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Abstract: This paper describes a method based on hierarchical matrices and primitive generators that allows low cost 
coder and decoder implementations. The hierarchical approach is well suited for decoder implementation 
and, in addition, the method has been applied to eIRA structures which have demonstrated a reduced coder 
implementation complexity. Despite the added structure to eIRA original codes, the architecture presented 
shows similar BER performance. To achieve this, BIBDs have been used to avoid length-four cycles and 
primimitive generators contribute to get a pseudo-random construction. Moreover, the reduction of low 
weight codewords and near codewords are considered in order to reduce error-floors.  

1 INTRODUCTION 

Although LDPC codes (Gallager, 1962)(Mackay, 
1999) have been well known in research for a long 
time, they have reached  the “standard world” 
through standards such as IEEE 802, some NASA 
standards and DVB in the recent DVB-S2 standard 
(DVB-S2, 2004). LDPC capabilities led to them 
being adopted for the previously mentioned 
standards: on the one hand because they are easier to 
decode than well known Turbo Code based systems 
and with more flexible architectures, and on the 
other hand because of their BER performance. 
Moreover, their implementation throughput makes 
them an efficient architecture-aware channel coding 
scheme.  

In spite of all these advantages, LDPCs have 
some disadvantages from the point of view of 
hardware design whose effects are worth mitigating 
(if the BER performance is not greatly affected). 
Randomly designed LDPCs (Mackay, 1997) have 
been demonstrated to have superior BER 
performance. However, their implementation cost 
becomes unviable when the parity matrix size 
increases. Moreover, the codification of this kind of 
code generally becomes non sparse.   
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Some alternatives have been proposed to avoid 
the aforementioned implementation difficulties. 
Finite Geometry based LDPCs (Kou, 2001) have a 
greatly simplified codification but in general their 
matrices are regular and very dense, which makes 
their implementation cost a relevant drawback.  

In (Yang, 2004) a new class of LDPCs called 
eIRAs was recently shown to have a simplified 
codification scheme, with good BER performance. 
Their biggest flaw is that a considerable part of its  

structure remains random (with the problems 
previously alluded to). 

The implementation proposed in this paper is 
based on hierarchical matrices, which have been 
demonstrated, in (Mansour, 2003)(Mansour, 2004) 
by Mansour and in (Liao, 2004) by Liao and Yeo, to 
be suitable for decoder implementation. Mansour 
suggests the use of well known architectures such as 
Ramanujan (Rosenthal, 2000) or cyclotomic sets 
(Mansour, 2002) which have good structural 
properties but with some weaknesses, as the error 
floor due to low weight codewords (Mackay, 2003) 
and the lack of flexibility (Zhang, 2004). Liao and 
Yeo propose a completely random top and bottom 
architecture that do not ensure the absence of length-
four cycles which has been demonstrated to have an 
important influence on BER. In contrast, the basis of 
our design is a well defined architecture based on a 
BIBD (Ammar, 2004)(Ammar, 2002) design at the 
top level architecture -which avoids length-four 
cycles- and pseudo random permutations with 
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optimal roots at the bottom level designed to avoid 
low weight codewords and near codewords 
following recommendations of (Yang, 2004)(Dinoi, 
2005)(Tian, 2004). Moreover, our proposal not only 
reduces the complexity of the decoder, as previously 
mentioned works do, but it simplifies the coder 
complexity.  

The use of primitive generators (Morelos-
Zaragoza, 2002) for the bottom level matrices 
enables the implementation presented to avoid 
storing the pointers, necessary to locate the 1’s in the 
parity check matrix (the only pointers to be stored 
are those that define the BIBD structure which 
require much less memory consumption) without 
losing randomness.  

The approach presented outperforms the 
congruent sequences based LDPCs (Prabhakar, 
2002), which avoid the memory for the pointers but 
are more restrictive, being regular and only defining 
a bit degree of 3 in contrast to the architecture 
presented which is much more flexible.  

The use of eIRA codes provides our design with 
a high performance from the point of view of BER. 
Moreover, the absence of cycles 4 combined with 
the optimal distribution of the connections in the 
parity matrix lead to minimize low weight 
codewords and near codewords, thus lowering the 
error floor. In Section II the architecture proposed 
will be discussed. In section III the BER 
performance of the scheme is presented. Finally, in 
chapter IV, the conclusions of this paper are 
presented.  

2 ARCHITECTURE PROPOSED 

LDPCs based on eIRAs (Yang, 2004) are 
constructed dividing the parity check matrix into two 
parts called H1 and H2. H2 is defined as a square 
matrix of size m (where m is the number of parity 
bits) composed of m-1 degree-2 columns and one 
degree-1 column (see Figure 1). In contrast, H1 does 
not have a defined architecture, being designed at 
random (avoiding length-four cycles by removing 
appropriate bits) in (Yang, 2004). 

In the architecture proposed H1 is divided into 
several smaller matrices which are permutations of 
the identity matrix or square zero matrices (see 
Figure 1).  

The TOP level architecture of H1 will be chosen 
to avoid length-four cycles using the BIBD structure 
as will be explained in II-A. The sub-matrices, 
which are permutations of the identity matrix, are 
called permutation matrices and their structure and 

construction will be shown in II-B. The absence of 
length-four cycles in TOP level architecture ensures 
a length-four cycle free parity check matrix because 
sub-matrices have no more than one ‘1’ per column. 

The architecture proposed is independent of the 
frame size and only depends on the bit degree and 
rate. To obtain different sizes the only thing that 
needs to be modified in the design is the size of 
bottom matrices, keeping the top matrix unchanged. 
Bearing in mind that positions to be stored are those 
of the top matrix, as code size increases, the 
architecture proposed needs relatively less memory 
than classical approaches. 

2.1 TOP Level Architecture 

The importance of avoiding cycles of length 4, for 
BER performance of LDPC based codes, has been 
widely demonstrated (Tian, 2004)(Mao, 2001). With 
this idea in mind, the design presented develops a 
way to design parity check matrices distributing the 
permutation matrices in such a way that they do not 
form length-four cycles. Moreover, this method can 
be used with various matrix sizes and rates. 
The approach presented makes use of BIBDs 
(Balanced Incomplete Block Designs) (Anderson, 
1990) in order to achieve a length-four cycle free 
matrix with minimum dimension for a given bit 
degree. BIBDs combine a number of points to form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed eIRA parity check matrix. 
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groups. They are defined by -at least- three 
parameters called v, r, λ, where v is the total number 
of points, r is the number of blocks which a point is 
in (i.e. the bit degree in LDPC terms) and λ defines 
the number of blocks in which each pair of points 
are together. Translating these parameters to the 
matrix field, v represents the number of columns, r is 
the number of 1’s per column and λ=1 will 
determine the absence of length-four cycles: a value 
of 1 ensures that any pair of 1’s will be in only one 
row.  

The BIBD-based matrices chosen are rate 1/2 
matrices, so, for rate 1/2 the construction is 
immediate, turning the BIBD into a matrix. There 
are several possibilities for BIBDs with λ=1. The 
most well known are affine planes and projective 
planes. The latter will be used in our designs 
because their total number of points is less than that 
needed in affine planes for a given maximum degree 
of parity matrix. Using fewer points allows us to use 
bigger permutation matrices, which leads to better 
BER performance and which also needs fewer 
memory elements in implementation. 

The parameters that define projective planes are: 
(n2+n+1, n+1, 1). For example, Figure 1 shows a 
BIBD(7,3,1). The way the matrix rows defined by 
the BIBD are arranged should be noted. 

In order to get rates lower than 1/2 the BIBD to 
be used is the same as the one used for 1/2, chosen 
to satisfy the optimal bit and check degree. The only 
difference is that once the top matrix has been 
defined, some columns are removed to adjust the 
rate.  

For rates higher than 1/2 the process proposed 
consists in removing some rows of the original 
matrix. An example can be seen in section II-C.  

The number of memories used to store 
information bits depends on the parallelism desired. 
If a high parallelism is desired, the number required 
to implement a BIBD with high rate (the highest 
parallelism is obtained using a memory for any 
column of the top matrix) can be a drawback for 
designers. For example, for a bit degree of 13 the 
system would require 157 memories.  

In order to offer an alternative solution to this 
problem, another option is proposed. Depending on 
the bit degree desired a BIBD with a suitable 
number of elements per column is chosen. 
Moreover, depending on the rate to be reached, 
either the whole BIBD or only a part of it (this last 
option allows higher rates) is used. After that, the 
resulting BIBD is cloned and put side by side with 
itself. The only difference between both parts is the 
way their pseudo-random primitive generators are 

designed. The primitive generators of the BIBD on 
the right are exactly the same as their equivalents on 
the left, but the init_value (explained in the next 
section) is changed depending on the row. This 
ensures that the new structure is still length-four 
cycle free with the bit degree desired and high rate. 
In sub-section II-C an example of design is 
explained. 

Although all the proposed schemes define semi-
regular eIRAs (H1 been regular), the method 
proposed is flexible and irregular eIRAs can be 
obtained by removing permutation matrices in top 
level architecture in columns where degree should 
be reduced.  

2.2 BOTTOM Level Architecture 

Once all the sub-matrices have been emplaced using 
BIBDs, the way the permutation of the identity 
matrix is defined will be explained. The objective of 
primitive generators will be to produce the pointers 
to the systematic bits needed to generate a given 
parity bit.  

Obviously, a completely random generator 
cannot be implemented. The proposed method is 
based on primitive interleavers (we will call them 
primitive generators) (Morelos-Zaragoza, 2002). 
These interleavers have the desirable property of 
being very simple to design, fast and with low area 
cost and, from the point of view of BER 
performance, they perform only slightly worse than 
a completely random one in this kind of systems. 
The interleaved positions are calculated through the 
following equation: 

 
( ) Nrootii kk mod1 +=+                             (1) 

 
There are three parameters that define the 

pseudo-random sequence, N (the maximum value, 
and the total number of values where the sequence is 
complete), the init_value (the initial value i0) and the 
root (the difference between one value and the next 
or previous one). How these parameters will be 
chosen is important in the BER performance of the 
system.  

The proposed design suggests an N which is 
prime. This fact allows the use of as many different 
roots as N-1 (a valid root is a root that forms 
complete N sequences). Moreover, N is chosen to 
satisfy: numbercolumnNframesize _*≈ . 
Fortunately, despite this restriction, there are enough 
prime numbers and so widely distributed that any 
frame size can be approximated.  
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The idea of having several roots increments the 
randomness of the whole parity check matrix 
because despite using the same generator the 
sequences obtained are different. On the other hand, 
following recommendations in (Yang, 2004)(Dinoi, 
2005)(Tian, 2004), in order to reduce low-weight 
codewords and near codewords, for lower degree 
variables, which are mainly responsible of error 
floors, roots are selected so that ones of columns and 
pairs of columns are widely separated. This is done 
by using an algorithm that performs two steps: 

1.- For a given bit degree distribution, the initial 
BIBD has a column degree which is equal to 
maximum bit degree. Lower degrees are obtained by 
removing column elements. This elimination is 
performed in columns whose elements are less 
distributed. 

2.-Once the optimal degree is obtained, the 
algorithm chooses the optimal roots for the lowest 
weight columns. These optimal roots will be chosen 
to maximize the average distance between elements 
within any two columns as well as in any column 
itself. 

Moreover, the chosen root is also used as 
init_value in order to begin at a different number for 
any sub-matrix. Roots selected with the mentioned 
methodology will be called distributed roots in the 
next results section. 

Using the above recommendations the BER 
performance of the system is close to that obtained 
using a completely random generator. 

2.3 Example of Code Construction 

To clarify the proposed method a simple example 
will be discussed. We will describe the design 
process for three different rates. 
Rate 1/2: Suppose a rate 0.5 eIRA with column 
degree 3. With only these requirements the design is 
as easy as choosing a BIBD (7,3,1). Figure 2 
displays the TOP matrix, which is clearly length-
four cycle free.  
 

 
Figure 2: BIBD(7,3,1) for H1 of rate 0.5 eIRA. 

 

 
Figure 3: H1 of rate 0.6 eIRA. 

The next step would be to define the primitive 
generator parameters for the required generators, in 
the way that has been defined in II-B.  

Rate 0.6: to obtain a slightly higher rate, the 
same BIBD shown in Figure 2 can be used. This 
time only four of its rows are to be used. If rows 
1,2,4 and 7 are used and the last column is removed, 
a 0.6 rate eIRA code is obtained (with a degree of 2 
for any bit in H1). The matrix mentioned can be seen 
in Figure 3. Of course, depending on the degree 
needed the user can define which rows are used and 
can even add or remove columns or P’s (while the 
length-four cycle free structure is maintained). The 
initial BIBD defines the maximum degree available, 
so if a bigger degree is needed, another BIBD, with 
bigger r, has to be chosen. 

  

 
 
 
 

Figure 4: (a) H1 of rate 0.75 eIRA (b) Bottom level 
architecture detail for 2P matrices on the left TOP level 
matrix and their corresponding matrices on the right.  

Rate 0.75: the last example will achieve a 0.75 
rate eIRA maintaining the degree of 2 for any bit. At 

(a)  

(b)  
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this point there are two possibilities as was 
explained previously: on the one hand, a suitable 
BIBD can be used, removing rows till the rate 
desired is obtained. On the other hand, the 
architecture explained in II-A can be used, i.e., 
choosing a smaller BIBD and cloning it to form a 
TOP architecture with higher rate. 

For this example the second alternative is 
applied, using the original BIBD(7,3,1) matrix. To 
do so, the matrix in Figure 3 will be cloned. The 
primitive generator used on the left is designed in 
the same way as in the case of low rate. The 
primitive generator used on the right of the dotted 
line in Figure 4-a has as its init_value the row in 
which that generator is placed. With this simple idea 
a length-four cycle free parity check matrix is 
obtained in spite of having length-four cycles in the 
TOP architecture. 

The top level architecture defined in this way is 
displayed in Figure 4-a and a bottom level detail for 
two generic square P matrices is shown in Figure 4-
b. 

3 BER PERFORMANCE 

The results obtained in the original eIRA paper 
(Yang, 2004) will be taken as the main point of 
reference. The same two rates and frame sizes 
reported in this paper have been tested with our 
methodology. Moreover, the same bit and check 
degrees will be used too, because they have been 
demonstrated to be optimal using Gaussian 
approximation (Richardson, 2001). The Mansour 
(Mansour, 2003) results will also be compared but 
not forgetting that it is not an eIRA approach. 

3.1 Rate 0.5  

For the rate 0.5 example in (Yang, 2004), the frame 
size used (4018, 2009) is approximately the same as 
the one reported there (4000, 2000). The reason for 
the slight frame size difference is the use of a prime 
N and a BIBD (49, 7, 1). In this particular case, N 
was set to 41 as this is the prime value that provides 
the frame length closest to the desired one: 41 x 49 = 
2009.   

We began using the same check and bit degrees 
as the original eIRA because they have been 
demonstrated to be optimal using differential 
evolution. The proposed bit degree for H1 matrix 
was 58% of information bits with degree 3 and 42% 
with degree 7. On the other hand roots of primitive 
generators were  randomly elected. Results can be 

seen in Figure 5 labeled as eIRA BIBD (58%w3, 
42%w7, rr) where rr means random roots. 
Performance is clearly improved selecting roots 
following the previously mentioned criteria, based 
on separating widely the ones on columns and pair 
of columns. The use of these distributed roots and its 
BER performance is labeled as eIRA BIBD (58%w3, 
0%w4, 42%w7, dr) , where dr means distributed 
roots, in Figure  5. 

The next step to improve the BER performance 
in the error floor zone was to increase top level 
columns to degree-4. A top level column is a column 
of the top level matrix, which contains 41 
information bits in this particular case. In order to 
low the error floor a method based on increasing the 
top level columns that are involved in most low 
weight codewords and near codewords is proposed. 
Basically the method consist in studying the quantity 
of errors in which each top level column is involved 
in and increase the degree of those with most errors 
(Pérez, 2005). 

 Increasing 3 top level columns (3*41 
information bits), which constitutes 6% of the total 
number of columns, the BER performance in the 
error floor zone (SNR=1.6dB) is improved from 
2*10-5 to 9*10-6. Finally, by increasing 6 top level 
columns (12% of the weight 3 columns) the BER 
performance goes below 3*10-6 as can be seen in 
Figure  5. 

Final results are labeled as BIBD (46%w3, 
12%w4, 42%w7, dr) in Figure 5, indicating the 
percentage of columns increased to degree-4. This 
final result can also be seen in Figure 6, compared to 
the original eIRA results presented in (Yang, 2004). 
As can be observed, the proposed method is really 
close to the original eIRA in terms of BER 
performance, but eliminating the random topology 
of the parity check matrix with the implementation 
benefits this feature implies.  
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Figure 5: Influence of the percentage of weight 4 columns 
in BER performance. 
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3.2 Rate 0.8  

For this scheme, the frame size was a little bigger 
(4495, 3534) than the one used in (Yang, 2004) 
(4161, 3430). Moreover, the rate is a little smaller 
(0.786 instead of 0.82). These two small differences 
can explain the performance of our system being 
almost 0.2dB better than the original one (using the 
same check and node degrees) as can be seen in 
Figure 7. Anyway, the difference is minimal and the 
performance is as close to the (Yang, 2004) design 
as expected. 
Finally we present a comparison between Mansour 
(Mansour, 2003) design, a random regular design 
also reported in (Mansour, 2003) and our proposal 
for rate 0.5 and frame size (1008). In (Mansour, 
2003) the degree used by Mansour was not 
specified. 
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Figure 6: Performance comparison of original and 
proposed n≈4000 rate-0.5 eIRAs. 
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Figure 7: Performance comparison of original and 
proposed n≈4000 rate-0.8 eIRAs. 
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Figure 8: Performance comparison of various n≈1000  
rate-0.5 regular LDPC codes. 

In this paper the optimal degree calculated via the 
density function for this rate and size has been used.  

Comparison can be seen in Figure 8. Our design 
outperforms both the Mansour and random designs 
by approximately 0.2 dB. 

4 CONCLUSIONS 

In this paper a new architecture for designing eIRAs 
is proposed. A design based on hierarchical matrices 
is proposed, combining the deterministic structure of 
BIBD (x, y, 1) designs, avoiding length-four cycles, 
with the good BER properties of pseudo-random 
constructions in order to create a hardware-aware 
design which allows high parallelism with BER 
performance close to the eIRAs theoretical 
performance. Moreover, with the method defined in 
this paper we are able to improve BER performance 
and error floor by distributing the elements of H 
matrix and by selectively increasing bit degrees. 
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