAKAP GAKAP TGDH TGDH

M et hod

N umber o f rounds f o r add it ive event s

NbJoin

RndAj

RndAjM

Figure 15: Number of rounds for joining events.

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

92

Ratio of the number of rounds for
joining events

0,54
0,56
0,58
0,6

0,62
0,64

GAKAP

GAKAP

GAKAP
TGDH

TGDH

Method

R
at

io

RatioRndTo
tAJ

Figure 16: Ratio for Number of rounds in joining events.

Number of rounds for leaving events

0
5

10
15
20
25
30
35
40

M e t hod

NbLeave

RndDep

RndDepM

Figure 17: Number of rounds for leaving events.

Ratio of number of rounds for
leaving events

1,2
1,3
1,4
1,5
1,6
1,7

GAKAP

GAKAP

GAKAP
TGDH

TGDH

Method

R
at

io

RatioRndTotDep

Figure 18: Ratio for number of rounds in leaving events.

We can conclude from figure 16 and 18 that the
number of rounds in group key computation for
joining events is less in our method, while it is a

little bit greater in GAKAP in group key
computation for leaving events.
The computation cost of the group key increases
with the number of rounds and the size of tree node
keys used for group key computation. Since the size
of keys (123 bits) used in our method is less than
1024 bits used in TGDH, the computation cost of the
group key is less in our method.

Activity threshold

0
100
200
300
400
500
600
700
800

1.7
88

61
8

2.0
19

41
7

0.7
00

00
0

Threshold value

N
um

be
r o

f e
ve

nt
s

NbJoin

NbLeave

Figure 19: Activity threshold value.

6 CONCLUSION

We presented some researches trends for key
agreement techniques. The aim of this proposal was
to bring another point of view in key distribution for
group communication in MANET. Most of the
solutions proposed by now are limited to a MANET
with restricted node mobility. Our method bring an
additional element since it is apply to fast moving
nodes and high dynamic multicast groups.

In an environment in which fast mobility and
nodes dynamics are very concerned like mobile ad
hoc networks, GAKAP provide efficient key
agreement and tree management. It tends to reduce
better the number of transmissions, the computation
cost of both group keys and members keys. The
activity threshold is the better mobility and group
dynamics index for key tree management in fast
changing topology multi-hop wireless ad hoc
networks.

More simulations are currently under testing on
NS simulator and the aim of these simulations is to
confirm the results describe above, obtained using
the C/C++ code.

MULTICAST KEY AGREEMENT PROTOCOL FOR MOBILE AD HOC NETWORKS

93

REFERENCES

Paul Judge, Mostafa Ammar. "Security Issues and
Solutions in Multicast Content Distribution: A
survey". IEEE Network, January/February 2003.

Maria Striki, John S.Baras. "Key Distribution Protocols
for Multicast Group Communication in MANETs",
Technical Report, CSHCN, October 2003.

M.Steiner, G. Tsudik, M.Waidner. "Diffie-Hellman Key
Distribution Extended to Group Communication". In
Proceedings of the 3rd ACM conference on Computer
and communications security, January 1996.

D. Wallner, E. Harder and R. Agee, "Key Management for
Multicast: Issues and Architectures", Internet
Engineering Task Force, no. 2627, June 1999.

K.Becker, U. Wille. "Communication complexity of group
key distribution". In Proceedings of the 5th ACM
conference on Computer and communications
security, Novembre1998.

D. Balenson, D. McGrew and A. Sherman, "Key
Management for Large Dynamic Groups: One-way
Function Trees and Amortized Initialization" <draft-
balenson-groupkeymgmt-oft-00.txt>, IETF, Sep.2000.

Michael Steiner, Gene Tsudik, Michael Waidner.
CLIQUES: “a new approach to group key agreement”.
In proceeding of the 18th international conference on
distributed computing systems (ICDS’98), pp.380-
387, Mai 1998

Yondae Kim, Adriane Perrig, Gene Tsudik.“Simple and
fault-tolerant key agreement for dynamic collaborative
groups”. In ACM conference on Computer and
Communication security,pp.235-244, 2000.

Danilo Bruschi, Emilia Rosti. ``Secure Multicast in
Wireless Networks of Mobile Hosts: protocols and
issues``, Kluwer Academic Plublishers, 2002/pp.503-
511,mobile ad hoc network and application,
vol.7,no6,dec.2002.

A.Selcuk, C. McCubbin and D. Sidhu, "Probabilistic
Optimization of LKH-based Multicast Key
Distribution Schemes," Internet Engineering Task
Force, Jan. 2000.

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

94

